Stat 502X Exam 1 Spring 2014

Size: px
Start display at page:

Download "Stat 502X Exam 1 Spring 2014"

Transcription

1 Stat 502X Exam 1 Spring 2014 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This is a long exam consisting of 11 parts. I'll score it at 10 points per problem/part and add your best 8 scores to get an exam score (out of 80 points possible). Some parts will go faster than others, and you'll be wise to do them first. 1

2 1. I want to fit a function to N data pairs xi, y i that is linear outside the interval 0,1, is quadratic in each of the intervals 0,.5 and.5,1 and has a first derivative for all x (has no sharp corners). Specify below 4 functions h x, h x, h x, and h x and one linear constraint on coefficients 0, 1, 2, 3, and 4 so that the function y h x h x h x h x is of the desired form. 2

3 2. Consider a joint pdf (for xy, 0,10, ) of the form 1 y gx, y exp for 0 x 1 and 0 y 2 2 x x ( x U0,1and conditional on x, the variable y is exponential with mean 2 x.) 10 pts a) Find the linear function of x (say x ) that minimizes E y x 2 is over the joint distribution of x, y. Find the optimizing intercept and slope.). (The averaging 3

4 b) Suppose that a training set consists of N data pairs, xi y i that are independent drawn from the distribution specified on the previous page, and that least squares is used to fit a predictor f x a b x to the training data. Suppose that it's possible to argue (don't try to do so here) ˆN N N that the least squares coefficients an and b N converge (in a proper probabilistic sense) to your optimizers from a) as N. Then for large N, about what value of (SEL) training error do you expect to observe under this scenario? (Give a number.) 4

5 3. Suppose that (unbeknownst to a statistical learner) x U0,1 and E y x I.45 x.55 (that is, the conditional mean of y given x is 1 when.45 x.55 and is 0 otherwise). A 3- nearest-neighbor predictor, f ˆN, is based on N data pairs, and f ˆ N.5 has conditional means given the values of the inputs in the training set: 0 if no xi is in.45,.55 1/ 3 if one xi is in.45,.55 2 / 3 if two xi's are in.45,.55 1 if three or more x 's are in.45,.55 What is the value of the bias of the nearest neighbor predictor at.5? Does this bias go to 0 as N gets big? Argue carefully one way or the other. i 5

6 4. Below is a JMP report from the fit of a two-layer feed-forward neural network to N 100 pairs i, i function" here is u tanh u x y. What value is predicted for x.5? (Plug in, but you need not simplify. The "activation.) 6

7 5. An interesting data set from the Technical University of Delft relates a measure of yacht performance, y, to several shape characteristics of yachts. This problem concerns predicting (at a particular "Froude number") logy as a function of p 5 inputs. 10 pts a) Below is a summary of such an analysis. Use the information below and predict logy if x 5.0, x 0.565, x 5.10, x 3.94, and x > MARSfitlogY<-earth(logy~.-logy,degree=2,data=Yachts,pmethod="none",trace=2) x is a 22 by 5 matrix: 1=x1, 2=x2, 3=x3, 4=x4, 5=x5 y is a 22 by 1 matrix: 1=logy Forward pass: minspan 4 endspan 9 GRSq ParentTerm RSq DeltaRSq Pred PredName Cut Terms x2 x x x reject term Reached min GRSq (GRSq < -10) at 7 terms After forward pass GRSq RSq Forward pass complete: 7 terms Prune method "none" penalty 3 nprune 7: selected 7 of 7 terms, and 3 of 5 predictors After backward pass GRSq RSq > summary(marsfitlogy) Call: earth(formula=logy~.-logy, data=yachts, trace=2, degree=2, pmethod="none") coefficients (Intercept) h(x ) h(0.565-x2) h(x4-3.99) h(3.99-x4) h(x ) * h(0.565-x2) h(-2.3-x1) * h(0.565-x2) Selected 7 of 7 terms, and 3 of 5 predictors Importance: x4, x2, x1, x3-unused, x5-unused Number of terms at each degree of interaction: GCV RSS GRSq RSq

8 After standardizing the 5 input variables and centering the response (for the yacht data), the following are some results from R. (The input matrix is called CX and the response vector is W.) > round(svd(cx)$u,3) [,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,] [19,] [20,] [21,] [22,] > round(svd(cx)$v,3) [,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] [4,] [5,] > round(svd(cx)$d,3) [1] > round(cx%*%svd(cx)$v,3) [,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,] [19,] [20,] [21,] [22,]

9 > a<-cx%*%t(cx)%*%w > round(a,3) [,1] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,] [19,] [20,] [21,] [22,] > t(w)%*%a [,1] [1,] > t(a)%*%a [,1] [1,] > round(t(w)%*%svd(cx)$u,3) [,1] [,2] [,3] [,4] [,5] [1,] pts b) What are the effective degrees of freedom associated with a ridge regression in this context, using a ridge parameter of 2? 9

10 c) Give the M 1 component PCR and PLS vectors of predicted values ˆ PCR PLS W and W. ˆ 10

11 d) Below is some output from fitting a lasso regression to these data, using cross-validation to choose a lasso penalty coefficient. > cv.out=cv.glmnet(cx,w,alpha=1) > plot(cv.out) > bestlam=cv.out$lambda.min > bestlam [1] > lasso.coef=predict(cv.out,type="coefficients",s=bestlam) > lasso.coef 6 x 1 sparse Matrix of class "dgcmatrix" 1 (Intercept) e-16 V1. V e-02 V3. V e-02 V5. > betahat<-c(lasso.coef[2:6]) > round(cx%*%betahat,3) [,1] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,] [19,] [20,] [21,] [22,] > t(cx%*%betahat-w)%*%(cx%*%betahat-w) [,1] [1,] What penalized value of training error is associated with this lasso fit (including the penalty)? 11

12 6. Below is a particular smoother matrix, S, for p 1 data at values x 0,.1,.2,.3,,.9,1.0 (The labeling convention used below is x1 0, x2.1, x3.2,, x ) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] What effective degrees of freedom are associated with this smoother? Approximately what bandwith is associated with this smoother? For training data as below, what is f ˆ.4? y x

13 7. K -fold cross-validation is (as you know by now) probably the most common and effective known means of assessing "test error" for purposes of choosing between predictors. K 5 and K 10 are common choices. K N is the case of leave-one-out (LOO) crossvalidation. For present purposes ignore issues of computational complexity. Why would you expect LOO cross-validation to often be preferable to K 10 in terms of bias for assessing test error? How do you explain that (despite consideration of bias) K 10 can often be preferable to LOO? (Again, do not consider computational issues.) 13

Stat 602 Exam 1 Spring 2017 (corrected version)

Stat 602 Exam 1 Spring 2017 (corrected version) Stat 602 Exam Spring 207 (corrected version) I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This is a very long Exam. You surely won't be able to

More information

Stat 502X Exam 2 Spring 2014

Stat 502X Exam 2 Spring 2014 Stat 502X Exam 2 Spring 2014 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This exam consists of 12 parts. I'll score it at 10 points per problem/part

More information

Stat 401B Final Exam Fall 2015

Stat 401B Final Exam Fall 2015 Stat 401B Final Exam Fall 015 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

Stat 231 Exam 2 Fall 2013

Stat 231 Exam 2 Fall 2013 Stat 231 Exam 2 Fall 2013 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Some IE 361 students worked with a manufacturer on quantifying the capability

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

IE 361 EXAM #3 FALL 2013 Show your work: Partial credit can only be given for incorrect answers if there is enough information to clearly see what you were trying to do. There are two additional blank

More information

Lecture 14: Shrinkage

Lecture 14: Shrinkage Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, 2017 1 / 19 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Stat 231 Final Exam Fall 2013 Slightly Edited Version

Stat 231 Final Exam Fall 2013 Slightly Edited Version Stat 31 Final Exam Fall 013 Slightly Edited Version I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. An IE 361 project group studied the operation

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

STAT 462-Computational Data Analysis

STAT 462-Computational Data Analysis STAT 462-Computational Data Analysis Chapter 5- Part 2 Nasser Sadeghkhani a.sadeghkhani@queensu.ca October 2017 1 / 27 Outline Shrinkage Methods 1. Ridge Regression 2. Lasso Dimension Reduction Methods

More information

IE 316 Exam 1 Fall 2011

IE 316 Exam 1 Fall 2011 IE 316 Exam 1 Fall 2011 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Suppose the actual diameters x in a batch of steel cylinders are normally

More information

10-701/ Machine Learning - Midterm Exam, Fall 2010

10-701/ Machine Learning - Midterm Exam, Fall 2010 10-701/15-781 Machine Learning - Midterm Exam, Fall 2010 Aarti Singh Carnegie Mellon University 1. Personal info: Name: Andrew account: E-mail address: 2. There should be 15 numbered pages in this exam

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Statistics 262: Intermediate Biostatistics Model selection

Statistics 262: Intermediate Biostatistics Model selection Statistics 262: Intermediate Biostatistics Model selection Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Today s class Model selection. Strategies for model selection.

More information

IE 316 Exam 1 Fall 2011

IE 316 Exam 1 Fall 2011 IE 316 Exam 1 Fall 2011 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Suppose the actual diameters x in a batch of steel cylinders are normally

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) x 8. C) y = x + 3 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) x 8. C) y = x + 3 2 Precalculus Fall Final Exam Review Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Simplify the expression. Assume that the variables

More information

EXAM 1 Review. 1. Find the distance between the points (2, 6) and ( 5, 2). Give the exact solution and an approximation to the nearest hundredth.

EXAM 1 Review. 1. Find the distance between the points (2, 6) and ( 5, 2). Give the exact solution and an approximation to the nearest hundredth. EXAM 1 Review 1. Find the distance between the points (2, 6) and ( 5, 2). Give the exact solution and an approximation to the nearest hundredth. 2. Find the midpoint of the line segment with end points

More information

LINEAR REGRESSION, RIDGE, LASSO, SVR

LINEAR REGRESSION, RIDGE, LASSO, SVR LINEAR REGRESSION, RIDGE, LASSO, SVR Supervised Learning Katerina Tzompanaki Linear regression one feature* Price (y) What is the estimated price of a new house of area 30 m 2? 30 Area (x) *Also called

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Stat 401B Exam 2 Fall 2015

Stat 401B Exam 2 Fall 2015 Stat 401B Exam Fall 015 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Stat 401B Exam 2 Fall 2016

Stat 401B Exam 2 Fall 2016 Stat 40B Eam Fall 06 I have neither given nor received unauthorized assistance on this eam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning will

More information

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning LECTURE 10: LINEAR MODEL SELECTION PT. 1 October 16, 2017 SDS 293: Machine Learning Outline Model selection: alternatives to least-squares Subset selection - Best subset - Stepwise selection (forward and

More information

Midterm Exam, Spring 2005

Midterm Exam, Spring 2005 10-701 Midterm Exam, Spring 2005 1. Write your name and your email address below. Name: Email address: 2. There should be 15 numbered pages in this exam (including this cover sheet). 3. Write your name

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 10

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 10 COS53: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 0 MELISSA CARROLL, LINJIE LUO. BIAS-VARIANCE TRADE-OFF (CONTINUED FROM LAST LECTURE) If V = (X n, Y n )} are observed data, the linear regression problem

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

IE 316 Exam 1 Fall 2012

IE 316 Exam 1 Fall 2012 IE 316 Exam 1 Fall 2012 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 20 pts 1. Here are 10 True-False questions worth 2 points each. Write (very

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Linear Models: Comparing Variables. Stony Brook University CSE545, Fall 2017

Linear Models: Comparing Variables. Stony Brook University CSE545, Fall 2017 Linear Models: Comparing Variables Stony Brook University CSE545, Fall 2017 Statistical Preliminaries Random Variables Random Variables X: A mapping from Ω to ℝ that describes the question we care about

More information

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 STAT 391 - Spring Quarter 2017 - Midterm 1 - April 27, 2017 Name: Student ID Number: Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 Directions. Read directions carefully and show all your

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14 Final Exam A Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 1 1) x + 3 + 5 x - 3 = 30 (x + 3)(x - 3) 1) A) x -3, 3; B) x -3, 3; {4} C) No restrictions; {3} D)

More information

STK4900/ Lecture 5. Program

STK4900/ Lecture 5. Program STK4900/9900 - Lecture 5 Program 1. Checking model assumptions Linearity Equal variances Normality Influential observations Importance of model assumptions 2. Selection of predictors Forward and backward

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Stat 401XV Final Exam Spring 2017

Stat 401XV Final Exam Spring 2017 Stat 40XV Final Exam Spring 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

ESS2222. Lecture 3 Bias-Variance Trade-off

ESS2222. Lecture 3 Bias-Variance Trade-off ESS2222 Lecture 3 Bias-Variance Trade-off Hosein Shahnas University of Toronto, Department of Earth Sciences, 1 Outline Bias-Variance Trade-off Overfitting & Regularization Ridge & Lasso Regression Nonlinear

More information

Linear Regression In God we trust, all others bring data. William Edwards Deming

Linear Regression In God we trust, all others bring data. William Edwards Deming Linear Regression ddebarr@uw.edu 2017-01-19 In God we trust, all others bring data. William Edwards Deming Course Outline 1. Introduction to Statistical Learning 2. Linear Regression 3. Classification

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015 MS&E 226 In-Class Midterm Examination Solutions Small Data October 20, 2015 PROBLEM 1. Alice uses ordinary least squares to fit a linear regression model on a dataset containing outcome data Y and covariates

More information

The prediction of house price

The prediction of house price 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c Warm up D cai.yo.ie p IExrL9CxsYD Sglx.Ddl f E Luo fhlexi.si dbll Fix any a, b, c > 0. 1. What is the x 2 R that minimizes ax 2 + bx + c x a b Ta OH 2 ax 16 0 x 1 Za fhkxiiso3ii draulx.h dp.d 2. What is

More information

Ridge and Lasso Regression

Ridge and Lasso Regression enote 8 1 enote 8 Ridge and Lasso Regression enote 8 INDHOLD 2 Indhold 8 Ridge and Lasso Regression 1 8.1 Reading material................................. 2 8.2 Presentation material...............................

More information

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, Ph.D. Computer Science, Kennesaw State University Problems

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

IE 361 Exam 3 Fall I have neither given nor received unauthorized assistance on this exam.

IE 361 Exam 3 Fall I have neither given nor received unauthorized assistance on this exam. IE 361 Exam 3 Fall 2012 I have neither given nor received unauthorized assistance on this exam. Name Date 1 1. I wish to measure the density of a small rock. My method is to read the volume of water in

More information

MATH 680 Fall November 27, Homework 3

MATH 680 Fall November 27, Homework 3 MATH 680 Fall 208 November 27, 208 Homework 3 This homework is due on December 9 at :59pm. Provide both pdf, R files. Make an individual R file with proper comments for each sub-problem. Subgradients and

More information

6A Lab Post-test. Instructions for printed version. Week 10, Fall 2016

6A Lab Post-test. Instructions for printed version. Week 10, Fall 2016 6A Lab Post-test Instructions for printed version Week 10, Fall 2016 This is the printed version of 6A Lab post-test. Please complete it during your final 6A lab, which will occur during week 10. DO NOT

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Tutorial on Linear Regression

Tutorial on Linear Regression Tutorial on Linear Regression HY-539: Advanced Topics on Wireless Networks & Mobile Systems Prof. Maria Papadopouli Evripidis Tzamousis tzamusis@csd.uoc.gr Agenda 1. Simple linear regression 2. Multiple

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours Instructions: STATS216v Introduction to Statistical Learning Stanford University, Summer 2017 Remember the university honor code. Midterm Exam (Solutions) Duration: 1 hours Write your name and SUNet ID

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014

Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014 Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2014 1 / 13 Chapter 8: Polynomials & Interactions

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i Final Exam C Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 7 ) x + + 3 x - = 6 (x + )(x - ) ) A) No restrictions; {} B) x -, ; C) x -; {} D) x -, ; {2} Add

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Exam 1c 1/31/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 8 pages (including this cover page) and 7 problems. Check to see if any pages

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAC 1105 Fall 2007 - Final Exam Dr. Schnackenberg If you do not agree with the given answers, answer "E" for "None of the above". MULTIPLE CHOICE. Choose the one alternative that best completes the statement

More information

Lecture VIII Dim. Reduction (I)

Lecture VIII Dim. Reduction (I) Lecture VIII Dim. Reduction (I) Contents: Subset Selection & Shrinkage Ridge regression, Lasso PCA, PCR, PLS Lecture VIII: MLSC - Dr. Sethu Viayakumar Data From Human Movement Measure arm movement and

More information

High-dimensional regression with unknown variance

High-dimensional regression with unknown variance High-dimensional regression with unknown variance Christophe Giraud Ecole Polytechnique march 2012 Setting Gaussian regression with unknown variance: Y i = f i + ε i with ε i i.i.d. N (0, σ 2 ) f = (f

More information

Model Selection. Frank Wood. December 10, 2009

Model Selection. Frank Wood. December 10, 2009 Model Selection Frank Wood December 10, 2009 Standard Linear Regression Recipe Identify the explanatory variables Decide the functional forms in which the explanatory variables can enter the model Decide

More information

Lecture 17 Intro to Lasso Regression

Lecture 17 Intro to Lasso Regression Lecture 17 Intro to Lasso Regression 11 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due today Goals for today introduction to lasso regression the subdifferential

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5 Department of Mathematics, University of Wisconsin-Madison Math 11 Worksheet Sections 3.1, 3.3, and 3.5 1. For f(x) = 5x + (a) Determine the slope and the y-intercept. f(x) = 5x + is of the form y = mx

More information

Midterm: CS 6375 Spring 2018

Midterm: CS 6375 Spring 2018 Midterm: CS 6375 Spring 2018 The exam is closed book (1 cheat sheet allowed). Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, use an additional

More information

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d)

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless

More information

REVIEW, pages Chapter 1: Polynomial Expressions and Functions Review Solutions DO NOT COPY. P 1.1. Write the division statement.

REVIEW, pages Chapter 1: Polynomial Expressions and Functions Review Solutions DO NOT COPY. P 1.1. Write the division statement. REVIEW, pages 72 77 1.1 1. Use long division to divide 7x 3 + 6x 4-7x - 9x 2 + 8 by x 1. Write the division statement. Write the polynomial in descending order: 6x 4 7x 3 9x 2 7x 8 6x 4 6x 3 6x 3 13x 2

More information

Math 115 First Midterm February 12, 2013

Math 115 First Midterm February 12, 2013 Math 115 First Midterm February 12, 2013 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 12 pages including this cover. There are 10 problems.

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

Student study guide for the MAT 151 Spring 2016 final examination

Student study guide for the MAT 151 Spring 2016 final examination Student study guide for the MAT 151 Spring 016 final examination Use the problems in this study guide to help you prepare for the problems on the final. The problems below are similar to the ones on the

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

Student s Printed Name: _Key_& Grading Guidelines CUID:

Student s Printed Name: _Key_& Grading Guidelines CUID: Student s Printed Name: _Key_& Grading Guidelines CUID: Instructor: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell

More information

ISQS 5349 Final Exam, Spring 2017.

ISQS 5349 Final Exam, Spring 2017. ISQS 5349 Final Exam, Spring 7. Instructions: Put all answers on paper other than this exam. If you do not have paper, some will be provided to you. The exam is OPEN BOOKS, OPEN NOTES, but NO ELECTRONIC

More information

Stat 401B Exam 2 Fall 2017

Stat 401B Exam 2 Fall 2017 Stat 0B Exam Fall 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning will

More information

Regression.

Regression. Regression www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts linear regression RMSE, MAE, and R-square logistic regression convex functions and sets

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6 STA 8 Applied Linear Models: Regression Analysis Spring 011 Solution for Homework #6 6. a) = 11 1 31 41 51 1 3 4 5 11 1 31 41 51 β = β1 β β 3 b) = 1 1 1 1 1 11 1 31 41 51 1 3 4 5 β = β 0 β1 β 6.15 a) Stem-and-leaf

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: STK4030 Modern data analysis - FASIT Day of examination: Friday 13. Desember 2013. Examination hours: 14.30 18.30. This

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8 MAC 1147 Exam #1a Answer Key Name: Answer Key ID# Summer 2012 HONOR CODE: On my honor, I have neither given nor received any aid on this examination. Signature: Instructions: Do all scratch work on the

More information

Behavioral Data Mining. Lecture 7 Linear and Logistic Regression

Behavioral Data Mining. Lecture 7 Linear and Logistic Regression Behavioral Data Mining Lecture 7 Linear and Logistic Regression Outline Linear Regression Regularization Logistic Regression Stochastic Gradient Fast Stochastic Methods Performance tips Linear Regression

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information