arxiv: v1 [hep-lat] 4 Nov 2016

Size: px
Start display at page:

Download "arxiv: v1 [hep-lat] 4 Nov 2016"

Transcription

1 Computing the nucleon Dirac radius directly at Q = 0 arxiv:6.0383v [hep-lat] 4 Nov 06 ab, Michael Engelhardt d, Jeremy Green g, Stefan Krieg ab, Stefan Meinel eh, John Negele c, Andrew Pochinsky c and Sergey Syritsyn f h a Bergische Universität Wuppertal, Wuppertal, Germany b JSC, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany c Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, USA d Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA e Department of Physics, University of Arizona, Tucson, AZ 857, USA f Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 794, USA g PRISMA Cluster of Excellence and Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany h RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 973, USA n.hasan@fz-juelich.de, engel@nmsu.edu, jeremy.green@desy.de, s.krieg@fz-juelich.de, smeinel@ .arizona.edu, negele@mit.edu, avp@mit.edu, ssyritsyn@quark.phy.bnl.gov We describe a lattice approach for directly computing momentum derivatives of nucleon matrix elements using the Rome method, which we apply to obtain the isovector magnetic moment and Dirac radius. We present preliminary results calculated at the physical pion mass using a HEX-smeared Wilson-clover action. For removing the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. 34th annual International Symposium on Lattice Field Theory 4-30 July 06 University of Southampton, UK Speaker. Current affiliation: NIC, DESY, Zeuthen, Germany c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

2 Computing the nucleon Dirac radius directly at Q = 0. Introduction The proton radius puzzle refers to the 7σ discrepancy in the experimental determinations of the charge radius of the proton between the value extracted from spectroscopy of muonic hydrogen [], r p E = (39) fm, and the CODATA value determined from scattering and spectroscopy with electrons [], r p E = (5) fm. The way to determine the proton radius rp E from scattering data is to measure the slope of the electric form factor G p E (Q ) as a function of the squaredmomentum transfer Q as Q approaches zero. There is controversy surrounding finding the radius from fitting the scattering data: some claim to find a small radius from scattering data [3, 4, 5] and others argue that only a large radius is compatible with the data [6, 7, 8]. On the lattice, the same approach is usually followed. However, the smallest nonzero Q reached on the lattice with standard methods and a large volume of (5.6 fm) 3 is about 0.05 GeV, whereas the smallest Q reached in scattering experiments is below GeV. Therefore, obtaining a reliable radius from fitting to lattice form factor data may be challenging. This motivates the need for a direct calculation of the radius without fitting to form factors. For the case of a pion, it was shown in [7] that the Rome method for momentum derivatives could be used to calculate the pion charge radius with finite-volume effects that are exponentially suppressed, with asymptotic behaviour m π L e mπl. In the following, we present a method for calculating the nucleon Dirac radius directly at Q = 0. Our approach is based on calculating the momentum derivatives of the two- and threepoint functions using the Rome method [9], as explained in section. A ratio of the two- and three-point functions is then constructed and by calculating the momentum derivatives of this ratio at Q = 0 we are able to extract the anomalous magnetic moment κ = F (0) and Dirac radius r = 6 df Q F (sections 3 and 4). Our results for both quantities are shown in section 5. dq =0. Momentum derivatives of the two-point and three-point functions For calculating the momentum derivatives of the correlation functions, we need to consider quark propagators with smeared- and point-sources and sinks. This is shown in the following: Without smearing: Let N denote a proton or neutron field. The two-point function can be written as: C (p,x 0,z 0 ) αβ = e ip(x z) N α (x) N β (z) x = e ip(x z) ε abc ε de f f αγδε f βζηθ G a f γθ (x,z)gbe x = ε abc ε de f f αγδε f βζηθ G a f γθ (x,z)gbe x δη (x,z)gcd δη (x,z)gcd εζ εζ (x,z) Gac γη(x,z)g b f δθ (x,z)gcd εζ (x,z) (x,z;p) Gac γη(x,z)g b f δθ (x,z)gcd εζ (x,z;p), where f αβγδ is the spin tensor determining the quantum numbers of the nucleon operator N, G(x,z) is the quark propagator and G(x,z;p) = e ip(x z) G(x,z). As shown in [9], the first and second (.)

3 Computing the nucleon Dirac radius directly at Q = 0 momentum derivatives of a quark propagator at zero momentum are given by: where p j G(x,y;p) p=0 = i G(x,z)Γ j V G(z,y), (.) z ( p j ) G(x,y;p) p=0 = G(x,z)Γ j V G(z,z )Γ j V G(z,y) z,z z G(x,z)Γ j T G(z,y), (.3) Γ j V /T G(z,y) U + γ j j (z ĵ) G(z ĵ,y) U j (z) γ j G(z + ĵ,y). (.4) For connected diagrams, the three-point function, with current O Γ = qγq and zero sink momentum p = 0, can be written as: C 3 (p,x 0,y 0,z 0 ) αβ = e ip(y z) N α (x)o Γ (y) N β (z) = G S (y)γg(y,z;p), (.5) x,y y where G S (y) is the sequential backward propagator, which is independent of p. Only the forward propagator G(y, z; p) needs to be expanded using. and.3. Hence, no additional backward propagators are needed. The Rome method can be understood as doing a calculation with twisted boundary conditions and then taking the derivative with respect to the twist angle at zero twist [7]. With smearing: In the two-point function, we have the smeared-source smeared-sink propagator G(x,y;p) = e ip(x y) x,y K(x,x )G(x,y )K(y,y) = e ip(x x ) K(x,x ) e ip(x y ) G(x,y ) e ip(y y) K(y,y), x,y }{{}}{{}}{{} K(x,x ;p) G(x,y ;p) K(y,y;p) where K is the smearing kernel. The momentum derivatives can then be calculated using the product rule along with. and.3. Denoting the momentum derivative with for shorter notation, (KGK) = K GK + K(GK), (.6) (KGK) = K GK + K (GK) + K(GK). (.7) For the smeared-source point-sink propagator, which is needed for the three-point function, we get: (GK) = G[ iγ V GK + K ], (.8) (GK) = G[ iγ V (GK) Γ T GK + K ]. (.9) Gaussian Wuppertal smearing is given by K(x,y;p) = x,x,... K 0 (x,x ;p)k 0 (x,x ;p)...k(x...,y;p), with }{{} N W ( K 0 (x,y;p) = e ip(x y) 3 [ ] ) δ x,y + α + 6α U j (x)δ x+ĵ,y +U j (x ĵ)δ x ĵ,y j= = + 6α ( δ x,y + 3 [ α e ip j U j (x)δ x+ĵ,y + e ip j U j x ĵ,y] ) (x ĵ)δ. (.0) j= The mth derivative of K 0 at zero momentum is equal to [ ] ( K (m) ) mk0 0 (x,y) p j (x,y;p) = α i m U j (x)δ x+ĵ,y + ( i) m U j + 6α (x ĵ)δ x ĵ,y. (.) p=0

4 Computing the nucleon Dirac radius directly at Q = 0 The first and second derivatives of smearing with N W iterations, K = K N W 0, can be computed iteratively using (K0 N) = K 0 KN 0 + K 0 (K0 N ), (K0 N) = K 0 KN 0 + K 0 (KN 0 ) + K 0 (K0 N ). 3. Ground-state contribution to correlation functions We will be tracing the correlators with polarization matrices that contain the projector ( + γ 0 )/, so that we can effectively write the overlap matrix elements as 0 N α (0) N(p,s) = Z(p)u α (p,s), [5, 6]. Here and in the following we use Minkowski-space gamma matrices. The Dirac and Pauli form factors, F (N,q) (Q ) and F (N,q) (Q ), parametrize matrix elements of the vector current N(p,s ) qγ µ q N(p,s) = ū(p,s )F [γ µ,p,p]u(p,s), (3.) with the short-hand notation F [γ µ,p,p] = F (N,q) γ µ + F (N,q) iσ µν (p p) ν m, where Q = (p p). Having T = x 0 z 0 and τ = y 0 z 0, the ground-state contributions to the two- and three-point functions (for p = 0) are: C (p,t ) αβ = Z (p) E(p) e E(p)T (m + /p) αβ, (3.) C 3 (p,τ,t ) αβ = Z(0) m Z(p) E(p) e m(t τ) e E(p)τ m [ F (γ µ,0,p)(m + /p) ] αβ. (3.3) 4. Momentum derivatives of the ratio Because we don t know how Z(p) depends on the momentum, we need to compute derivatives of the ratio of three-point and two-point functions. We set p = 0 and p = ke j, where e j is the unit vector in j-direction. We compute the following ratio: R N (k,τ,t ) αβ = R αβ (k,τ,t ) = R N (k,τ,t ) αβ R A (k,τ,t ), with (4.) C 3 (k,τ,t ) αβ C (p = 0,T )C (k,t ), R A(k,τ,T ) = C (k,t τ)c (p = 0,τ) C (p = 0,T τ)c (k,τ). (4.) For computing the first and second momentum derivatives of this ratio we need: R N(k) αβ = C (k)c 3(k) αβ + C (k)c 3 (k) αβ C (0)C (k) 3, (4.3) R N(k) αβ = (3[C (k)] C (k)c (k))c 3(k) αβ + 4C (k)( C (k)c 3 (k) αβ +C (k)c 3 (k) αβ ) 4 C (0)C (k) 5. (4.4) where, for more readability we suppress τ,t parameters, use the notation C (k) = Tr ( +γ 0 C (k) ) and denote the derivatives with a prime e.g. C (k) dc (k) dk. We know that C (0) = 0 in the infinitestatistics limit. Hence, we can eliminate this from the ratios. Similarly, we can calculate R A (k) and R A (k) which can be used together with 4.3 and 4.4 to calculate the first and second derivatives of the ratio R αβ. These derivatives are computed on the lattice directly at k = 0 as discussed earlier in 3

5 Computing the nucleon Dirac radius directly at Q = 0 section. The ground-state contributions are equal to: R αβ (k) = [F (k)(m + Eγ0 kγ j )] αβ 8 E(E + m) R αβ (k) = [ F (k)(m + Eγ 0 kγ j ) ] αβ + [ F (k)(e γ 0 γ j ) ] αβ 8 E(E + m), (4.5) [ F (k)(m + Eγ 0 kγ j ) ] (E + m)e αβ 6, [E(E + m)] 3/ and R αβ (k) can be calculated in a similar way. We use the continuum dispersion relation E(k) = m + k, which implies Q = m m + k m, and find that at k = 0, the second derivative is needed to obtain the slope of F : df dk (4.6) = dq df Q k=0 dk k=0 dq = 0, d F k=0 =0 dk = df Q dq. (4.7) =0 Furthermore, we have at k = 0, E(0) = m, E (0) = 0, E (0) = /m and, F (0) = F (0)γ µ, F (0) = F (0) iσ µ j m, F (0) = d dq F (0)γ µ iσ µ0 F (0) m. (4.8) Using Γ pol = ( + γ 3 γ 5 ) +γ0, we find nonzero results for the following values of the index µ (labeling the components of the vector current), Tr[R(µ = 0)Γ pol ] = F, Tr[ R(µ = )Γ pol ] = i m (F + F ), (4.9) Tr[ R(µ = )Γ pol ] = i m (F + F ), Tr[,,3R(µ = 0)Γ pol ] = 4m (F + F ) 3 F r, (4.0) with i = and r p i = 6 df Q F. From equations 4.9 and 4.0 we find the following relations dq =0 for the anomalous magnetic moment κ and Dirac radius r : κ = m Im(Tr[R (µ = ) Γ pol ]) Tr[R(µ = 0) Γ pol ], (4.) r = mim[r (µ = ) Γ pol ] + 3Tr[R(µ = 0) Γ pol ] m Tr[R (µ = 0) Γ pol ] 4m, (4.) Tr[R(µ = 0) Γ pol ] where we average over equivalent vector components and directions: Tr[R (µ = )Γ pol ] = (Tr[ R(µ = ) Γ pol ] Tr[ R(µ = ) Γ pol ]). Tr[R (µ = 0)Γ pol ] = 3 (Tr[ R(µ = 0) Γ pol ] + Tr[ R(µ = 0) Γ pol ] + Tr[ 3 R(µ = 0) Γ pol ]). (4.3) 5. Results and conclusions We perform lattice QCD calculations using a tree-level Symanzik-improved gauge action [8, ] and + flavors of tree-level improved Wilson-clover quarks, which couple to the gauge links via two levels of HEX smearing, at the physical pion mass m π = 35 MeV, lattice spacing a = fm, and a large volume L 3 s L t = 64 4 satisfying m π L = 4. We are measuring the isovector combination u d of the three-point functions, where the disconnected contributions cancel out. Furthermore, we perform measurements using three source-sink separations T /a {0, 3, 6} 4

6 Computing the nucleon Dirac radius directly at Q = 0 Quantity Traditional method Derivative method κ v 3.74(4) 3.7(35) [r v] [fm] 0.55(9) 0.45(8) Table : A comparison between the derivative method and the traditional one ranging from 0.9 fm to.5 fm, and we are using the summation method [3, 4] for removing contributions from excited states. We apply our analysis on 44 gauge configurations, using all-mode-averaging [0] with 64 approximate samples and one high-precision bias correction per configuration. The plateau plots in Figure, show F v(0) (left-hand side, using 4.) and [rv ] /a ( right-hand side, using 4.) from the ratio method, as well as the summation method. Figure shows a comparison between the results we get for the anomalous magnetic moment κ = F v (0) and the isovector Dirac radius [r v] using the momentum derivative approach and what we get using the traditional approach of measuring Pauli and Dirac form factors for each value of Q (on the same ensemble) and then applying the z-expansion fit [, ]. Preliminary results are given in Table. We confirm that our approach produces results consistent with those obtained using the traditional method. However, we found that this approach yields large statistical uncertainties, especially for the Dirac radius, which requires two momentum derivatives applied to a single quark line. Therefore, putting one momentum derivative on each of two different quark lines, as was done in [7], might be less noisy F(0) v (r v ) /a T = 0a -0 T = 0a.5 T = 3a T = 3a T = 6a T = 6a summation -40 summation (t T /)/a 0 (t T /)/a Figure : Anomalous isovector magnetic moment (left) and isovector Dirac radius (right). For both κ and [r v ] /a, results from ratio method are shown using source-sink separations T /a {0,3,6}, as well as the summation method. Acknowledgments We thank the Budapest-Marseille-Wuppertal collaboration for making their configurations [8, ] available to us. This research used resources at Forschungszentrum Jülich and on CRAY XC40 (Hazel Hen) at HLRS. SM is supported by NSF grant PHY-50996, SM and SS are supported by RBRC, JN is supported by the Office of Nuclear Physics of the U.S. Department of Energy (DOE) under Contract DE-SC00090, ME is supported by DOE grant DE-FG0-96ER40965 and AP is supported in part by DOE under grant DE-FC0-06ER4444. Calculations for this project were done using the Qlua software suite [0]. 5

7 Computing the nucleon Dirac radius directly at Q = 0 Isovector F PRELIMINARY derivative method z-expansion fit standard method Kelly Q (GeV ) Isovector F PRELIMINARY z-expansion fit standard method derivative method Kelly Q (GeV ) Figure : Isovector Dirac (left) and Pauli (right) form factors. The blue points show results from the standard method and the red bands show a z-expansion fit to those points. The green band (left) and point (right) show the slope and value of the respective form factor at Q = 0, computed using the momentum derivative method. The black curves result from a phenomenological fit to experimental data by Kelly [9]. References [] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, et al., Science 339, 47 (03). [] P. J. Mohr, B. N. Taylor, D. B. Newell, Rev. Mod. Phys.84, 57(0) [arxiv:03.545] [3] I. T. Lorenz, Ulf-G. Meißner, Phys. Lett. B737, 57 (04) [arxiv:406.96] [4] K. Griffioen, C. Carlson, S. Maddox, Phys. Rev. C93, (06) [arxiv: ] [5] D. W. Higinbotham, A. A. Kabir, V. Lin, et al., Phys. Rev. C93, (06) [arxiv:50.093] [6] G. Lee, J. R. Arrington, R. J. Hill, Phys. Rev. D9, 0303 (05) [arxiv: ] [7] M. O. Distler, T. Walcher, J. C. Bernauer (05) [arxiv: ] [8] J. C. Bernauer, M. O. Distler, (06) [arxiv: ] [9] G. M. de Divitiis, R. Petronzio, N. Tantalo, Phys. Lett. B 78, 589 (0) [arxiv:08.594]. [0] T. Blum, T. Izubuchi, and E. Shintani, Phys. Rev. D88, (0) [arxiv: ]. [] R. J. Hill, G. Paz, Phys.Rev. D8, 3005 (00) [arxiv: ]. [] Z. Epstein, G. Paz, J. Roy, Phys.Rev. D90, (04) [arxiv: ]. [3] S. Capitani, B. Knippschild, et al., PoS LATTICE00, 47 (00) [arxiv:0.358] [4] J. Bulava, M.A. Donnellan, R. Sommer, PoS LATTICE00, 303 (00), [arxiv:0.4393] [5] K. C. Bowler, R. D. Kenway, et al., Phys. Rev. D57, 6948 (998) [arxiv: hep-lat/970908] [6] S. Capitani, M. Della Morte, et al., Phys. Rev. D9, 0545 (05), [arxiv: ] [7] B. C. Tiburzi, Phys. Rev. D90, (04), [arxiv: ] [8] S. Dürr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al., JHEP, 08, 48 (00) [arxiv: 0.7] [9] J. J. Kelly, Simple parametrization of nucleon form factors, Phys. Rev. C 70, 0680 (004). [0] A. Pochinsky, Qlua. [] S. Dürr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al., Phys. Lett. B70, 65 [arxiv: 0.403]. 6

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Nucleon structure from 2+1-flavor dynamical DWF ensembles

Nucleon structure from 2+1-flavor dynamical DWF ensembles Nucleon structure from 2+1-flavor dynamical DWF ensembles Michael Abramczyk Department of Physics, University of Connecticut, Storrs, CT 06269, USA E-mail: michael.abramczyk@uconn.edu Meifeng Lin Computational

More information

arxiv: v1 [hep-lat] 3 Jan 2019

arxiv: v1 [hep-lat] 3 Jan 2019 evaluated using a direct derivative method arxiv:1901.00843v1 [hep-lat] 3 Jan 2019 a, J. Green b, N. Hasan c,d, S. Krieg c,d, S. Meinel e, f, J. Negele g, A. Pochinsky g and S. Syritsyn f,h a Department

More information

arxiv: v1 [hep-lat] 6 Nov 2012

arxiv: v1 [hep-lat] 6 Nov 2012 HIM-2012-5 Excited state systematics in extracting nucleon electromagnetic form factors arxiv:1211.1282v1 [hep-lat] 6 Nov 2012 S. Capitani 1,2, M. Della Morte 1,2, G. von Hippel 1, B. Jäger 1,2, B. Knippschild

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2 , Harvey Meyer,2, Georg von Hippel, Hartmut Wittig,2 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg Universität Mainz, 5599 Mainz, Germany 2 Helmholtz Institute Mainz, Johannes

More information

Computing the Adler function from the vacuum polarization function

Computing the Adler function from the vacuum polarization function Computing the Adler function from the vacuum polarization function 1, Gregorio Herdoiza 1, Benjamin Jäger 1,2, Hartmut Wittig 1,2 1 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg

More information

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD Nucleon form factors and moments of parton distributions in twisted mass lattice QCD C. Alexandrou (a,b), (a), C. Kallidonis (a), T. Korzec (a,c) (a) Department of Physics, University of Cyprus, P.O. Box

More information

Omega baryon electromagnetic form factors from lattice QCD

Omega baryon electromagnetic form factors from lattice QCD Omega baryon electromagnetic form factors from lattice QCD C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2057, 1678 Nicosia, Cyprus and Computation-based Science and Technology Research

More information

arxiv: v1 [hep-lat] 31 Oct 2014

arxiv: v1 [hep-lat] 31 Oct 2014 arxiv:4.88v [hep-lat] 3 Oct 24 Zoltán Fodor University of Wuppertal, Department of Physics, Wuppertal D-4297, Germany Jülich Supercomputing Center, Forschungszentrum Jülich, Jülich D-52425, Germany Eötvös

More information

The PRad Experiment Physics Overview

The PRad Experiment Physics Overview The PRad Experiment Physics Overview The PRad Experiment Readiness Review November 12, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 Proton Charge Radius An important property of the nucleon

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

arxiv: v1 [hep-lat] 25 Oct 2018

arxiv: v1 [hep-lat] 25 Oct 2018 with N f = 2 + 1 O(a)-improved Wilson fermions arxiv:181.181v1 [hep-lat] 25 Oct 218 Dalibor Djukanovic 2, Harvey Meyer 1,2, Konstantin Ottnad 1,2, Georg von Hippel 1, 1, Hartmut Wittig 1,2 1 PRISMA Cluster

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Nucleon generalized form factors with twisted mass fermions

Nucleon generalized form factors with twisted mass fermions Nucleon generalized form factors with twisted mass fermions Department of Physics, University of Cyprus, P.O. Box 537, 78 Nicosia, Cyprus, and Computation-based Science and Technology Research Center,

More information

arxiv: v1 [hep-lat] 22 Oct 2013

arxiv: v1 [hep-lat] 22 Oct 2013 Renormalization of the momentum density on the lattice using shifted boundary conditions arxiv:1310.6075v1 [hep-lat] 22 Oct 2013 Daniel Robaina PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

arxiv: v1 [hep-lat] 23 Dec 2010

arxiv: v1 [hep-lat] 23 Dec 2010 arxiv:2.568v [hep-lat] 23 Dec 2 C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2537, 678 Nicosia, Cyprus and Computation-based Science and Technology Research Center, Cyprus Institute,

More information

arxiv: v1 [hep-lat] 19 Jan 2016

arxiv: v1 [hep-lat] 19 Jan 2016 from lattice QCD with nearly physical quark masses arxiv:1601.04818v1 [hep-lat] 19 Jan 2016 Gunnar Bali, a Sara Collins, a Meinulf Göckeler, a, a Andreas Schäfer, a Andre Sternbeck b a Institut für Theoretische

More information

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions Scalar and vector form factors of D πlν and D Klν decays with N f = + + Twisted fermions N. Carrasco (a), (a,b), V. Lubicz (a,b), E. Picca (a,b), L. Riggio (a), S. Simula (a), C. Tarantino (a,b) (a) INFN,

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

arxiv: v1 [hep-lat] 17 Oct 2009

arxiv: v1 [hep-lat] 17 Oct 2009 electromagnetic form factors and quark transverse charge densities from lattice QCD arxiv:9.5v [hep-lat] 7 Oct 9 Department of Physics, University of Cyprus, P.O. Box 57, 678 Nicosia, Cyprus, and Computation-based

More information

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NUCLEON AND PION-NUCLEOORM FACTORS FROM LATTICE

More information

Quark Physics from Lattice QCD

Quark Physics from Lattice QCD Quark Physics from Lattice QCD K. Szabo published in NIC Symposium 2018 K. Binder, M. Müller, A. Trautmann (Editors) Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Schriften

More information

arxiv: v1 [hep-lat] 27 Sep 2011

arxiv: v1 [hep-lat] 27 Sep 2011 HIM-011-09 Glueball masses from ratios of path integrals arxiv:1109.5974v1 [hep-lat] 7 Sep 011 Dipartimento di Fisica, Universitá di Milano-Bicocca, Piazza della Scienza 3, I-016 Milano, Italy E-mail:

More information

Universality check of the overlap fermions in the Schrödinger functional

Universality check of the overlap fermions in the Schrödinger functional Universality check of the overlap fermions in the Schrödinger functional Humboldt Universitaet zu Berlin Newtonstr. 15, 12489 Berlin, Germany. E-mail: takeda@physik.hu-berlin.de HU-EP-8/29 SFB/CPP-8-57

More information

Mixed action simulations: approaching physical quark masses

Mixed action simulations: approaching physical quark masses Mixed action simulations: approaching physical quark masses Stefan Krieg NIC Forschungszentrum Jülich, Wuppertal University in collaboration with S. Durr, Z. Fodor, C. Hoelbling, S. Katz, T. Kurth, L.

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

Study of the anomalous magnetic moment of the muon computed from the Adler function

Study of the anomalous magnetic moment of the muon computed from the Adler function Study of the anomalous magnetic moment of the muon computed from the Adler function Michele Della Morte 1, Anthony Francis 2, Gregorio Herdoiza 4, 3, Benjamin Jäger 5, Andreas Jüttner 6, Harvey Meyer 3,

More information

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD tmft Collaboration: Pseudo-Critical Temperature and Thermal Equation of State from N f = Twisted Mass Lattice QCD F. Burger, M. Kirchner, M. Müller-Preussker Humboldt-Universität zu Berlin, Institut für

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 EPJ Web of Conferences 175, 623 (218) Lattice 217 https://doi.org/1.151/epjconf/218175623 Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 Nils

More information

The 1405 MeV Lambda Resonance in Full-QCD

The 1405 MeV Lambda Resonance in Full-QCD , Waseem Kamleh, Derek B. Leinweber, and M. Selim Mahbub Special Research Centre for the Subatomic Structure of Matter School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia E-mail:

More information

RG scaling at chiral phase transition in two-flavor QCD

RG scaling at chiral phase transition in two-flavor QCD RG scaling at chiral phase transition in two-flavor QCD Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-826, Japan E-mail: ishikawa@theo.phys.sci.hiroshima-u.ac.jp Yoichi

More information

The Wave Function of the Roper Resonance

The Wave Function of the Roper Resonance The Wave Function of the Roper Resonance Special Research Centre for the Subatomic Structure of Matter, School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia Waseem Kamleh Special

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Excited nucleon spectrum with two flavors of dynamical fermions

Excited nucleon spectrum with two flavors of dynamical fermions Excited nucleon spectrum with two flavors of dynamical fermions John M. Bulava a, Robert G. Edwards b, c, Bálint Joó b, Adam Lichtl d, Huey-Wen Lin b, Nilmani Mathur e, Colin Morningstar a, David G. Richards

More information

A natural solution of the proton charge radius puzzle.

A natural solution of the proton charge radius puzzle. A natural solution of the proton charge radius puzzle. Thomas Walcher Institute for Nuclear Physics Johannes-Gutenberg University Mainz INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 37th Course Probing Hadron

More information

NUCLEAR PHYSICS FROM LATTICE QCD

NUCLEAR PHYSICS FROM LATTICE QCD Twelfth Workshop on Non-Perturbative QCD Paris, June 10-14, 2013 NUCLEAR PHYSICS FROM LATTICE QCD Kostas Orginos QCD Hadron structure and spectrum Hadronic Interactions Nuclear physics Figure by W. Nazarewicz

More information

Heavy-quark spin-symmetry partners of hadronic molecules

Heavy-quark spin-symmetry partners of hadronic molecules Heavy-quark spin-symmetry partners of hadronic molecules Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Institute for Theoretical and Experimental Physics, B.

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

PUBLISHED VERSION.

PUBLISHED VERSION. PUBLISHED VERSION Bietenholz, W.; Cundy, N.; Göckeler, Meinulf; Horsley, Roger; Perlt, Holger; Pleiter, Dirk; Rakow, Paul E. L.; Schierholz, Gerrit; Schiller, Arwed; Streuer, Thomas; Zanotti, James Michael

More information

Lattice QCD Calculation of Nucleon Tensor Charge

Lattice QCD Calculation of Nucleon Tensor Charge 1 / 36 Lattice QCD Calculation of Nucleon ensor Charge. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon PNDME Collaboration Los Alamos National Laboratory Jan 22, 2015 2 / 36 Neutron EDM, Quark

More information

PoS(LATTICE 2013)403. Using all-to-all propagators for K ππ decays. Daiqian Zhang. Columbia University

PoS(LATTICE 2013)403. Using all-to-all propagators for K ππ decays. Daiqian Zhang. Columbia University Using all-to-all propagators for K decays Columbia University E-mail: dz2203@columbia.edu In order to determine the direct CP-violation parameter ε from first principles, the decay amplitude for K ( I

More information

arxiv: v1 [hep-lat] 23 Nov 2018

arxiv: v1 [hep-lat] 23 Nov 2018 B c spectroscopy using highly improved staggered quarks arxiv:1811.09448v1 [hep-lat] 23 Nov 2018 INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy E-mail: andrew.lytle@roma2.infn.it

More information

Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, Finland

Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, Finland Energies and radial distributions of B s mesons - the effect of hypercubic blocking (for UKQCD Collaboration) Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics,

More information

Probing Nucleon Resonances on the Lattice

Probing Nucleon Resonances on the Lattice Probing Nucleon Resonances on the Lattice Benjamin Owen Supervisors: Derek Leinweber, Waseem Kamleh April 7th, 2014 Benjamin Owen (Adelaide Uni) April 7th, 2014 1 / 27 Outline 1 Accessing states on the

More information

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta Yoshifumi Nakamura(NIC/DESY) for the theta collaboration S. Aoki(RBRC/Tsukuba), R. Horsley(Edinburgh), YN, D.

More information

arxiv: v1 [hep-lat] 4 Oct 2016

arxiv: v1 [hep-lat] 4 Oct 2016 arxiv:60.0093v [hep-lat] 4 Oct 06 Leptonic decay-constant ratio / rom clover-improved N = + QCD Universität Regensburg, Institut ür Theoretische Physik, D-93040 Regensburg, Germany E-mail: enno.scholz@physik.uni-regensburg.de

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Thermodynamics using p4-improved staggered fermion action on QCDOC

Thermodynamics using p4-improved staggered fermion action on QCDOC Thermodynamics using p4-improved staggered fermion action on QCDOC for the RBC-Bielefeld Collaboration Brookhaven National Laboratory and Columbia University, USA E-mail: chulwoo@bnl.gov We present an

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

Lepton universality test in the photoproduction of e - e + versus " - " + pairs on a proton target

Lepton universality test in the photoproduction of e - e + versus  -  + pairs on a proton target 2011-2014 PhD in theoretical physics under supervision of Prof. Dr. Marc Vanderhaeghen at Johannes Gutenberg University Mainz. Thesis title Light-by-light scattering and the muon s anomalous magnetic moment

More information

arxiv: v2 [hep-lat] 26 Apr 2015

arxiv: v2 [hep-lat] 26 Apr 2015 MITP/15-06, HIM-015-01, CP3-Origins-015-01, DIAS-015-1 Nucleon electromagnetic form factors in two-flavour QCD arxiv:1504.0468v [hep-lat] 6 Apr 015 S. Capitani, 1, M. Della Morte, 3 D. Djukanovic, G. von

More information

The New Proton Charge Radius Experiment at JLab

The New Proton Charge Radius Experiment at JLab The New Proton Charge Radius Experiment at JLab Dipangkar Dutta Mississippi State University (for the PRad Collaboration) INPC 2016 Sept 12, 2016 Adelaide, Australia Outline 1. The Proton Charge Radius

More information

arxiv: v1 [hep-lat] 6 Jul 2015

arxiv: v1 [hep-lat] 6 Jul 2015 MITP/15-05 Lattice QCD calculation of hadronic light-by-light scattering Jeremy Green a, Oleksii Gryniuk a,c, Georg von Hippel a, Harvey B. Meyer a,b, Vladimir Pascalutsa a a PRISMA Cluster of Excellence

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

PION PHYSICS FROM LATTICE QCD

PION PHYSICS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION PHYSICS FROM LATTICE QCD Jie Hu,1, Fu-Jiun

More information

Low-lying positive-parity excited states of the nucleon

Low-lying positive-parity excited states of the nucleon Low-lying positive-parity excited states of the nucleon ab, Alan Ó Cais ac, Waseem Kamleh a, B.G. Lasscock a, Derek B. Leinweber a, Anthony G. Williams a a Special Research Centre for the Subatomic Structure

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK School of Mathematics, Trinity College, Dublin 2, Ireland E-mail: donaldg@tcd.ie Christine Davies SUPA, School of Physics

More information

Low-energy QCD II Status of Lattice Calculations

Low-energy QCD II Status of Lattice Calculations Low-energy QCD II Status of Lattice Calculations Hartmut Wittig Institute for Nuclear Physics and Helmholtz Institute Mainz Determination of the Fundamental Parameters of QCD Nanyang Technical University

More information

PoS(LAT2005)205. B s meson excited states from the lattice. UKQCD Collaboration

PoS(LAT2005)205. B s meson excited states from the lattice. UKQCD Collaboration from the lattice UKQCD Collaboration A. M. Green a, J. Ignatius b, M. Jahma c,, C. McNeile d and C. Michael d a University of Helsinki and Helsinki Institute of Physics, Helsinki, Finland b CSC - Scientific

More information

Cross section measurements of the elastic electron - deuteron scattering

Cross section measurements of the elastic electron - deuteron scattering Cross section measurements of the elastic electron - deuteron scattering for the A1 Collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz Johann-Joachim-Becher-Weg 45, 55128 Mainz

More information

Nuclear Force from Lattice QCD

Nuclear Force from Lattice QCD Department of Physics, University of Tokyo, Tokyo 113 0033, JAPAN E-mail: ishii@rarfaxp.riken.jp Sinya AOKI Graduate School of Pure and Applied Science, University of Tsukuba, Tukuba 305 8571, Ibaraki,

More information

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA.

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD, Emmanuel Chang and Michael L. Wagman Institute for Nuclear Theory, Seattle, Washington 98195-155, USA. E-mail: mjs5@uw.edu Silas R. Beane

More information

arxiv: v2 [physics.atom-ph] 24 Mar 2012

arxiv: v2 [physics.atom-ph] 24 Mar 2012 UK/1-01 Weak Interaction Contributions in Light Muonic Atoms Michael I. Eides Department of Physics and Astronomy, arxiv:101.979v [physics.atom-ph] 4 Mar 01 University of Kentucky, Lexington, KY 40506,

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

arxiv: v1 [hep-lat] 5 Nov 2018

arxiv: v1 [hep-lat] 5 Nov 2018 Localization in SU(3) gauge theory arxiv:1811.1887v1 [hep-lat] 5 Nov 218 University of Debrecen, Hungary E-mail: vig.reka@atomki.mta.hu Tamás G. Kovács Institute for Nuclear Research, Debrecen, Hungary

More information

Wave functions of the Nucleon

Wave functions of the Nucleon Wave functions of the Nucleon Samuel D. Thomas (1) Collaborators: Waseem Kamleh (1), Derek B. Leinweber (1), Dale S. Roberts (1,2) (1) CSSM, University of Adelaide, (2) Australian National University LHPV,

More information

arxiv: v1 [nucl-th] 8 Nov 2013

arxiv: v1 [nucl-th] 8 Nov 2013 arxiv:11.8v1 [nucl-th] 8 Nov 0 Lattice effective field theory for nuclei from A = to A = 8, a Evgeny Epelbaum, b Hermann Krebs, b Dean Lee, c Ulf-G. Meißner, ade and Gautam Rupak f a Institute for Advanced

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

arxiv: v1 [hep-lat] 18 Aug 2017

arxiv: v1 [hep-lat] 18 Aug 2017 arxiv:1708.05562v1 [hep-lat] 18 Aug 2017 Computation of hybrid static potentials in SU(3) lattice gauge theory Christian Reisinger 1,, Stefano Capitani 1, Owe Philipsen 1, and Marc Wagner 1 1 Institut

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

Nucleon Electromagnetic Form Factors in Lattice QCD and Chiral Perturbation Theory

Nucleon Electromagnetic Form Factors in Lattice QCD and Chiral Perturbation Theory Nucleon Electromagnetic Form Factors in Lattice QCD and Chiral Perturbation Theory Sergey N. Syritsyn (LHP Collaboration) Massachusetts Institute of Technology Laboratory for Nuclear Science November 6,

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

arxiv: v1 [hep-lat] 6 Nov 2015

arxiv: v1 [hep-lat] 6 Nov 2015 Department of Physics, University of California, Berkeley E-mail: anicholson@berkeley.edu arxiv:1511.02262v1 [hep-lat] 6 Nov 2015 Evan Berkowitz, Enrico Rinaldi, Pavlos Vranas Physics Division, Lawrence

More information

Neutron Electric Dipole Moment from Lattice QCD

Neutron Electric Dipole Moment from Lattice QCD Neutron Electric Dipole Moment from Lattice QCD Sinya Aoki (University of Tsukuba) in collaboration with N. Ishizuka,Y. Kikukawa, Y. Kuramashi, E. Shintani for CP-PACS collaboration Exploration of Hadron

More information

arxiv: v2 [hep-lat] 16 Oct 2009

arxiv: v2 [hep-lat] 16 Oct 2009 Investigating the critical slowing down of QCD simulations arxiv:91.1465v2 [hep-lat] 16 Oct 29 Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin, Germany E-mail: sschaef@physik.hu-berlin.de

More information

Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions

Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions JLQCD Collaboration: a,b, S. Aoki c,d, H. Fukaya e, S. Hashimoto a,b, K-I. Ishikawa f, K. Kanaya c,

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation

Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation a, M. Deka b,c, T. Doi d, Y.B. Yang e, B. Chakraborty a, Y. Chen e, S.J. Dong a, T. Draper a, M. Gong a, H.W. Lin f, D. Mankame

More information

arxiv: v1 [hep-ph] 30 Dec 2018

arxiv: v1 [hep-ph] 30 Dec 2018 Jet fragmentation in a QCD medium: Universal quark/gluon ration and Wave turbulence arxiv:1812.11533v1 [hep-ph] 30 Dec 2018 Y. Mehtar-Tani Brookhaven National Laboratory, Physics Department, Upton, NY

More information

Mixed action simulations: approaching physical quark masses

Mixed action simulations: approaching physical quark masses Mixed action simulations: approaching physical quark masses S. Dürr 1, Z. Fodor 1,2,3, C. Hoelbling 2,, S.D. Katz 2,3,,2,4, Th. Kurth 2, L. Lellouch, Th. Lippert 1,2,4, K.K. Szabo 2, G. Vulvert 1 John

More information

Lattice QCD and Hadron Structure

Lattice QCD and Hadron Structure Lattice QCD and Hadron Structure Huey-Wen Lin University of Washington 1 Human Exploration Matter has many layers of structure 10 2 m 10 9 m Materials Molecules 10 15 m The scientific cycle Proton 2 Parton

More information

Lattice simulation of 2+1 flavors of overlap light quarks

Lattice simulation of 2+1 flavors of overlap light quarks Lattice simulation of 2+1 flavors of overlap light quarks JLQCD collaboration: S. Hashimoto,a,b,, S. Aoki c, H. Fukaya d, T. Kaneko a,b, H. Matsufuru a, J. Noaki a, T. Onogi e, N. Yamada a,b a High Energy

More information

University of Athens, Institute of Accelerating Systems and Applications, Athens, Greece

University of Athens, Institute of Accelerating Systems and Applications, Athens, Greece A study of the N to transition form factors in full QCD Constantia Alexandrou Department of Physics, University of Cyprus, CY-1678 Nicosia, Cyprus E-mail: alexand@ucy.ac.cy Robert Edwards Thomas Jefferson

More information

Gradient flow running coupling in SU(2) with N f = 6 flavors

Gradient flow running coupling in SU(2) with N f = 6 flavors Gradient flow running coupling in SU(2) with N f = 6 flavors E-mail: viljami.leino@helsinki.fi Teemu Rantalaiho E-mail: teemu.rantalaiho@helsinki.fi Kari Rummukainen E-mail: kari.rummukainen@helsinki.fi

More information

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown The College of William & Mary E-mail: zsbrown@email.wm.edu William Detmold Massachusetts Institute of Technology E-mail: wdetmold@mit.edu Stefan Meinel Massachusetts Institute of Technology E-mail: smeinel@mit.edu

More information

Nucleon Deformation from Lattice QCD Antonios Tsapalis

Nucleon Deformation from Lattice QCD Antonios Tsapalis Nucleon Deformation from Lattice QCD Antonios Tsapalis National Technical University of Athens School of Applied Mathematics and Physical Sciences & Hellenic Naval Academy 5 th Vienna Central European

More information

arxiv: v1 [hep-ph] 12 Feb 2019

arxiv: v1 [hep-ph] 12 Feb 2019 Hadron tomography in meson-pair production and gravitational form factors arxiv:9.4333v [hep-ph] Feb 9 S. Kumano a,b, a, and O. V. Teryaev c a KEK Theory Center, Institute of Particle and Nuclear Studies,

More information

Proton charge radius puzzle

Proton charge radius puzzle Proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw KMMF, January 24, 2013 Proton charge radius puzzle global fit to H and D spectrum: r p = 0.8758(77)

More information