Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2

Size: px
Start display at page:

Download "Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2"

Transcription

1 EPJ Web of Conferences 175, 623 (218) Lattice Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 Nils Asmussen 1,, Antoine Gérardin 1,, Harvey B. Meyer 1,2,, and Andreas Nyffeler 1, 1 PRISMA Cluster of Excellence & Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 5599 Mainz, Germany 2 Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, 5599 Mainz, Germany Abstract. The well-known discrepancy in the muon g 2 between experiment and theory demands further theory investigations in view of the upcoming new experiments. One of the leading uncertainties lies in the hadronic light-by-light scattering contribution (HLbL), that we address with our position-space approach. We focus on exploratory studies of the pion-pole contribution in a simple model and the fermion loop without gluon exchanges in the continuum and in infinite volume. These studies provide us with useful information for our planned computation of HLbL in the muon g 2 using full QCD. 1 Introduction The anomalous magnetic moment of the muon a µ = g µ 2 2 provides a high-precision test of the Standard Model. Current experiments and Standard-Model computations show a discrepancy of about three standard deviations; see Ref. [1] and references therein. This leads to the question whether this is a hint of new physics or just a statistical or systematic fluctuation from the exact value. To address this question, the uncertainty on this value has to be reduced. Experiments at Fermilab and at J- PARC plan to improve on the uncertainty by a factor of four[2]. The theoretical prediction ought to be improved in equal measure. The theoretical uncertainty is dominated by the hadronic vacuum polarization contribution (HVP) and the hadronic light-by-light contribution (HLbL). Lattice QCD can provide a first-principle estimate of a HLbL µ [3 9]. Other methods rely on models, because the HLbL is not fully related to any cross section, leading to large uncertainties. Dispersion relations allow one to use experimental data to reduce the uncertainties for the dominant contributions (π,η,η ; ππ), see Colangelo et al. [1 14] and Pauk and Vanderhaeghen [15]. Results from lattice QCD can be used as inputs to [16] or tests of [17] these dispersive approaches. More challenging is a full calculation of a HLbL µ ; in these proceedings, we report our progress towards such a calculation. Speaker, asmussen@uni-mainz.de gerardin@uni-mainz.de meyerh@uni-mainz.de nyffeler@uni-mainz.de The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4. (

2 EPJ Web of Conferences 175, 623 (218) Lattice z x y Figure 1. Hadronic light-by-light scattering in the (g 2) µ. The muon and the photon propagators are contained in the QED kernel function L. The blob denotes the QCD correlation function i ˆΠ to be evaluated on the lattice. 2 Expression for a HLbL µ in Euclidean position space The HLbL can be split into a continuum, infinite volume QED kernel function L and a (Lattice) QCD four-point correlation function i Π; see Fig. 1. The anomalous magnetic moment a HLbL µ can then be computed from our master formula: a HLbL µ =F 2 () = me6 [ ] d 4 y d 4 x L [ρ,σ];µνλ (x,y) i Π ρ;µνλσ (x,y), (1) 3 } {{ }} {{ }} {{ }} {{ } QED QCD i Π ρ;µνλσ (x,y) = =2π 2 d y y 3 = 4π π dβ sin2 (β) d 3 d 4 zz ρ jµ (x) j ν (y) j σ (z) j λ (). (2) For information on the derivation of the master formula, see our Lattice 216 proceedings contribution [9]. Note, that by treating the QED kernel function in infinite volume, we avoid introducing 1 finite-volume effects due to the photons. In the derivation we made the Lorentz covariance manifest, which allows us to reduce the eight-dimensional integral to an integral in three dimensions, as L 2 annotated in formula (1). In a Lattice QCD computation of the fully connected diagrams, one would evaluate the four-dimensional x integral with the help of sequential propagators and only reduce the y integral to one dimension. The square brackets in formula (1) can be evaluated in one step for one value of y. This makes it affordable to sample the integrand for the remaining one-dimensional integral over y. The kernel function L is decomposed into tensors: L [ρ,σ];µνλ (x,y) = Gδ[ρσ]µανβλ A T (A) (x,y), (3) with e. g. A=I,II,III G I δ[ρσ]µανβλ 1 8 Tr{( γ δ [γ ρ,γ σ ] + 2(δ δσ γ ρ δ δρ γ σ ) ) γ µ γ α γ ν γ β γ λ }. (4) The trace of the gamma matrices evaluates to sums of products of Kronecker deltas. The tensors T (A) in turn are decomposed into a scalar S, vector V and tensor T contribution, T (I) (x,y) = (x) α ( (x) β + (y) β )V δ(x,y), (5) ( (x,y) = m (x) Tβδ (x,y) δ βδs (x,y) ), (6) T (II) α T (III) (x,y) = m( (x) β + (y) β )( T αδ (x,y) δ αδs (x,y) ). (7) 2

3 EPJ Web of Conferences 175, 623 (218) Lattice m 2 µḡ() (, y =.56, cos β) cos β = cos β =.3125 cos β = mµḡ (1) (, y =.56, cos β) cos β = cos β =.3125 cos β = mµḡ (2) (, y =.56, cos β) cos β = cos β =.3125 cos β = l(1) (, y =.56, cos β) cos β = cos β =.3125 cos β =.875 l(2) (, y =.56, cos β) cos β = cos β =.3125 cos β =.875 l(3) (, y =.56, cos β) cos β = cos β =.3125 cos β = Figure 2. The dependence of all six weight functions for y =.56 and three values of cos β. Note that ḡ () contains an arbitrary additive constant, because of a regulated infrared divergence present before taking the derivatives in Eqs. (5 7). The latter are parametrized by the six weight functions ḡ (,1,2), l (1,2,3) : S (x,y) = ḡ () (, ˆx ŷ, y ), (8) V δ (x,y) = x δ ḡ (1) (, ˆx ŷ, y ) + y δ ḡ (2) (, ˆx ŷ, y ), (9) T αβ (x,y) = (x α x β x2 4 δ αβ) l (1) + (y α y β y2 4 δ αβ) l (2) + (x α y β + y α x β x y 2 δ αβ) l (3), (1) where ˆx = x and ŷ = y y. To evaluate the QED kernel L [ρ,σ];µνλ (x,y) we compute and store all six weight functions; the remaining operations to get the QED kernel are computationally inexpensive and it is convenient to perform them during the lattice computation. Due to the Lorentz covariance, the six weight functions ḡ (,1,2) and l (1,2,3) are functions of the three parameters x 2, y 2 and x y only. Therefore, it is feasible to precompute and store them. Plots of all six weight functions are shown in Fig Numerical tests To verify that the method and its implementation are correct, we computed the π -pole contribution in the vector-meson-dominance model as well as the lepton-loop contribution to a LbL µ in QED. These results can be compared with the known values of these contributions. 3.1 The π -pole contribution The first check is the π -pole contribution assuming a vector-meson-dominance transition form factor (parameters: m V, m π and overall normalization), F ( q 2 1, q2 2 ) = c π (q m2 V )(q2 2 + m2 V ), c π = N cm 4 V 12π 2 F π. (11) 3

4 EPJ Web of Conferences 175, 623 (218) Lattice m π = 3 MeV m π = 6 MeV m π = 9 MeV d d y ahlbl µ a Hlbl µ ( y max ) m π = 3 MeV m π = 6 MeV m π = 9 MeV y / y max / Figure 3. The π -pole contribution assuming a transition form factor given by the vector-meson-dominance model. For a cutoff choosen to be 4 in the direction, the left plot shows the integrand of the y integration of a HLbL µ and the right plot shows the value of a HLbL µ for an upper integration limit y max. The dashed line represents the result from the momentum-space integration. We construct the correlation function for the π -pole contribution. The result reads c 2 π { ( i Π ρ;µνλσ (x,y) = m 2 V (m2 V ɛµναβ ɛ σλργ + ) Kπ (x,y) m2 π) x α y β x γ y γ + ɛ µλαβ ɛ νσγρ K π (y x,y) + ɛ µσαρ ɛ νλβγ K π (x, x y) }, (12) y γ x γ where, with the massive propagator in position space G m (x), K π (x,y) d 4 u ( G mπ (u) G mv (u) ) G mv (x u)g mv (y u) = K π (y, x). (13) With the correlation function at hand, we can apply the techniques described in Sec. 2. The result is shown in Fig. 3. In view of the exponential decay e cmπ y of the correlation function, the observed contribution to a HLbL µ is remarkably long-range. This demands for large lattices at the order of 5 1 for the physical pion mass. 3.2 The lepton loop contribution in QED The analytic result for the correlation function for a lepton loop with mass m l is: i Π ρ;µνλσ (x,y) = Π (1) ρ;µνλσ (x,y) + Π (1) ρ;νλµσ (y x, x) + x ρ Π (r,1) νλµσ (y x, x) + Π (1) ρ;λνµσ ( x,y x) + x ρ Π (r,1) λνµσ ( x,y x). (14) It consists of the two functions Π (1) and Π (r,1). These functions are sums of products of Bessel functions and traces of gamma matrices. The gamma matrices evaluate to sums of products of Kronecker 4

5 EPJ Web of Conferences 175, 623 (218) Lattice deltas. The integral in z has already been performed analytically and the evaluation boils down to computing the Bessel functions and evaluating the traces. The two functions read Π (r,1) µνλσ (x,y) = 2( m l ) 8 [ 2π ( x α )(x y) β K 2 (m l )K 2 (m l x y ) l 2 x y 2 γδ (y) Tr{γ α γ µ γ β γ ν γ γ γ σ γ δ γ λ } + K 1(m l )K 1 (m l x y ) x y p( y ) Tr{γ µ γ ν γ σ γ λ } + ( x α)(x y) β K 2 (m l )K 2 (m l x y ) 2 x y 2 p( y ) Tr{γ α γ µ γ β γ ν γ σ γ λ } + ( x α) K 2 (m l )K 1 (m l x y ) 2 x y q γ (y) Tr{γ α γ µ γ ν γ γ γ σ γ λ } + (x y) β K 1 (m l )K 2 (m l x y ) x y 2 q γ (y) Tr{γ µ γ β γ ν γ γ γ σ γ λ } + ( x α) K 2 (m l )K 1 (m l x y ) 2 x y q δ (y) Tr{γ α γ µ γ ν γ σ γ δ γ λ } + (x y) β K 1 (m l )K 2 (m l x y ) x y 2 q δ (y) Tr{γ µ γ β γ ν γ σ γ δ γ λ } + K 1(m l )K 1 (m l x y ) x y l γδ (y) Tr{γ µ γ ν γ γ γ σ γ δ γ λ } ], (15) and Π (1) ρ;µνλσ (x,y) = 2( m l ) 8 [ 2π ( x α )(x y) β K 2 (m l )K 2 (m l x y ) f 2 x y 2 ρδγ (y) Tr{γ α γ µ γ β γ ν γ γ γ σ γ δ γ λ } + K 1(m l )K 1 (m l x y ) f ρδγ (y) Tr{γ µ γ ν γ γ γ σ γ δ γ λ } x y + K 1(m l )K 1 (m l x y ) g ρ (y) Tr{γ µ γ ν γ σ γ λ } x y + ( x α)(x y) β K 2 (m l )K 2 (m l x y ) g 2 x y 2 ρ (y) Tr{γ α γ µ γ β γ ν γ σ γ λ } + ( x α) K 2 (m l )K 1 (m l x y ) h 2 ργ (y) Tr{γ α γ µ γ ν γ γ γ σ γ λ } x y + (x y) β K 1 (m l )K 2 (m l x y ) h x y 2 ργ (y) Tr{γ µ γ β γ ν γ γ γ σ γ λ } + ( x α) K 2 (m l )K 1 (m l x y ) 2 x y + (x y) β K 1 (m l )K 2 (m l x y ) x y 2 ˆ f ρδ (y) Tr{γ α γ µ γ ν γ σ γ δ γ λ } ˆ f ρδ (y) Tr{γ µ γ β γ ν γ σ γ δ γ λ } ], (16) 5

6 EPJ Web of Conferences 175, 623 (218) Lattice m l /m µ a LbL µ 1 11 (exact) a LbL µ 1 11 Precision Deviation (2.3)(2.1).7% 1.2% (.7)(1.7) 1.2%.6% Table 1. Results for the lepton-loop contribution in QED. For the exact numbers cf. [18, 19]. The first uncertainty stems from the three-dimensional integration, the second from the extrapolation to small y m l = m µ m l =2 m µ f( y ) f( y ) m µ y m µ y Figure 4. Integrand of the lepton loop contribution a LbL µ in QED. The full integration region is shown on the left, a detailed view of the small y region on the right. where l γδ (y) = 2π2 m 2 l h ργ (y) = π2 m 3 l fˆ ρδ (y) = π2 m 3 l g ρ (y) = π2 m 2 l K 1 (m l y ) ) (ŷγ ŷ δ K 2 (m l y ) δ γδ, (17) m l y (ŷγ ŷ ρ m l y K 1 (m l y ) δ γρ K (m l y ) ), (18) {ŷρ ŷ δ m l y K 1 (m l y ) + δ ρδ K (m l y ) }, (19) y ρ K (m l y ), (2) q γ (y) = 2π2 ŷ γ K 1 (m l y ), (21) m 2 l f ρδγ (y) = π2 {ŷγ ŷ m 3 δ ŷ ρ m l y K 2 (m l y ) + (δ ρδ ŷ γ δ γρ ŷ δ δ γδ ŷ ρ ) K 1 (m l y ) }, l (22) p( y ) = 2π2 K m 2 (m l y ). l (23) The integrand f ( y ) of the final y integration is shown in Fig. 4. The behaviour for small y is numerically compatible with f ( y ) m µ y log 2 (m µ y ). This is quite steep and means that we probe the kernel precisely also for small distances. With this correlation function, the resulting value for a LbL µ for different loop masses can be reproduced at the percent level; see Table 1. 6

7 EPJ Web of Conferences 175, 623 (218) Lattice Conclusions The covariant position-space method remains a promising approach to calculate the HLbL contribution to (g 2) µ. We did two tests of our QED kernel with the help of semi-analytic computations of the correlation function i ˆΠ. The first test is the π -pole contribution in a vector-meson dominance model for the transition form factor, and the second is a lepton loop. We reproduce the known analytic result for the lepton loop at the percent level. One important observation is that the π -pole contribution is very long-range, but we hope to be able to correct for the finite-size effects on this contribution, by computing the transition form factor [16] on the same ensemble and using Eqs. (12, 13). We plan to make the QED kernel publicly available. References [1] F. Jegerlehner, [2] D.W. Hertzog, EPJ Web Conf. 118, 115 (216), [3] T. Blum, S. Chowdhury, M. Hayakawa, T. Izubuchi, Phys. Rev. Lett. 114, 121 (215), [4] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Lehner, Phys. Rev. D93, 1453 (216), [5] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, C. Lehner, Phys. Rev. Lett. 118, 225 (217), [6] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, C. Lehner, Phys. Rev. D96, (217), [7] N. Asmussen, J. Green, V. Gülpers, G. von Hippel, H.B. Meyer, A. Nyffeler, H. Wittig, Hadronic light-by-light contribution to the muon anomalous magnetic moment on the lattice (215), heidelberg/part/sydm/session/3/contribution/6 [8] J. Green, N. Asmussen, O. Gryniuk, G. von Hippel, H.B. Meyer, A. Nyffeler, V. Pascalutsa, PoS LATTICE215, 19 (216), [9] N. Asmussen, J. Green, H.B. Meyer, A. Nyffeler, PoS LATTICE216, 164 (216), [1] G. Colangelo, M. Hoferichter, M. Procura, P. Stoffer, JHEP 9, 91 (214), [11] G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, P. Stoffer, Phys. Lett. B738, 6 (214), [12] G. Colangelo, M. Hoferichter, M. Procura, P. Stoffer, JHEP 9, 74 (215), [13] G. Colangelo, M. Hoferichter, M. Procura, P. Stoffer, Phys. Rev. Lett. 118, 2321 (217), [14] G. Colangelo, M. Hoferichter, M. Procura, P. Stoffer, JHEP 4, 161 (217), [15] V. Pauk, M. Vanderhaeghen, Phys. Rev. D9, (214), [16] A. Gérardin, H.B. Meyer, A. Nyffeler, Phys. Rev. D94, 7457 (216), [17] J. Green, O. Gryniuk, G. von Hippel, H.B. Meyer, V. Pascalutsa, Phys. Rev. Lett. 115, 2223 (215), [18] S. Laporta, E. Remiddi, Phys. Lett. B31, 44 (1993) [19] M. Passera, private communication 7

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 Nils Asmussen in Collaboration with Antoine Gérardin, Jeremy Green, Harvey Meyer, Andreas Nyffeler

More information

Hadronic light-by-light scattering in the muon g 2

Hadronic light-by-light scattering in the muon g 2 Hadronic light-by-light scattering in the muon g 2 Andreas Nyffeler PRISMA Cluster of Excellence, Institut für Kernphysik, Helmholtz-Institut Mainz Johannes Gutenberg Universität Mainz, Germany nyffeler@kph.uni-mainz.de

More information

arxiv: v1 [hep-lat] 6 Jul 2015

arxiv: v1 [hep-lat] 6 Jul 2015 MITP/15-05 Lattice QCD calculation of hadronic light-by-light scattering Jeremy Green a, Oleksii Gryniuk a,c, Georg von Hippel a, Harvey B. Meyer a,b, Vladimir Pascalutsa a a PRISMA Cluster of Excellence

More information

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2 , Harvey Meyer,2, Georg von Hippel, Hartmut Wittig,2 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg Universität Mainz, 5599 Mainz, Germany 2 Helmholtz Institute Mainz, Johannes

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Hadronic Inputs to the (g-2)µ Puzzle

Hadronic Inputs to the (g-2)µ Puzzle Hadronic Inputs to the (g-2)µ Puzzle Christoph Florian Redmer 2nd International Workshop on High Intensity Electron Positron Accelerator at China Yanqihu Campus, UCAS (g-2)µ Magnetic moment of µ : Dirac

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

Hadronic contribu-ons to (g 2) μ from La4ce QCD: Results from the Mainz group

Hadronic contribu-ons to (g 2) μ from La4ce QCD: Results from the Mainz group Hadronic contribu-ons to (g 2) μ from La4ce QCD: Results from the Mainz group Hartmut Wi4g PRISMA Cluster of Excellence, Ins6tute for Nuclear Physics and Helmholtz Ins6tute Mainz Interna-onal Workshop

More information

Lattice calculation of hadronic light-by-light scattering contribu

Lattice calculation of hadronic light-by-light scattering contribu Lattice calculation of hadronic light-by-light scattering contribution to the muon g-2 Lepton Moments, Cape Cod July 10, 2014 Based on arxiv:1407.2923, TB, Saumitra Chowdhury, Masashi Hayakawa, and Taku

More information

Hadronic contributions to the muon g-2

Hadronic contributions to the muon g-2 Hadronic contributions to the muon g-2 RICHARD WILLIAMS (HIRSCHEGG 2014) 1 Overview Introduction Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Conclusions 2 Overview Introduction Hadronic

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Computing the Adler function from the vacuum polarization function

Computing the Adler function from the vacuum polarization function Computing the Adler function from the vacuum polarization function 1, Gregorio Herdoiza 1, Benjamin Jäger 1,2, Hartmut Wittig 1,2 1 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action Muon g 2 Hadronic Vacuum Polarization from 2+1+1 flavors of sea quarks using the HISQ action Jack Laiho Syracuse University April 31, 2015 Motivation The muon anomalous magnetic moment is currently measured

More information

arxiv: v1 [hep-lat] 22 Oct 2013

arxiv: v1 [hep-lat] 22 Oct 2013 Renormalization of the momentum density on the lattice using shifted boundary conditions arxiv:1310.6075v1 [hep-lat] 22 Oct 2013 Daniel Robaina PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes

More information

Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks

Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks T. Blum University of Connecticut and RIKEN BNL Research Center E-mail: tblum@phys.uconn.edu

More information

Study of the anomalous magnetic moment of the muon computed from the Adler function

Study of the anomalous magnetic moment of the muon computed from the Adler function Study of the anomalous magnetic moment of the muon computed from the Adler function Michele Della Morte 1, Anthony Francis 2, Gregorio Herdoiza 4, 3, Benjamin Jäger 5, Andreas Jüttner 6, Harvey Meyer 3,

More information

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2 Hadronic Cross Section Measurements with ISR and the Implications on g µ 2 Konrad Griessinger on behalf of the BABAR Collaboration Institut for Nuclear Physics Mainz University Determination of Fundamental

More information

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Meson Physics in Low-Energy QCD Workshop on Meson Transition Form Factors Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Elisabetta Prencipe Johannes Gutenberg University

More information

The Mainz (g 2) project: Status and Perspec8ves

The Mainz (g 2) project: Status and Perspec8ves : Status and Perspec8ves Hartmut Wi=g PRISMA Cluster of Excellence, Ins6tute for Nuclear Physics and Helmholtz Ins6tute Mainz MITP Workshop Determina)on of the Fundamental Parameters in QCD 9 March 2016

More information

Comments on Recent Developments in Theory of Hadronic Light-by-Light

Comments on Recent Developments in Theory of Hadronic Light-by-Light INT Workshop on Hadronic Light-by-Light Contribution to the Muon Anomaly February 28 -March 4, 2011, Seattle Comments on Recent Developments in Theory of Hadronic Light-by-Light Arkady Vainshtein William

More information

Charged Pion Polarizability & Muon g-2

Charged Pion Polarizability & Muon g-2 Charged Pion Polarizability & Muon g-2 M.J. Ramsey-Musolf U Mass Amherst Amherst Center for Fundamental Interactions http://www.physics.umass.edu/acfi/ ACFI-J Lab Workshop! March 2014! 1 Outline I. Intro

More information

Review of ISR physics at BABAR

Review of ISR physics at BABAR Review of ISR physics at BABAR Konrad Griessinger on behalf of the BABAR Collaboration Institute for Nuclear Physics Mainz University Hadronic Physics with Lepton and Hadron Beams, Jefferson Lab, September

More information

The muon g-2 recent progress

The muon g-2 recent progress The muon g-2 recent progress Massimo Passera INFN Padova New Vistas in Low-Energy Precision Physics Mainz 4-7 April 2016 Theory of the g-2: the beginning Kusch and Foley 1948: µ exp e = e~ 2mc (1.00119

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Meson Transition Form Factorsexperimental

Meson Transition Form Factorsexperimental Meson Transition Form Factorsexperimental results Patrik Adlarson Johannes Gutenberg Universität, Mainz, A2 collaboration Hadron-China Friday Aug 7, 2015 1 Outline Introduction Space Like TFF Time Like

More information

Experimental Tests of Charge Symmetry Breaking in Hypernuclei

Experimental Tests of Charge Symmetry Breaking in Hypernuclei Experimental Tests of Charge Symmetry Breaking in Hypernuclei Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz, Germany E-mail: achenbach@uni-mainz.de A pedagogical discussion of the charge

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Lepton universality test in the photoproduction of e - e + versus " - " + pairs on a proton target

Lepton universality test in the photoproduction of e - e + versus  -  + pairs on a proton target 2011-2014 PhD in theoretical physics under supervision of Prof. Dr. Marc Vanderhaeghen at Johannes Gutenberg University Mainz. Thesis title Light-by-light scattering and the muon s anomalous magnetic moment

More information

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain , L. Tiator and M. Ostrick Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany E-mail: kashevar@uni-mainz.de, tiator@uni-mainz.de, ostrick@uni-mainz.de A phenomenological analysis of

More information

arxiv: v1 [hep-lat] 28 Oct 2017

arxiv: v1 [hep-lat] 28 Oct 2017 arxiv:1710.10512v1 [hep-lat] 28 Oct 2017 Pion mass dependence of the HVP contribution to muon g 2 Maarten Golterman 1,, Kim Maltman 2,3, and Santiago Peris 4 1 Department of Physics and Astronomy, San

More information

A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques Eur. Phys. J. C 7:85 DOI.4/epjc/s5--85-z Special Article - Tools for Experiment and Theory A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED Tom Blum (University of Connecticut, RIKEN BNL Research Center) with Christopher Aubin (Fordham) Saumitra Chowdhury (UConn) Masashi

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

OLD AND NEW RESULTS FOR HADRONIC-LIGHT-BY-LIGHT

OLD AND NEW RESULTS FOR HADRONIC-LIGHT-BY-LIGHT 1/64 OLD AND NEW RESULTS FOR HADRONIC-LIGHT-BY-LIGHT Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens http://www.thep.lu.se/ bijnens/chpt.html Hadronic Probes of Fundamental Symmetries,

More information

Chiral effective field theory for hadron and nuclear physics

Chiral effective field theory for hadron and nuclear physics Chiral effective field theory for hadron and nuclear physics Jose Manuel Alarcón Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn Biographical presentation Biographical presentation Born

More information

arxiv: v1 [hep-lat] 6 Nov 2012

arxiv: v1 [hep-lat] 6 Nov 2012 HIM-2012-5 Excited state systematics in extracting nucleon electromagnetic form factors arxiv:1211.1282v1 [hep-lat] 6 Nov 2012 S. Capitani 1,2, M. Della Morte 1,2, G. von Hippel 1, B. Jäger 1,2, B. Knippschild

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

Measuring the Leading Order Hadronic contribution to the muon g-2 in the space-like region

Measuring the Leading Order Hadronic contribution to the muon g-2 in the space-like region Measuring the Leading Order Hadronic contribution to the muon g-2 in the space-like region C. M. Carloni Calame INFN, Sezione di Pavia, 27 Pavia, Italy Abstract: Recently a novel approach to determine

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

Hadronic Contributions to

Hadronic Contributions to Hadronic Contributions to (g-) µ Yuping Guo INSTITUT FÜR KERNPHYSIK JOHANNES GUTENBERG-UNIVERSITÄT MAINZ New Vistas in Low-Energy Precision Physics Mainz, 4-7 April 016 Muon Anomaly: a µ = (g-) µ / Experimental:

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

arxiv: v1 [hep-ph] 28 Jul 2017

arxiv: v1 [hep-ph] 28 Jul 2017 with Calibrated Uncertainty arxiv:1707.09404v1 [hep-ph] 28 Jul 2017 Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20 364, México CDMX 01000,

More information

The Muon g-2 Theory Initiative. Aida X. El-Khadra (University of Illinois and Fermilab)

The Muon g-2 Theory Initiative. Aida X. El-Khadra (University of Illinois and Fermilab) The Muon g-2 Theory Initiative Aida X. El-Khadra (University of Illinois and Fermilab) HC2NP workshop Puerto de la Cruz, Tenerife, 26-30 Sep 2016 Muon g-2 Theory Initiative Steering Committee: Gilberto

More information

arxiv: v1 [hep-ex] 31 Dec 2014

arxiv: v1 [hep-ex] 31 Dec 2014 The Journal s name will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 5 arxiv:5.v [hep-ex] Dec 4 Highlights from Compass in hadron spectroscopy

More information

Light hadrons at e+e- colliders

Light hadrons at e+e- colliders Light hadrons at e+e- colliders Andrzej Kupsc Experiment: e+e- colliders Dispersive methods for hadronic contribution to muon g-2 Two hadrons: Pion form factor / η,η -> π+π-γ Three hadrons: Dalitz Plot

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

arxiv: v2 [hep-ph] 30 May 2017

arxiv: v2 [hep-ph] 30 May 2017 INT-PUB-17-005, CERN-TH-2017-014, NSF-KITP-17-012 Rescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muon arxiv:1701.06554v2 [hep-ph] 30 May 2017 Gilberto

More information

Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential

Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential Department of Physics, University of Cyprus, Nicosia CY-678, Cyprus E-mail: ph00aa@ucy.ac.cy

More information

Physics from 1-2 GeV

Physics from 1-2 GeV Physics from 1-2 GeV Caterina Bloise INFN, Frascati Laboratory, Italy What next LNF: Perspectives of fundamental physics at the Frascati Laboratory Frascati, November 11, 2014 1 / 19 1 Introduction 2 Kaon

More information

Low-energy QCD II Status of Lattice Calculations

Low-energy QCD II Status of Lattice Calculations Low-energy QCD II Status of Lattice Calculations Hartmut Wittig Institute for Nuclear Physics and Helmholtz Institute Mainz Determination of the Fundamental Parameters of QCD Nanyang Technical University

More information

arxiv: v2 [hep-ph] 17 May 2010

arxiv: v2 [hep-ph] 17 May 2010 Heavy χ Q tensor mesons in QCD arxiv:00.767v [hep-ph] 7 May 00 T. M. Aliev a, K. Azizi b, M. Savcı a a Physics Department, Middle East Technical University, 0653 Ankara, Turkey b Physics Division, Faculty

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Towards a data-driven analysis of hadronic light-by-light scattering

Towards a data-driven analysis of hadronic light-by-light scattering Towards a data-driven analysis of hadronic light-by-light scattering Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany

More information

Boosting B meson on the lattice

Boosting B meson on the lattice Boosting B meson on the lattice Shoji Hashimoto (KEK) @ INT Workshop Effective Field Theory, QCD, and Heavy Hadrons, U. of Washington, Seattle; April 28, 2005. Beyond the small recoil processes A big limitation

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Physik Department, Technische Universität München D Garching, Germany. Abstract

Physik Department, Technische Universität München D Garching, Germany. Abstract TUM/T39-96-19 Diffractive ρ 0 photo- and leptoproduction at high energies ) G. Niesler, G. Piller and W. Weise arxiv:hep-ph/9610302v1 9 Oct 1996 Physik Department, Technische Universität München D-85747

More information

HADRONIC CONTRIBUTIONS TO THE MUON ANOMALOUS MAGNETIC MOMENT: overview and some new results for the hadronic Light-by-light part

HADRONIC CONTRIBUTIONS TO THE MUON ANOMALOUS MAGNETIC MOMENT: overview and some new results for the hadronic Light-by-light part 1/72 HADRONIC CONTRIBUTIONS TO THE MUON ANOMALOUS MAGNETIC MOMENT: overview and some new results for the hadronic Light-by-light part Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens http://www.thep.lu.se/

More information

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR)

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR) 1 International Workshop on e+e- Collisions from Phi to Psi (PHIPSI08) Laboratori Nazionali di Frascati April 7-10, 2008 Results on Hadronic Cross Sections with Initial State Radiation (ISR) Johannes Gutenberg-Universität

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

Spectral functions and hadron spectroscopy in lattice QCD

Spectral functions and hadron spectroscopy in lattice QCD Spectral functions and hadron spectroscopy in lattice QCD Anthony Francis Jefferson Laboratory 06.01.2014 Outline Biography Pre-academia Academia Spectral functions in lattice QCD at finite temperature

More information

Omega baryon electromagnetic form factors from lattice QCD

Omega baryon electromagnetic form factors from lattice QCD Omega baryon electromagnetic form factors from lattice QCD C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2057, 1678 Nicosia, Cyprus and Computation-based Science and Technology Research

More information

Pion polarizabilities: No conflict between dispersion theory and ChPT

Pion polarizabilities: No conflict between dispersion theory and ChPT : No conflict between dispersion theory and ChPT Barbara Pasquini a, b, and Stefan Scherer b a Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, and INFN, Sezione di Pavia, Italy

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Latest KLOE-2 results on hadron physics

Latest KLOE-2 results on hadron physics Latest KLOE- results on hadron physics on behalf the KLOE- collaboration INFN-Sez. Roma "Tor Vergata", Via della Ricerca Scientifica, I-00, Rome E-mail: Dario.Moricciani@roma.infn.it We discuss recent

More information

Explore hadronic matrix elements in the timelike region: from HVPs to rare kaon decays

Explore hadronic matrix elements in the timelike region: from HVPs to rare kaon decays Explore hadronic matrix elements in the timelike region: from HVPs to rare kaon decays Xu Feng (ØÌ) Workshop on Parton Distributions in Modern Era, Beijing, 07/14/2017 Introduction Main topic of this workshop

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Measurements of CPV and mixing in charm decays

Measurements of CPV and mixing in charm decays Measurements of CPV and mixing in charm decays on behalf of LHCb Collaboration Moriond QCD La Thuile, Italy March 21 28, 2015 Charm and New Physics In indirect searches for new physics, charm furnish a

More information

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII (IHEP-LAL collaboration) Liangliang WANG Outline Introduction to hadronic vacuum polarization ee hadrons results

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

HADRONIC LIGHT-BY-LIGHT FOR THE MUON ANOMALOUS MAGNETIC MOMENT

HADRONIC LIGHT-BY-LIGHT FOR THE MUON ANOMALOUS MAGNETIC MOMENT 1/56 HADRONIC LIGHT-BY-LIGHT FOR THE MUON ANOMALOUS MAGNETIC MOMENT Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens http://www.thep.lu.se/ bijnens/chpt.html Uppsala 31 October 2012 Overview

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

Ideas of four-fermion operators in electromagnetic form factor calculations

Ideas of four-fermion operators in electromagnetic form factor calculations EPJ Web of Conferences 7, 06006 (014) DOI: 10.1051/epjconf/014706006 C Owned by the authors, published by EDP Sciences, 014 Ideas of four-fermion operators in electromagnetic form factor calculations Chueng-Ryong

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen Dissertantenseminar, March 16 th 2011, Graz 1 / 45 Introduction Table of contents

More information

Total decay and transition rates from LQCD

Total decay and transition rates from LQCD Total decay and transition rates from LQCD Maxwell T. Hansen 1,, Harvey B. Meyer 1,, and Daniel Robaina 3, 1 Helmholtz Institut Mainz, D-55099 Mainz, Germany. PRISMA Cluster of Excellence and Institut

More information

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NUCLEON AND PION-NUCLEOORM FACTORS FROM LATTICE

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

(g-2)μ SUSY and the LHC

(g-2)μ SUSY and the LHC (g-2)μ SUSY and the LHC Sho IWAMOTO 2 Sep. 2015 Joint Particle Seminar @ UC Irvine References M.Endo *, K.Hamaguchi *, SI, T.Yoshinaga * [1303.4256], SI, T.T.Yanagida **, N.Yokozaki *** [1407.4226]. *

More information

New Physics Searches with Muons. Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015

New Physics Searches with Muons. Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015 New Physics Searches with Muons Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015 Andrzej Czarnecki University of Alberta Outline Three promising directions in low-energy

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory

Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory High Energy Physics Volume 215, Article ID 83232, 4 pages http://dx.doi.org/1.1155/215/83232 Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory C. A. Dominguez, 1 M. Loewe,

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

arxiv: v1 [hep-lat] 27 Sep 2011

arxiv: v1 [hep-lat] 27 Sep 2011 HIM-011-09 Glueball masses from ratios of path integrals arxiv:1109.5974v1 [hep-lat] 7 Sep 011 Dipartimento di Fisica, Universitá di Milano-Bicocca, Piazza della Scienza 3, I-016 Milano, Italy E-mail:

More information

Investigating the low-energy structure! of the nucleon with relativistic! chiral effective field theory

Investigating the low-energy structure! of the nucleon with relativistic! chiral effective field theory Investigating the low-energy structure! of the nucleon with relativistic! chiral effective field theory Jose Manuel Alarcón! Cluster of Excellence PRISMA, Institut für Kernphysik Johannes Gutenberg Universität,

More information

arxiv: v1 [hep-ph] 29 Jun 2016

arxiv: v1 [hep-ph] 29 Jun 2016 arxiv:1606.0968v1 [hep-ph] 9 Jun 016 R Bucoveanu PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany E-mail: rabucove@uni-mainz.de M Gorchtein PRISMA

More information