Optimal Control of Drift-Free Invariant Control Systems on the Group of Motions of the Minkowski Plane

Size: px
Start display at page:

Download "Optimal Control of Drift-Free Invariant Control Systems on the Group of Motions of the Minkowski Plane"

Transcription

1 Optimal Control of Drift-Free Invariant Control Systems on the Group of Motions of the Minkowski Plane Dennis I. Barrett*, Rory Biggs and Claudiu C. Remsing Geometry and Geometric Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa 13th European Control Conference June 4 7, 014, Strasbourg, France Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

2 Outline 1 Invariant optimal control The semi-euclidean group SE(1, 1) 3 Classification of cost-extended systems 4 Extremal controls Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC 014 / 15

3 Introduction Context invariant control systems on 3D Lie groups invariant optimal control problems (with quadratic cost) Problem classify cost-extended systems determine extremal controls calculate extremal trajectories Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

4 Invariant control systems Drift-free left-invariant control system Σ = (G, Ξ) state space G matrix Lie group with Lie algebra g dynamics Ξ : G R l T G left-invariant: Ξ(g, u) = g Ξ(1, u) parametrization map: Ξ(1, ) : R l g, u u 1 B u l B l trace Γ = B 1,..., B l g is l dimensional Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

5 Trajectories and controllability Admissible controls and trajectories admissible control: piecewise cont. curve u( ) : [0, T ] R l trajectory corresponding to u( ): abs. cont. curve g( ) : [0, T ] G such that ġ(t) = Ξ(g(t), u(t)) for a.e. t [0, T ] (g( ), u( )) is a trajectory-control pair Controllability Σ is controllable if any two points can be joined by a trajectory necessary and sufficient: trace Γ generates g Restrict to controllable systems Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

6 Equivalence of control systems Detached feedback equivalence Σ is DF -equivalent to Σ if φ Diff(G), ϕ GL(R l ) such that T g φ Ξ(g, u) = Ξ (φ(g), ϕ(u)), for every g G, u R l trajectories of DF -equivalent systems in 1-to-1 correspondence Algebraic characterization Σ and Σ DF -equivalent φ Aut(G) such that T 1 φ Γ = Γ Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

7 Optimal control Invariant optimal control problem left-invariant control system Σ = (G, Ξ) boundary data (initial state g 0, final state g 1, terminal time T > 0) quadratic cost: χ(u) = u Q u, u R l, Q R l l is PD ġ = g(u 1 B u l B l ) g(0) = g 0, g(t ) = g 1, T > 0 fixed J [u( )] = T 0 χ(u(t)) dt min (OCP) Minimize cost functional J over trajectory-control pairs (g( ), u( )) of Σ subject to boundary data Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

8 Pontryagin lift Lifting to the cotangent bundle lift the problem to the cotangent bundle T G = G g using Pontryagin Maximum Principle: G-invariant Hamiltonian function H : T G R induced Hamilton-Poisson system (g, H) Hamilton-Poisson systems on g = (g, {, }) Lie-Poisson bracket: {F, G}(p) = p, [df (p), dg(p)] Hamiltonian vector field H = {, H} Proposition The (normal) extremal controls of an optimal control problem (OCP) are linearly related to the integral curves of (g, H) Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

9 Cost-extended systems Associate to each optimal control problem a cost-extended system (Σ, χ) Cost equivalence (Σ, χ) is C-equivalent to (Σ, χ ) if φ Aut(G), ϕ GL(R l ) such that T g φ Ξ(g, u) = Ξ (φ(g), ϕ(u)) and χ ϕ = rχ for some r > 0 optimal (resp. extremal) trajectory-control pairs of C-equivalent systems in 1-to-1 correspondence Characterization (same underlying control system) (Σ, χ) and (Σ, χ ) are C-equivalent ϕ GL(R l ) such that ϕ preserves Σ: φ Aut(G) such that T 1 φ Ξ(1, u) = Ξ(1, ϕ(u)) χ = rχ ϕ for some r > 0 Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

10 The semi-euclidean group SE(1, 1) Lie group and Lie algebra SE(1, 1) : x cosh θ sinh θ se(1, 1) : x 0 θ y sinh θ cosh θ y θ 0 group of isometries of (R, ), where x y = x 1 y 1 + x y connected and simply connected Standard basis E 1 = E = E 3 = [E, E 3 ] = E 1 [E 3, E 1 ] = E [E 1, E ] = 0 Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

11 Classification of cost-extended systems Cost-extended systems on SE(1, 1) Let (Σ, χ) be a controllable drift-free cost-extended system. If Σ is two-input, then (Σ, χ) is C-equivalent to { Ξ (,0) (1, u) = u 1 E 1 + u E 3 χ (,0) (u) = u 1 + u If Σ is three-input, then (Σ, χ) is C-equivalent to a system { Ξ (3,0) (1, u) = u 1 E 1 + u E + u 3 E 3 χ (3,0) λ (u) = u 1 + λu + u 3 (0 < λ 1) Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

12 Proof sketch (two-input) DF -equivalence Every two-input system Σ = (SE(1, 1), Ξ) is DF -equivalent to the system C-equivalence Σ (,0) = (SE(1, 1), Ξ (,0) ), Ξ (,0) (1, u) = u 1 E 1 + u E 3 every cost-extended system is C-equivalent to a system (Σ (,0), χ), [ ] χ(u) = u α1 β u β α [ 1 β ] [ ] α1 α β then ϕ 1 = α 1, ϕ = α 1 0 preserve Σ (,0) and (χ ϕ 1 ϕ )(u) = u [ r 0 0 r ] u = rχ (,0) (u), r = α 1α β α 1 > 0 Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

13 Extremal controls of two-input system (normal) extremal controls: u 1 = p 1, u = p 3 p( ) int. curve of H (,0) (p) = 1 (p 1 + p3) E E 0 E 1 E E 0 E 1 (a) C(p) > 0 Equations of motion ṗ 1 = p p 3 ṗ = p 1 p 3 ṗ 3 = p 1 p C(p) = p1 p is a Casimir E E 0 E 1 E 3 0 (b) C(p) = 0 0 E 0 E 1 Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

14 Integration Integral curves p( ) of H (,0) Let H (,0) (p(0)) = h 0 > 0 and C(p(0)) = c 0 0. If c 0 > 0, then there exist t 0 R and σ { 1, 1} such that p(t) = p(t + t 0 ) for every t If c 0 = 0, then there exist t 0 R and σ 1, σ { 1, 1} such that p(t) = q(t + t 0 ) for every t p 1 (t) = σω dn(ωt, k) p (t) = σkω cn(ωt, k) p 3 (t) = kω sn(ωt, k) q 1 (t) = σ 1 Ω sech(ωt) q (t) = σ 1 σ Ω sech(ωt) q 3 (t) = σ Ω tanh(ωt) Ω = h 0 k = 1 c 0 /Ω Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

15 Conclusion Sub-Riemannian structures invariant SR structure associated to every cost-extended system thus, on SE(1, 1) (up to isometric group automorphisms): [ ] 1 0 sub-riemannian structures: D 1 = E 1, E 3, g 1 = Riemannian structures: g1 λ = 0 λ Outlook determine optimal trajectories classification of cost-extended systems with drift Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC / 15

Cost-extended control systems on SO(3)

Cost-extended control systems on SO(3) Cost-extended control systems on SO(3) Ross M. Adams Mathematics Seminar April 16, 2014 R.M. Adams (RU) Cost-extended control systems on SO(3) RU Maths Seminar 1 / 34 Outline 1 Introduction 2 Control systems

More information

Invariant Control Systems on Lie Groups

Invariant Control Systems on Lie Groups Invariant Control Systems on Lie Groups Rory Biggs and Claudiu C. Remsing Geometry and Geometric Control (GGC) Research Group Department of Mathematics (Pure & Applied) Rhodes University, Grahamstown,

More information

A Note on the Affine Subspaces of Three-Dimensional Lie Algebras

A Note on the Affine Subspaces of Three-Dimensional Lie Algebras BULTINUL ACADMII D ŞTIINŢ A RPUBLICII MOLDOVA. MATMATICA Number 3(70), 2012, Pages 45 52 ISSN 1024 7696 A Note on the Affine Subspaces of Three-Dimensional Lie Algebras Rory Biggs, Claudiu C. Remsing Abstract.

More information

On Quadratic Hamilton-Poisson Systems

On Quadratic Hamilton-Poisson Systems On Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa Geometry, Integrability & Quantization

More information

Control and Integrability on SO (3)

Control and Integrability on SO (3) , June 3 - July 2, 21, London, U.K. Control and Integrability on SO 3 C.C. Remsing Abstract This paper considers control affine leftinvariant systems evolving on matrix Lie groups. Such systems have significant

More information

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University,

More information

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University Grahamstown,

More information

Isometries of Riemannian and sub-riemannian structures on 3D Lie groups

Isometries of Riemannian and sub-riemannian structures on 3D Lie groups Isometries of Riemannian and sub-riemannian structures on 3D Lie groups Rory Biggs Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University, Grahamstown, South Africa

More information

Invariant Lagrangian Systems on Lie Groups

Invariant Lagrangian Systems on Lie Groups Invariant Lagrangian Systems on Lie Groups Dennis Barrett Geometry and Geometric Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140 Eastern Cape

More information

An Optimal Control Problem for Rigid Body Motions in Minkowski Space

An Optimal Control Problem for Rigid Body Motions in Minkowski Space Applied Mathematical Sciences, Vol. 5, 011, no. 5, 559-569 An Optimal Control Problem for Rigid Body Motions in Minkowski Space Nemat Abazari Department of Mathematics, Ardabil Branch Islamic Azad University,

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

The Geometry of Euler s equation. Introduction

The Geometry of Euler s equation. Introduction The Geometry of Euler s equation Introduction Part 1 Mechanical systems with constraints, symmetries flexible joint fixed length In principle can be dealt with by applying F=ma, but this can become complicated

More information

Reduction of Homogeneous Riemannian structures

Reduction of Homogeneous Riemannian structures Geometric Structures in Mathematical Physics, 2011 Reduction of Homogeneous Riemannian structures M. Castrillón López 1 Ignacio Luján 2 1 ICMAT (CSIC-UAM-UC3M-UCM) Universidad Complutense de Madrid 2 Universidad

More information

Review of Lagrangian Mechanics and Reduction

Review of Lagrangian Mechanics and Reduction Review of Lagrangian Mechanics and Reduction Joel W. Burdick and Patricio Vela California Institute of Technology Mechanical Engineering, BioEngineering Pasadena, CA 91125, USA Verona Short Course, August

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

TWO-INPUT CONTROL SYSTEMS ON THE EUCLIDEAN GROUP SE (2)

TWO-INPUT CONTROL SYSTEMS ON THE EUCLIDEAN GROUP SE (2) ESAIM: COCV 9 3 947 975 DOI:.5/cocv/4 ESAIM: Control, Optimisation and Calculus of Variations www.esaim-cocv.org TWO-INPUT CONTROL SYSTEMS ON THE EUCLIDEAN GROUP SE Ross M. Adams, Rory Biggs and Claudiu

More information

Geodesic Equivalence in sub-riemannian Geometry

Geodesic Equivalence in sub-riemannian Geometry 03/27/14 Equivalence in sub-riemannian Geometry Supervisor: Dr.Igor Zelenko Texas A&M University, Mathematics Some Preliminaries: Riemannian Metrics Let M be a n-dimensional surface in R N Some Preliminaries:

More information

INTRODUCTION TO GEOMETRY

INTRODUCTION TO GEOMETRY INTRODUCTION TO GEOMETRY ERIKA DUNN-WEISS Abstract. This paper is an introduction to Riemannian and semi-riemannian manifolds of constant sectional curvature. We will introduce the concepts of moving frames,

More information

LECTURE 8: THE MOMENT MAP

LECTURE 8: THE MOMENT MAP LECTURE 8: THE MOMENT MAP Contents 1. Properties of the moment map 1 2. Existence and Uniqueness of the moment map 4 3. Examples/Exercises of moment maps 7 4. Moment map in gauge theory 9 1. Properties

More information

Hamiltonian flows, cotangent lifts, and momentum maps

Hamiltonian flows, cotangent lifts, and momentum maps Hamiltonian flows, cotangent lifts, and momentum maps Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Symplectic manifolds Let (M, ω) and (N, η) be symplectic

More information

Comparison for infinitesimal automorphisms. of parabolic geometries

Comparison for infinitesimal automorphisms. of parabolic geometries Comparison techniques for infinitesimal automorphisms of parabolic geometries University of Vienna Faculty of Mathematics Srni, January 2012 This talk reports on joint work in progress with Karin Melnick

More information

EXERCISES IN POISSON GEOMETRY

EXERCISES IN POISSON GEOMETRY EXERCISES IN POISSON GEOMETRY The suggested problems for the exercise sessions #1 and #2 are marked with an asterisk. The material from the last section will be discussed in lecture IV, but it s possible

More information

Transverse geometry. consisting of finite sums of monomials of the form

Transverse geometry. consisting of finite sums of monomials of the form Transverse geometry The space of leaves of a foliation (V, F) can be described in terms of (M, Γ), with M = complete transversal and Γ = holonomy pseudogroup. The natural transverse coordinates form the

More information

Sub-Riemannian geometry in groups of diffeomorphisms and shape spaces

Sub-Riemannian geometry in groups of diffeomorphisms and shape spaces Sub-Riemannian geometry in groups of diffeomorphisms and shape spaces Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (ENS Cachan), Laurent May 2013 Plan 1 Sub-Riemannian geometry 2 Right-invariant

More information

HAPPY BIRTHDAY TONY! Chicago Blochfest June 30, 2105

HAPPY BIRTHDAY TONY! Chicago Blochfest June 30, 2105 HAPPY BIRTHDAY TONY! 1 CLEBSCH OPTIMAL CONTROL Tudor S. Ratiu Section de Mathématiques Ecole Polytechnique Fédérale de Lausanne, Switzerland tudor.ratiu@epfl.ch 2 PLAN OF THE PRESENTATION Symmetric representation

More information

Ruijsenaars type deformation of hyperbolic BC n Sutherland m

Ruijsenaars type deformation of hyperbolic BC n Sutherland m Ruijsenaars type deformation of hyperbolic BC n Sutherland model March 2015 History 1. Olshanetsky and Perelomov discovered the hyperbolic BC n Sutherland model by a reduction/projection procedure, but

More information

Some aspects of the Geodesic flow

Some aspects of the Geodesic flow Some aspects of the Geodesic flow Pablo C. Abstract This is a presentation for Yael s course on Symplectic Geometry. We discuss here the context in which the geodesic flow can be understood using techniques

More information

Fixed Point Theorem and Character Formula

Fixed Point Theorem and Character Formula Fixed Point Theorem and Character Formula Hang Wang University of Adelaide Index Theory and Singular Structures Institut de Mathématiques de Toulouse 29 May, 2017 Outline Aim: Study representation theory

More information

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013 Smooth Dynamics 2 Problem Set Nr. 1 University of Chicago Winter 2013 Instructor: Submitted by: Prof. Wilkinson Clark Butler Problem 1 Let M be a Riemannian manifold with metric, and Levi-Civita connection.

More information

Variational principles and Hamiltonian Mechanics

Variational principles and Hamiltonian Mechanics A Primer on Geometric Mechanics Variational principles and Hamiltonian Mechanics Alex L. Castro, PUC Rio de Janeiro Henry O. Jacobs, CMS, Caltech Christian Lessig, CMS, Caltech Alex L. Castro (PUC-Rio)

More information

Hamiltonian Systems of Negative Curvature are Hyperbolic

Hamiltonian Systems of Negative Curvature are Hyperbolic Hamiltonian Systems of Negative Curvature are Hyperbolic A. A. Agrachev N. N. Chtcherbakova Abstract The curvature and the reduced curvature are basic differential invariants of the pair: Hamiltonian system,

More information

Dierential geometry for Physicists

Dierential geometry for Physicists Dierential geometry for Physicists (What we discussed in the course of lectures) Marián Fecko Comenius University, Bratislava Syllabus of lectures delivered at University of Regensburg in June and July

More information

An Exactly Solvable 3 Body Problem

An Exactly Solvable 3 Body Problem An Exactly Solvable 3 Body Problem The most famous n-body problem is one where particles interact by an inverse square-law force. However, there is a class of exactly solvable n-body problems in which

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

The Toda Lattice. Chris Elliott. April 9 th, 2014

The Toda Lattice. Chris Elliott. April 9 th, 2014 The Toda Lattice Chris Elliott April 9 th, 2014 In this talk I ll introduce classical integrable systems, and explain how they can arise from the data of solutions to the classical Yang-Baxter equation.

More information

Homework 4. Goldstein 9.7. Part (a) Theoretical Dynamics October 01, 2010 (1) P i = F 1. Q i. p i = F 1 (3) q i (5) P i (6)

Homework 4. Goldstein 9.7. Part (a) Theoretical Dynamics October 01, 2010 (1) P i = F 1. Q i. p i = F 1 (3) q i (5) P i (6) Theoretical Dynamics October 01, 2010 Instructor: Dr. Thomas Cohen Homework 4 Submitted by: Vivek Saxena Goldstein 9.7 Part (a) F 1 (q, Q, t) F 2 (q, P, t) P i F 1 Q i (1) F 2 (q, P, t) F 1 (q, Q, t) +

More information

Liouville integrability of Hamiltonian systems and spacetime symmetry

Liouville integrability of Hamiltonian systems and spacetime symmetry Seminar, Kobe U., April 22, 2015 Liouville integrability of Hamiltonian systems and spacetime symmetry Tsuyoshi Houri with D. Kubiznak (Perimeter Inst.), C. Warnick (Warwick U.) Y. Yasui (OCU Setsunan

More information

Seminar Geometrical aspects of theoretical mechanics

Seminar Geometrical aspects of theoretical mechanics Seminar Geometrical aspects of theoretical mechanics Topics 1. Manifolds 29.10.12 Gisela Baños-Ros 2. Vector fields 05.11.12 and 12.11.12 Alexander Holm and Matthias Sievers 3. Differential forms 19.11.12,

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

An Invitation to Geometric Quantization

An Invitation to Geometric Quantization An Invitation to Geometric Quantization Alex Fok Department of Mathematics, Cornell University April 2012 What is quantization? Quantization is a process of associating a classical mechanical system to

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

Topological and H q Equivalence of Prime Cyclic p-gonal Actions on Riemann Surfaces

Topological and H q Equivalence of Prime Cyclic p-gonal Actions on Riemann Surfaces Topological and H q Equivalence of Prime Cyclic p-gonal Actions on Riemann Surfaces Preliminary Report S. Allen Broughton - Rose-Hulman Institute of Technology 14 Apr 2018 Sections Sections Overview of

More information

Control Systems on Lie Groups

Control Systems on Lie Groups Control Systems on Lie Groups P.S. Krishnaprasad Department of Electrical and Computer Engineering and Institute for Systems Research University of Maryland, College Park, MD 20742 1 Control Systems on

More information

A PSEUDO-GROUP ISOMORPHISM BETWEEN CONTROL SYSTEMS AND CERTAIN GENERALIZED FINSLER STRUCTURES. Robert B. Gardner*, George R.

A PSEUDO-GROUP ISOMORPHISM BETWEEN CONTROL SYSTEMS AND CERTAIN GENERALIZED FINSLER STRUCTURES. Robert B. Gardner*, George R. A PSEUDO-GROUP ISOMORPHISM BETWEEN CONTROL SYSTEMS AND CERTAIN GENERALIZED FINSLER STRUCTURES Robert B. Gardner*, George R. Wilkens Abstract The equivalence problem for control systems under non-linear

More information

Remarks on Quadratic Hamiltonians in Spaceflight Mechanics

Remarks on Quadratic Hamiltonians in Spaceflight Mechanics Remarks on Quadratic Hamiltonians in Spaceflight Mechanics Bernard Bonnard 1, Jean-Baptiste Caillau 2, and Romain Dujol 2 1 Institut de mathématiques de Bourgogne, CNRS, Dijon, France, bernard.bonnard@u-bourgogne.fr

More information

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 12 NO. 1 PAGE 1 (2019) Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space Murat Bekar (Communicated by Levent Kula ) ABSTRACT In this paper, a one-to-one

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

Advanced Mechatronics Engineering

Advanced Mechatronics Engineering Advanced Mechatronics Engineering German University in Cairo 21 December, 2013 Outline Necessary conditions for optimal input Example Linear regulator problem Example Necessary conditions for optimal input

More information

Geometry and Dynamics of singular symplectic manifolds. Session 9: Some applications of the path method in b-symplectic geometry

Geometry and Dynamics of singular symplectic manifolds. Session 9: Some applications of the path method in b-symplectic geometry Geometry and Dynamics of singular symplectic manifolds Session 9: Some applications of the path method in b-symplectic geometry Eva Miranda (UPC-CEREMADE-IMCCE-IMJ) Fondation Sciences Mathématiques de

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices

L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices Integrable systems of Calogero (Moser, Sutherland, Olshanetsky- Perelomov, Gibbons-Hermsen, Ruijsenaars-Schneider)

More information

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture)

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) Building Geometric Structures: Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) A geometric structure on a manifold is a cover

More information

A little taste of symplectic geometry

A little taste of symplectic geometry A little taste of symplectic geometry Timothy Goldberg Thursday, October 4, 2007 Olivetti Club Talk Cornell University 1 2 What is symplectic geometry? Symplectic geometry is the study of the geometry

More information

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS by J. Szenthe Abstract. In case of Riemannian manifolds isometric actions admitting submanifolds

More information

Sub-Riemannian Geometry: Basic Ideas and Examples

Sub-Riemannian Geometry: Basic Ideas and Examples Sub-Riemannian Geometry: Basic Ideas and Examples Abubakr Muhammad Dept. of Electrical Engineering Georgia Institute of Technology, Atlanta, GA, USA. abubakr@ece.gatech.edu Keywords Differential geometry;

More information

arxiv: v3 [math.oc] 3 Apr 2017

arxiv: v3 [math.oc] 3 Apr 2017 A contact covariant approach to optimal control with applications to sub-riemannian geometry arxiv:1509.01628v3 [math.oc] 3 Apr 2017 Michał Jóźwikowski, Center for Theoretical Physics, Polish Academy of

More information

The Rocket Car. UBC Math 403 Lecture Notes by Philip D. Loewen

The Rocket Car. UBC Math 403 Lecture Notes by Philip D. Loewen The Rocket Car UBC Math 403 Lecture Notes by Philip D. Loewen We consider this simple system with control constraints: ẋ 1 = x, ẋ = u, u [ 1, 1], Dynamics. Consider the system evolution on a time interval

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Dimer with gain and loss: Integrability and PT -symmetry restoration

Dimer with gain and loss: Integrability and PT -symmetry restoration Dimer with gain and loss: Integrability and PT -symmetry restoration I Barashenkov, University of Cape Town Joint work with: Dima Pelinovsky (McMaster University, Ontario) Philippe Dubard (University of

More information

Gauge Fixing and Constrained Dynamics in Numerical Relativity

Gauge Fixing and Constrained Dynamics in Numerical Relativity Gauge Fixing and Constrained Dynamics in Numerical Relativity Jon Allen The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is reviewed. Gauge freedom is discussed and

More information

M3/4A16 Assessed Coursework 1 Darryl Holm Due in class Thursday November 6, 2008 #1 Eikonal equation from Fermat s principle

M3/4A16 Assessed Coursework 1 Darryl Holm Due in class Thursday November 6, 2008 #1 Eikonal equation from Fermat s principle D. D. Holm November 6, 2008 M3/416 Geom Mech Part 1 1 M3/416 ssessed Coursework 1 Darryl Holm Due in class Thursday November 6, 2008 #1 Eikonal equation from Fermat s principle #1a Prove that the 3D eikonal

More information

Riemannian Curvature Functionals: Lecture I

Riemannian Curvature Functionals: Lecture I Riemannian Curvature Functionals: Lecture I Jeff Viaclovsky Park City athematics Institute July 16, 2013 Overview of lectures The goal of these lectures is to gain an understanding of critical points of

More information

BRST and Dirac Cohomology

BRST and Dirac Cohomology BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23 Outline 1 Introduction 2 Representation

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

On local normal forms of completely integrable systems

On local normal forms of completely integrable systems On local normal forms of completely integrable systems ENCUENTRO DE Răzvan M. Tudoran West University of Timişoara, România Supported by CNCS-UEFISCDI project PN-II-RU-TE-2011-3-0103 GEOMETRÍA DIFERENCIAL,

More information

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx THE NEWLANDER-NIRENBERG THEOREM BEN MCMILLAN Abstract. For any kind of geometry on smooth manifolds (Riemannian, Complex, foliation,...) it is of fundamental importance to be able to determine when two

More information

R-flux string sigma model and algebroid duality on Lie 3-algebroids

R-flux string sigma model and algebroid duality on Lie 3-algebroids R-flux string sigma model and algebroid duality on Lie 3-algebroids Marc Andre Heller Tohoku University Based on joint work with Taiki Bessho (Tohoku University), Noriaki Ikeda (Ritsumeikan University)

More information

Canonical transformations (Lecture 4)

Canonical transformations (Lecture 4) Canonical transformations (Lecture 4) January 26, 2016 61/441 Lecture outline We will introduce and discuss canonical transformations that conserve the Hamiltonian structure of equations of motion. Poisson

More information

Realization theory for systems biology

Realization theory for systems biology Realization theory for systems biology Mihály Petreczky CNRS Ecole Central Lille, France February 3, 2016 Outline Control theory and its role in biology. Realization problem: an abstract formulation. Realization

More information

Robotics, Geometry and Control - Rigid body motion and geometry

Robotics, Geometry and Control - Rigid body motion and geometry Robotics, Geometry and Control - Rigid body motion and geometry Ravi Banavar 1 1 Systems and Control Engineering IIT Bombay HYCON-EECI Graduate School - Spring 2008 The material for these slides is largely

More information

IEOR 265 Lecture 14 (Robust) Linear Tube MPC

IEOR 265 Lecture 14 (Robust) Linear Tube MPC IEOR 265 Lecture 14 (Robust) Linear Tube MPC 1 LTI System with Uncertainty Suppose we have an LTI system in discrete time with disturbance: x n+1 = Ax n + Bu n + d n, where d n W for a bounded polytope

More information

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B Chapter 10 -S&B The Real Line: every real number is represented by exactly one point on the line. The plane (i.e., consumption bundles): Pairs of numbers have a geometric representation Cartesian plane

More information

Poisson Lie 2-groups and Lie 2-bialgebras

Poisson Lie 2-groups and Lie 2-bialgebras Poisson Lie 2-groups and Lie 2-bialgebras PING XU Kolkata, December 2012 JOINT WITH ZHUO CHEN AND MATHIEU STIÉNON 1 Motivation 2 Strict 2-groups & crossed modules of groups 3 Strict Poisson Lie 2-groups

More information

A FUNDAMENTAL THEOREM OF INVARIANT METRICS ON A HOMOGENEOUS SPACE. 1. Introduction

A FUNDAMENTAL THEOREM OF INVARIANT METRICS ON A HOMOGENEOUS SPACE. 1. Introduction A FUNDAMENTAL THEOREM OF INVARIANT METRICS ON A HOMOGENEOUS SPACE ADAM BOWERS 1. Introduction A homogeneous space is a differentiable manifold M upon which a Lie group acts transitively. At the foundation

More information

Discrete Dirac Mechanics and Discrete Dirac Geometry

Discrete Dirac Mechanics and Discrete Dirac Geometry Discrete Dirac Mechanics and Discrete Dirac Geometry Melvin Leok Mathematics, University of California, San Diego Joint work with Anthony Bloch and Tomoki Ohsawa Geometric Numerical Integration Workshop,

More information

Dirac structures. Henrique Bursztyn, IMPA. Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012

Dirac structures. Henrique Bursztyn, IMPA. Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012 Dirac structures Henrique Bursztyn, IMPA Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012 Outline: 1. Mechanics and constraints (Dirac s theory) 2. Degenerate symplectic

More information

Symplectic geometry of deformation spaces

Symplectic geometry of deformation spaces July 15, 2010 Outline What is a symplectic structure? What is a symplectic structure? Denition A symplectic structure on a (smooth) manifold M is a closed nondegenerate 2-form ω. Examples Darboux coordinates

More information

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY LECTURE 1: LINEAR SYMPLECTIC GEOMETRY Contents 1. Linear symplectic structure 3 2. Distinguished subspaces 5 3. Linear complex structure 7 4. The symplectic group 10 *********************************************************************************

More information

Poisson geometry of b-manifolds. Eva Miranda

Poisson geometry of b-manifolds. Eva Miranda Poisson geometry of b-manifolds Eva Miranda UPC-Barcelona Rio de Janeiro, July 26, 2010 Eva Miranda (UPC) Poisson 2010 July 26, 2010 1 / 45 Outline 1 Motivation 2 Classification of b-poisson manifolds

More information

7 OPTIMAL CONTROL 7.1 EXERCISE 1. Solve the following optimal control problem. max. (x u 2 )dt x = u x(0) = Solution with the first variation

7 OPTIMAL CONTROL 7.1 EXERCISE 1. Solve the following optimal control problem. max. (x u 2 )dt x = u x(0) = Solution with the first variation 7 OPTIMAL CONTROL 7. EXERCISE Solve the following optimal control problem max 7.. Solution with the first variation The Lagrangian is L(x, u, λ, μ) = (x u )dt x = u x() =. [(x u ) λ(x u)]dt μ(x() ). Now

More information

1 v >, which will be G-invariant by construction.

1 v >, which will be G-invariant by construction. 1. Riemannian symmetric spaces Definition 1.1. A (globally, Riemannian) symmetric space is a Riemannian manifold (X, g) such that for all x X, there exists an isometry s x Iso(X, g) such that s x (x) =

More information

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES ANDREAS ČAP AND KARIN MELNICK Abstract. We use the general theory developed in our article [1] in the setting of parabolic

More information

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS Contents 1. Almost complex manifolds 1. Complex manifolds 5 3. Kähler manifolds 9 4. Dolbeault cohomology 11 1. Almost complex manifolds Almost complex structures.

More information

Lecture A2. conformal field theory

Lecture A2. conformal field theory Lecture A conformal field theory Killing vector fields The sphere S n is invariant under the group SO(n + 1). The Minkowski space is invariant under the Poincaré group, which includes translations, rotations,

More information

DISCRETE VARIATIONAL OPTIMAL CONTROL

DISCRETE VARIATIONAL OPTIMAL CONTROL DISCRETE VARIATIONAL OPTIMAL CONTROL FERNANDO JIMÉNEZ, MARIN KOBILAROV, AND DAVID MARTÍN DE DIEGO Abstract. This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian

More information

The Kepler problem from a differential geometry point of view

The Kepler problem from a differential geometry point of view The Kepler problem from a differential geometry point of view 1 The Kepler problem from a differential geometry point of view Translation of the original German Version: Das Keplerproblem differentialgeometrisch

More information

Classification problems in conformal geometry

Classification problems in conformal geometry First pedagogical talk, Geometry and Physics in Cracow, the Jagiellonian University p. 1/13 Classification problems in conformal geometry Introduction to conformal differential geometry Michael Eastwood

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Notes on complex hyperbolic triangle groups of

Notes on complex hyperbolic triangle groups of Notes on complex hyperbolic triangle groups of type (m, n, ) Lijie Sun Graduate School of Information Sciences, Tohoku University Osaka University. Feb. 15, 2015 Lijie Sun Complex Triangle Groups 1 / 25

More information

1 M3-4-5A16 Assessed Problems # 1: Do all three problems

1 M3-4-5A16 Assessed Problems # 1: Do all three problems D. D. Holm M3-4-5A34 Assessed Problems # 1 Due 1 Feb 2013 1 1 M3-4-5A16 Assessed Problems # 1: Do all three problems Exercise 1.1 (Quaternions in Cayley-Klein (CK) parameters). Express all of your answers

More information

Lecture 22 - F 4. April 19, The Weyl dimension formula gives the following dimensions of the fundamental representations:

Lecture 22 - F 4. April 19, The Weyl dimension formula gives the following dimensions of the fundamental representations: Lecture 22 - F 4 April 19, 2013 1 Review of what we know about F 4 We have two definitions of the Lie algebra f 4 at this point. The old definition is that it is the exceptional Lie algebra with Dynkin

More information

REMARKS ON THE TIME-OPTIMAL CONTROL OF A CLASS OF HAMILTONIAN SYSTEMS. Eduardo D. Sontag. SYCON - Rutgers Center for Systems and Control

REMARKS ON THE TIME-OPTIMAL CONTROL OF A CLASS OF HAMILTONIAN SYSTEMS. Eduardo D. Sontag. SYCON - Rutgers Center for Systems and Control REMARKS ON THE TIME-OPTIMAL CONTROL OF A CLASS OF HAMILTONIAN SYSTEMS Eduardo D. Sontag SYCON - Rutgers Center for Systems and Control Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February From b-poisson manifolds to symplectic mapping torus and back Eva Miranda UPC-Barcelona (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February 8 2011 Eva Miranda (UPC) Poisson Day February

More information

Geometry of symmetric R-spaces

Geometry of symmetric R-spaces Geometry of symmetric R-spaces Makiko Sumi Tanaka Geometry and Analysis on Manifolds A Memorial Symposium for Professor Shoshichi Kobayashi The University of Tokyo May 22 25, 2013 1 Contents 1. Introduction

More information

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page.

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page. Chapter 14 Basics of The Differential Geometry of Surfaces Page 649 of 681 14.1. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate

More information

ECSE.6440 MIDTERM EXAM Solution Optimal Control. Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004

ECSE.6440 MIDTERM EXAM Solution Optimal Control. Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004 ECSE.6440 MIDTERM EXAM Solution Optimal Control Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004 This is a take home exam. It is essential to SHOW ALL STEPS IN YOUR WORK. In NO circumstance is

More information

A Joint Adventure in Sasakian and Kähler Geometry

A Joint Adventure in Sasakian and Kähler Geometry A Joint Adventure in Sasakian and Kähler Geometry Charles Boyer and Christina Tønnesen-Friedman Geometry Seminar, University of Bath March, 2015 2 Kähler Geometry Let N be a smooth compact manifold of

More information