ECONOMETRIC INSTITUTE THE COMPLEXITY OF THE CONSTRAINED GRADIENT METHOD FOR LINEAR PROGRAMMING J. TELGEN REPORT 8005/0

Size: px
Start display at page:

Download "ECONOMETRIC INSTITUTE THE COMPLEXITY OF THE CONSTRAINED GRADIENT METHOD FOR LINEAR PROGRAMMING J. TELGEN REPORT 8005/0"

Transcription

1 ECONOMETRIC INSTITUTE THE COMPLEXITY OF THE CONSTRAINED GRADIENT METHOD FOR LINEAR PROGRAMMING ffaciundation OF AGRICULTIlt.E,C"..'NOMICE; 1LT- S E P 3 1/880 J. TELGEN REPORT 8005/0 ERASMUS UNIVERSITY ROTTERDAM P.O. BOX 173a 3000 DR ROTTERDAM. ME NETHERLANDS

2 THE COMPLEXITY OF THE CONSTRAINED GRADIENT METHOD FOR LINEAR PW)GRAMMING* Jan Telgen Econometric Institute Erasmus University Rotterdam and Management Science Program University of Tennessee Abstract It. is proved that the computation of, the constrained gradient is equivalent (in a complexity, theoretic sense), to quadratic programming. Since the *latter is an NP hard problem, the constrained gradient method is not a 'good' method for linear programming unless P = AT. Keywords: Linear programming, Complexity, Gradient methods. The author gratefully acknowledges stimulating comments by J. K. Lens tra and A. H. G. Rinnooy Kan. Visiting on a NATO Science Fellowship awarded by the Netherlands Organization for the Advancement of Pure Research (7,140).

3 1. Introduction It has recently been established that LINEAR PROGRAMMING (LP) is solvable in polynomial time, i.e. LP E P (Chacijan [1979]). The method used to achieve this result is quite different from the simplex method. It was well-known that the standard simplex method is not a formally 'goof' (polynomial time) method for LINEAR PROGRAMMING (Klee and Minty [1972]). Similar results were obtained for those variants of the simplex method in which the pivot column is selected to maximize criterion improvement (Jeroslow [1973]) or to maximize the gradient in the space of all variables (Goldfarb and Sit [1978]). But what about the many other methods that have been proposed especially in the early days of the rise of linear programming? The constrained gradient method is such a method: although it could not compete successfully with the simplex method in solving LP problems in practice, its theoretical quality might still be good. Here we show that this is not true unless P = NP. 2. The Constrained Gradient Method The constrained gradient method is an iterative scheme to solve the linear programming problem T minimize c x { subject to Ax < b where A is mxn, b is mxl and c and x are nxl vectors. Given a feasible solution x we partition A and b as: vi wj and

4 such that 1. Vx = V 1 Wx k < w feasible direction d in x k is defined by or equivalently k k V(x +d ) < v V d <0. The constrained gradient in the point x k Is defined as the feasible direction d along which the objective function value achieves its maximal improvement per unit step length. Assume that a feasible solution x 0 is known. The constrained gradient method consists of the following steps: step 0 step 1 Compute the constrained gradient g k in the point x k step 2 If c T gk > 0, then stop : x k is optimal; step 3 Determine the maximum step size t and compute k+1 x : = x k + t.g set k: = k + 1 and continue with step 1. Several authors have modified this scheme in order to bypass the computation of the constrained gradient from scratch at every iteration (e.g., Rosen [1960], Lemke (1961]). They propose some rules by which the constrained gradient used in the preceding iteration can be adapted t yield a 'constrained gradient direction' for the next iteration. However, these rules do not always yield the correct constrained gradient direction. Therefore we shall confine ourselves here to the basic scheme given above.

5 The constrained gradient method may require more than a polynomially bounded number of computations either because of the number of iterations, or because of the number of computations involved in one iteration. We shall consider the latter question in more detail here; the former type of question was used to show that the simplex method is not a formally 'good' method for linear programming. 3. The Computation Of The Constrained Gradient From its definition we see that the constrained gradient g in the point x k can be computed as the optimal solution for d in min c T d vtd (1) s.t. Vd < 0 If the objective function value in the optimal solution of 1 positive we may solve, instead of (1) max d T d s.t. Vd < 0 c T d = 1 If the objective function value in the optimal solution for 1) is negative we may solve min S. t. dt Vd < 0 ct d = (3) In both case, the optimal solution to the quadratic programming problem (2) or (3) is the constrained gradient g.

6 4 Formally we define the problem: CONSTRAINED GRADIENT COMPUTATION (CGC: Given an integer matix V and an integer vector c determine a rational vector g such that Vg < c T g = 1 and g g is maximal. 4. The main result We shall prove that CONSTRAINED GRADIENT COMPUTATION is NP-hard, by showing that a specific quadratic programming problem can be transformed- to the form (2), which implies that it can be solved by a constrained gradient computation. Since the specific quadratic programming problem we use has been proved to be NP-hard in Sahni [1974] (reduction from PARTITION; see also Carey and Johnson [1979]), this argument is sufficient. The specific quadratic programming problem (SQP) is: max s.t. (4) = 1,...n where s is a given nxl vector, r a given scalar and i an nxl vector of ones. (n+1) (2n+1) x n+1) (n+1) Define y c, P cir and q c IR with

7 5 j 2 j =...,n and r -r Is" 2 and = (0, 0, Now we can reformulate (4) in the form (2) as max Y Y Py < 0 T y (5) Thus, by computing the constrained gradient in the point x = (0...,0) for the objective function min q x with respect to the constraints Px < 0 we can solve the quadratic programming problem (5) and thus (4). Since all transformations are of polynomially bounded size we have shown that SQP is reducible to CGC. Sahni [1974] showed that SQP is NP hard. It follows immediately that CONSTRAINED GRADIENT COMPUTATION is NP hard. Therefore we have proved:

8 Theorem: The constrained gradient method does not yield a polynomial time method for UNEAR PROGRAMMING, unless P = NP. Note that this result is obtained without taking into account the number of iterations the constrained gradient method requires, although this number might very well be superpolynomial as in the case of the simplex method.

9 References Chacijan, L. G., Polynomial algorithm for linear programming, Doklady Akademika USSR, Mathematika. vol. 244, no. 5, 1979, pp Galey, M. R. and D. S. Johnson, Computers and intractability: guide to the theory of NP-completeness, Freeman, Goldfarb, D. and W. Y. Sit, Worst case behaviour of the steepest edge simplex method, submitted to Discrete Mathematics, Jeroslow, R. G., The simplex algorithm with the pivot rule of maximizing criterion improvement, Discrete Mathematics, vol. 4, 1973, pp Klee, V. and G. J. Minty, How good is the simplex algorithm? in: 0. Shisha (ed.) Inequalities III, Academic Press, 1972, pp Lemke, C. E., The constrained gradient method of linear programming, J. Soc. Indust. AppZ. Math., vol. 9, no. 1, 1961, pp Rosen, J. B., The gradient projection method for nonlinear programming, J. Soc. Indust. Appl. Math., vol. 8, no. 1, 1960, pp Sahni, S., Computationally related problems, SIAMejr. Comput., vol. 3, no. 4, 1974, pp

10 LIST OF REPORTS "List of Reprints, nos , Abstracts of Reports Second Half 1979". 8001/0 "A Stochastic Method for Global Optimization", by C.G.E. Boender, A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer. 8002/M "The General Linear Group of Polynomial Rings over Regular Rings", by A.C.F. Vorst. 8003/0 "A Recursive Approach to the Implementation of Enumerative Methods", by J.K. Lenstra and A.H.G. Rinnooy Kan. 8004/E "Linearization and Estimation of the Addi-Log Budget Allocation Model", by P.M.C. de Boer and J. van Daal /0 "The Complexity of the Constrained Gradient Method for Linear Programming", by J. Telgen.

11

ECONOMETRIC INSTITUTE ON FUNCTIONS WITH SMALL DIFFERENCES. J.L. GELUK and L. de H ;Di:710N OF REPORT 8006/E

ECONOMETRIC INSTITUTE ON FUNCTIONS WITH SMALL DIFFERENCES. J.L. GELUK and L. de H ;Di:710N OF REPORT 8006/E ECONOMETRIC INSTITUTE ON FUNCTIONS WITH SMALL DIFFERENCES J.L. GELUK and L. de H ;Di:710N OF i.gt:icultupu/0 E1C771'40MiCO Lf9..-Vet;r1 ) I. REPORT 8006/E ERASMUS UNIVERSITY ROTTERDAM P.O. BOX 1738. 3000

More information

Numerical Optimization

Numerical Optimization Linear Programming - Interior Point Methods Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Example 1 Computational Complexity of Simplex Algorithm

More information

ECONOMETRIC INSTITUTE COMPLEXITY OF VEHICLE ROUTING AND SCHEDULING PROBLEMS. J.K. LENSTRA and A.H.G. RINNOOY KAN REPORT 7919/0

ECONOMETRIC INSTITUTE COMPLEXITY OF VEHICLE ROUTING AND SCHEDULING PROBLEMS. J.K. LENSTRA and A.H.G. RINNOOY KAN REPORT 7919/0 ECONOMETRIC INSTITUTE COMPLEXITY OF VEHICLE ROUTING AND SCHEDULING PROBLEMS J.K. LENSTRA and A.H.G. RINNOOY KAN REPORT 7919/0 ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS COMPLEXITY

More information

LOWER BOUNDS FOR THE MAXIMUM NUMBER OF SOLUTIONS GENERATED BY THE SIMPLEX METHOD

LOWER BOUNDS FOR THE MAXIMUM NUMBER OF SOLUTIONS GENERATED BY THE SIMPLEX METHOD Journal of the Operations Research Society of Japan Vol 54, No 4, December 2011, pp 191 200 c The Operations Research Society of Japan LOWER BOUNDS FOR THE MAXIMUM NUMBER OF SOLUTIONS GENERATED BY THE

More information

Properties of a Simple Variant of Klee-Minty s LP and Their Proof

Properties of a Simple Variant of Klee-Minty s LP and Their Proof Properties of a Simple Variant of Klee-Minty s LP and Their Proof Tomonari Kitahara and Shinji Mizuno December 28, 2 Abstract Kitahara and Mizuno (2) presents a simple variant of Klee- Minty s LP, which

More information

1 date: February 23, 1998 le: papar1. coecient pivoting rule. a particular form of the simplex algorithm.

1 date: February 23, 1998 le: papar1. coecient pivoting rule. a particular form of the simplex algorithm. 1 date: February 23, 1998 le: papar1 KLEE - MINTY EAMPLES FOR (LP) Abstract : The problem of determining the worst case behavior of the simplex algorithm remained an outstanding open problem for more than

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Single Machine Scheduling with a Non-renewable Financial Resource

Single Machine Scheduling with a Non-renewable Financial Resource Single Machine Scheduling with a Non-renewable Financial Resource Evgeny R. Gafarov a, Alexander A. Lazarev b Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65, 117997

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region

A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region Eissa Nematollahi Tamás Terlaky January 5, 2008 Abstract By introducing some redundant Klee-Minty constructions,

More information

Single Machine Scheduling with Generalized Total Tardiness Objective Function

Single Machine Scheduling with Generalized Total Tardiness Objective Function Single Machine Scheduling with Generalized Total Tardiness Objective Function Evgeny R. Gafarov a, Alexander A. Lazarev b Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya

More information

The Ellipsoid (Kachiyan) Method

The Ellipsoid (Kachiyan) Method Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note: Ellipsoid Method 1 The Ellipsoid (Kachiyan) Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

More information

RHf73N,tit,f: ERASMUS UNIVERSITY ROTTERDAM,- P.O. BOX DR ROTTERDAM - THE NETHERLANDS

RHf73N,tit,f: ERASMUS UNIVERSITY ROTTERDAM,- P.O. BOX DR ROTTERDAM - THE NETHERLANDS RHf73N,tit,f: v-)13/e i'anni NI FOLIVVTION OF AGRICULTUR CONOM ICS L,ṟor *-; i 1885 ON THE RELATIONSHIP BETWEEN REVANKAR'S AND LU-FLETCHER'S PRODUCTION FUNCTION P.M.C. DE BOER \REPORT 8513/E ERASMUS UNIVERSITY

More information

The maximum edge biclique problem is NP-complete

The maximum edge biclique problem is NP-complete The maximum edge biclique problem is NP-complete René Peeters Department of Econometrics and Operations Research Tilburg University The Netherlands April 5, 005 File No. DA5734 Running head: Maximum edge

More information

Polynomiality of Linear Programming

Polynomiality of Linear Programming Chapter 10 Polynomiality of Linear Programming In the previous section, we presented the Simplex Method. This method turns out to be very efficient for solving linear programmes in practice. While it is

More information

Complexity analysis of job-shop scheduling with deteriorating jobs

Complexity analysis of job-shop scheduling with deteriorating jobs Discrete Applied Mathematics 117 (2002) 195 209 Complexity analysis of job-shop scheduling with deteriorating jobs Gur Mosheiov School of Business Administration and Department of Statistics, The Hebrew

More information

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 and Mixed Integer Programg Marco Chiarandini 1. Resource Constrained Project Model 2. Mathematical Programg 2 Outline Outline 1. Resource Constrained

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 22: Linear Programming Revisited Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/ School

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

Improved Algorithms for Machine Allocation in Manufacturing Systems

Improved Algorithms for Machine Allocation in Manufacturing Systems Improved Algorithms for Machine Allocation in Manufacturing Systems Hans Frenk Martine Labbé Mario van Vliet Shuzhong Zhang October, 1992 Econometric Institute, Erasmus University Rotterdam, the Netherlands.

More information

An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables

An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables Tomonari Kitahara and Shinji Mizuno February 2012 Abstract Kitahara

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research (Week 4: Linear Programming: More on Simplex and Post-Optimality) José Rui Figueira Instituto Superior Técnico Universidade de Lisboa (figueira@tecnico.ulisboa.pt) March

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts? A. A. Ageev and M. I. Sviridenko Sobolev Institute of Mathematics pr. Koptyuga 4, 630090, Novosibirsk, Russia fageev,svirg@math.nsc.ru

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

On Some Euclidean Clustering Problems: NP-Hardness and Efficient Approximation Algorithms

On Some Euclidean Clustering Problems: NP-Hardness and Efficient Approximation Algorithms On Some Euclidean Clustering Problems: NP-Hardness and Efficient Approximation Algorithms Alexander Kel manov Sobolev Institute of Mathematics Acad. Koptyug avenue, 4, 630090 Novosibirsk, Russia Novosibirsk

More information

Approximation Schemes for Scheduling on Parallel Machines

Approximation Schemes for Scheduling on Parallel Machines Approximation Schemes for Scheduling on Parallel Machines Noga Alon Yossi Azar Gerhard J. Woeginger Tal Yadid Abstract We discuss scheduling problems with m identical machines and n jobs where each job

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

Lecture 15: October 15

Lecture 15: October 15 10-725: Optimization Fall 2012 Lecturer: Barnabas Poczos Lecture 15: October 15 Scribes: Christian Kroer, Fanyi Xiao Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

A Simpler and Tighter Redundant Klee-Minty Construction

A Simpler and Tighter Redundant Klee-Minty Construction A Simpler and Tighter Redundant Klee-Minty Construction Eissa Nematollahi Tamás Terlaky October 19, 2006 Abstract By introducing redundant Klee-Minty examples, we have previously shown that the central

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Min Ji a, b, 2 Yong He b, 3 T.C.E. Cheng c, 4 a College of Computer Science & Information Engineering, Zhejiang

More information

Low-Complexity Algorithms for Sequencing Jobs with a Fixed Number of Job-Classes

Low-Complexity Algorithms for Sequencing Jobs with a Fixed Number of Job-Classes Low-Complexity Algorithms for Sequencing Jobs with a Fixed Number of Job-Classes Jack A.A. van der Veen Nijenrode University - The Netherlands School of Business Straatweg 25, 3621 BG Breukelen The Netherlands

More information

Absolute value equations

Absolute value equations Linear Algebra and its Applications 419 (2006) 359 367 www.elsevier.com/locate/laa Absolute value equations O.L. Mangasarian, R.R. Meyer Computer Sciences Department, University of Wisconsin, 1210 West

More information

POSITIVE SEMIDEFINITE INTERVALS FOR MATRIX PENCILS

POSITIVE SEMIDEFINITE INTERVALS FOR MATRIX PENCILS POSITIVE SEMIDEFINITE INTERVALS FOR MATRIX PENCILS RICHARD J. CARON, HUIMING SONG, AND TIM TRAYNOR Abstract. Let A and E be real symmetric matrices. In this paper we are concerned with the determination

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden March 9, 2017 1 Preamble Our first lecture on smoothed analysis sought a better theoretical

More information

On a Quadratic Euclidean Problem of Vector Subset Choice: Complexity and Algorithmic Approach

On a Quadratic Euclidean Problem of Vector Subset Choice: Complexity and Algorithmic Approach On a Quadratic Euclidean Problem of Vector Subset Choice: Complexity and Algorithmic Approach Anton Eremeev,2, Alexander Kel manov,3, and Artem Pyatkin,3 Sobolev Institute of Mathematics, 4 Koptyug Ave.,

More information

University of Twente. Faculty of Mathematical Sciences. Scheduling split-jobs on parallel machines. University for Technical and Social Sciences

University of Twente. Faculty of Mathematical Sciences. Scheduling split-jobs on parallel machines. University for Technical and Social Sciences Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 217 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

Lecture 9 Tuesday, 4/20/10. Linear Programming

Lecture 9 Tuesday, 4/20/10. Linear Programming UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 9 Tuesday, 4/20/10 Linear Programming 1 Overview Motivation & Basics Standard & Slack Forms Formulating

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Worst Case and Average Case Behavior of the Simplex Algorithm

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Worst Case and Average Case Behavior of the Simplex Algorithm Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE 68588-030 http://www.math.unl.edu Voice: 402-472-373 Fax: 402-472-8466 Topics in Probability Theory and

More information

The Northwest corner rule revisited. Bettina Klinz and Gerhard Woeginger. Project Area(s): Effizient lösbare kombinatorische Optimierungsprobleme

The Northwest corner rule revisited. Bettina Klinz and Gerhard Woeginger. Project Area(s): Effizient lösbare kombinatorische Optimierungsprobleme FoSP Algorithmen & mathematische Modellierung FoSP Forschungsschwerpunkt Algorithmen und mathematische Modellierung The Northwest corner rule revisited Bettina Klinz and Gerhard Woeginger Project Area(s):

More information

On the Number of Solutions Generated by the Simplex Method for LP

On the Number of Solutions Generated by the Simplex Method for LP Workshop 1 on Large Scale Conic Optimization IMS (NUS) On the Number of Solutions Generated by the Simplex Method for LP Tomonari Kitahara and Shinji Mizuno Tokyo Institute of Technology November 19 23,

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden November 5, 2014 1 Preamble Previous lectures on smoothed analysis sought a better

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Knapsack Feasibility as an Absolute Value Equation Solvable by Successive Linear Programming

Knapsack Feasibility as an Absolute Value Equation Solvable by Successive Linear Programming Optimization Letters 1 10 (009) c 009 Springer. Knapsack Feasibility as an Absolute Value Equation Solvable by Successive Linear Programming O. L. MANGASARIAN olvi@cs.wisc.edu Computer Sciences Department

More information

The Ellipsoid Algorithm

The Ellipsoid Algorithm The Ellipsoid Algorithm John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA 9 February 2018 Mitchell The Ellipsoid Algorithm 1 / 28 Introduction Outline 1 Introduction 2 Assumptions

More information

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization Department of Computer Science Series of Publications C Report C-2004-2 The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization Taneli Mielikäinen Esko Ukkonen University

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Notations. For any hypergraph H 2 V we have. H + H = and H + H = 2 V.

Notations. For any hypergraph H 2 V we have. H + H = and H + H = 2 V. Notations For any hypergraph H 2 V we have H + H = and H + H = 2 V. Notations For any hypergraph H 2 V we have H + H = and H + H = 2 V. Given a Sperner hypergraph H, we can view it as the family of minimal

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

A Strongly Polynomial Simplex Method for Totally Unimodular LP

A Strongly Polynomial Simplex Method for Totally Unimodular LP A Strongly Polynomial Simplex Method for Totally Unimodular LP Shinji Mizuno July 19, 2014 Abstract Kitahara and Mizuno get new bounds for the number of distinct solutions generated by the simplex method

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev, m.uetz}@ke.unimaas.nl

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs Advanced Mathematical Programming IE417 Lecture 24 Dr. Ted Ralphs IE417 Lecture 24 1 Reading for This Lecture Sections 11.2-11.2 IE417 Lecture 24 2 The Linear Complementarity Problem Given M R p p and

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

On the number of distinct solutions generated by the simplex method for LP

On the number of distinct solutions generated by the simplex method for LP Retrospective Workshop Fields Institute Toronto, Ontario, Canada On the number of distinct solutions generated by the simplex method for LP Tomonari Kitahara and Shinji Mizuno Tokyo Institute of Technology

More information

On Preemptive Scheduling on Uniform Machines to Minimize Mean Flow Time

On Preemptive Scheduling on Uniform Machines to Minimize Mean Flow Time On Preemptive Scheduling on Uniform Machines to Minimize Mean Flow Time Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus kravch@newman.bas-net.by

More information

Lecture 5: Computational Complexity

Lecture 5: Computational Complexity Lecture 5: Computational Complexity (3 units) Outline Computational complexity Decision problem, Classes N P and P. Polynomial reduction and Class N PC P = N P or P = N P? 1 / 22 The Goal of Computational

More information

Math 5593 Linear Programming Week 1

Math 5593 Linear Programming Week 1 University of Colorado Denver, Fall 2013, Prof. Engau 1 Problem-Solving in Operations Research 2 Brief History of Linear Programming 3 Review of Basic Linear Algebra Linear Programming - The Story About

More information

Integer and Combinatorial Optimization: Introduction

Integer and Combinatorial Optimization: Introduction Integer and Combinatorial Optimization: Introduction John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Introduction 1 / 18 Integer and Combinatorial Optimization

More information

CS 435, 2018 Lecture 3, Date: 8 March 2018 Instructor: Nisheeth Vishnoi. Gradient Descent

CS 435, 2018 Lecture 3, Date: 8 March 2018 Instructor: Nisheeth Vishnoi. Gradient Descent CS 435, 2018 Lecture 3, Date: 8 March 2018 Instructor: Nisheeth Vishnoi Gradient Descent This lecture introduces Gradient Descent a meta-algorithm for unconstrained minimization. Under convexity of the

More information

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Polyhedral Approach to Integer Linear Programming Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh 1 / 30 Brief history First Algorithms Polynomial Algorithms Solving

More information

Modified Differential Evolution for Nonlinear Optimization Problems with Simple Bounds

Modified Differential Evolution for Nonlinear Optimization Problems with Simple Bounds Modified Differential Evolution for Nonlinear Optimization Problems with Simple Bounds Md. Abul Kalam Azad a,, Edite M.G.P. Fernandes b a Assistant Researcher, b Professor Md. Abul Kalam Azad Algoritmi

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

Worst case analysis for a general class of on-line lot-sizing heuristics

Worst case analysis for a general class of on-line lot-sizing heuristics Worst case analysis for a general class of on-line lot-sizing heuristics Wilco van den Heuvel a, Albert P.M. Wagelmans a a Econometric Institute and Erasmus Research Institute of Management, Erasmus University

More information

Throughput Optimization in Single and Dual-Gripper Robotic Cells

Throughput Optimization in Single and Dual-Gripper Robotic Cells Throughput Optimization in Single and Dual-Gripper Robotic Cells U.V. Manoj; manojuv@tamu.edu College of Engineering, Texas A&M University, College Station, TX Chelliah Sriskandarajah Mays Business School,

More information

Basic Scheduling Problems with Raw Material Constraints

Basic Scheduling Problems with Raw Material Constraints Basic Scheduling Problems with Raw Material Constraints Alexander Grigoriev, 1 Martijn Holthuijsen, 2 Joris van de Klundert 2 1 Faculty of Economics and Business Administration, University of Maastricht,

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 19: Midterm 2 Review Prof. John Gunnar Carlsson November 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 22, 2010 1 / 34 Administrivia

More information

MATH 4211/6211 Optimization Linear Programming

MATH 4211/6211 Optimization Linear Programming MATH 4211/6211 Optimization Linear Programming Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 The standard form of a Linear

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

Fast Algorithms for LAD Lasso Problems

Fast Algorithms for LAD Lasso Problems Fast Algorithms for LAD Lasso Problems Robert J. Vanderbei 2015 Nov 3 http://www.princeton.edu/ rvdb INFORMS Philadelphia Lasso Regression The problem is to solve a sparsity-encouraging regularized regression

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

Integer Equal Flows. 1 Introduction. Carol A. Meyers Andreas S. Schulz

Integer Equal Flows. 1 Introduction. Carol A. Meyers Andreas S. Schulz Integer Equal Flows Carol A Meyers Andreas S Schulz Abstract We examine an NP-hard generalization of the network flow problem known as the integer equal flow problem The setup is the same as a standard

More information

Complexity analysis of the discrete sequential search problem with group activities

Complexity analysis of the discrete sequential search problem with group activities Complexity analysis of the discrete sequential search problem with group activities Coolen K, Talla Nobibon F, Leus R. KBI_1313 Complexity analysis of the discrete sequential search problem with group

More information

4-1 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC

4-1 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC 4-1 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC 2003 2003.09.02.02 4. The Algebraic-Geometric Dictionary Equality constraints Ideals and Varieties Feasibility problems and duality The

More information

Supplementary lecture notes on linear programming. We will present an algorithm to solve linear programs of the form. maximize.

Supplementary lecture notes on linear programming. We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2016 Supplementary lecture notes on linear programming CS 6820: Algorithms 26 Sep 28 Sep 1 The Simplex Method We will present an algorithm to solve linear programs of the form

More information

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form 4.5 Simplex method min z = c T x s.v. Ax = b x 0 LP in standard form Examine a sequence of basic feasible solutions with non increasing objective function value until an optimal solution is reached or

More information

Termination, Cycling, and Degeneracy

Termination, Cycling, and Degeneracy Chapter 4 Termination, Cycling, and Degeneracy We now deal first with the question, whether the simplex method terminates. The quick answer is no, if it is implemented in a careless way. Notice that we

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Complexity of linear programming: outline

Complexity of linear programming: outline Complexity of linear programming: outline I Assessing computational e ciency of algorithms I Computational e ciency of the Simplex method I Ellipsoid algorithm for LP and its computational e ciency IOE

More information

Computing the Norm A,1 is NP-Hard

Computing the Norm A,1 is NP-Hard Computing the Norm A,1 is NP-Hard Dedicated to Professor Svatopluk Poljak, in memoriam Jiří Rohn Abstract It is proved that computing the subordinate matrix norm A,1 is NP-hard. Even more, existence of

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

MAY ECONOMETRIC INSTITUTE SOME COMPUTATIONAL EXPERIMENTS WITH A PRIMAL-DUAL SURROGATE SIMPLEX ALGORITHM. W. van DAM and J. TELGEN REPORT 7828/0

MAY ECONOMETRIC INSTITUTE SOME COMPUTATIONAL EXPERIMENTS WITH A PRIMAL-DUAL SURROGATE SIMPLEX ALGORITHM. W. van DAM and J. TELGEN REPORT 7828/0 1 /4-2 " 2 -a- ECONOMETRIC INSTITUTE SOME COMPUTATIONAL EXPERIMENTS WITH A PRIMAL-DUAL SURROGATE SIMPLEX ALGORITHM (MANN IN trou.r tom OF AGRICULT upk 1to com im ICS L Q'Y 41\4% MAY 21979 W. van DAM and

More information

McMaster University. Advanced Optimization Laboratory. Title: The Central Path Visits all the Vertices of the Klee-Minty Cube.

McMaster University. Advanced Optimization Laboratory. Title: The Central Path Visits all the Vertices of the Klee-Minty Cube. McMaster University Avance Optimization Laboratory Title: The Central Path Visits all the Vertices of the Klee-Minty Cube Authors: Antoine Deza, Eissa Nematollahi, Reza Peyghami an Tamás Terlaky AvOl-Report

More information

Introduction to linear programming using LEGO.

Introduction to linear programming using LEGO. Introduction to linear programming using LEGO. 1 The manufacturing problem. A manufacturer produces two pieces of furniture, tables and chairs. The production of the furniture requires the use of two different

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2010, 2 (1) 28-36 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

Handout 1: Introduction to Dynamic Programming. 1 Dynamic Programming: Introduction and Examples

Handout 1: Introduction to Dynamic Programming. 1 Dynamic Programming: Introduction and Examples SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 1: Introduction to Dynamic Programming Instructor: Shiqian Ma January 6, 2014 Suggested Reading: Sections 1.1 1.5 of Chapter

More information

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees Yoshimi Egawa Department of Mathematical Information Science, Tokyo University of

More information