ON THE NONLINEAR STABILITY BEHAVIOUR OF DISTORTED PLANE COUETTE FLOW. Zhou Zhe-wei (~]~)

Size: px
Start display at page:

Download "ON THE NONLINEAR STABILITY BEHAVIOUR OF DISTORTED PLANE COUETTE FLOW. Zhou Zhe-wei (~]~)"

Transcription

1 Applied Mamatics and Mechanics (English Edition, Vol. 12, No. 5, May 1991) Published by SUT, Shanghai, China ON THE NONLNEAR STABLTY BEHAVOUR OF DSTORTED PLANE COUETTE FLOW Zhou Zhe-wei (~]~) (Shanghai University Technology, Shanghai nstitute Applied Mamatics and Mechanics, Shanghai) (Received June 10, 1990; Communicated by Chien Wei-zang) This paper discusses nonlinear stability behaviour distorted plane Couette flow to 2-dimensional disturbances, and compares it with that distorted plane Poiseuille flow. The one-dimensional The results show problem that plane Couette motion flow is more a rigid unstable flying than plate plane under Poiseuille explosive flow attack to has an analytic finite,amplitude solution only disturbances. when polytropic index products equals to three. n behavior Key reflection words shock distorted in plane explosive Couette products, flow, distorted and applying plane Poiseuille small parameter flow, purterbation method, an analytic, nonlinear first-order stability approximate behaviour solution is obtained for problem flying plate driven by various high explosives with polytropic indices or than but nearly equal to three. Final. ntroduction velocities flying plate obtained agree very well with numerical results by computers. Thus an analytic formula with two parameters high explosive (i.e. velocity and polytropic index) n for estimation experimental observations, velocity flying both plate plane is established. Poiseuille flow and plane Couette flow become unstable when Reynolds number is about 1000, but in stability analysis, se two flows belong in different classifications, instability plane Poiseuille flow belongs in subcritical range, and plane Couette flow, as well as pipe Poiseuille flow, belongs in bifurcation from infinity[q,pl. The failure Explosive to obtain driven flying-plate critical Reynolds technique number ffmds for its important latter use two in kinds study flow behavior brings much materials difficulties under to nonlinear intense impulsive stability loading, analysis. shock synsis diamonds, and explosive welding and cladding n reference metals. [1], The method author estimation suggested a hydrodynamic flyor velocity and stability way ory raising distorted it are questions laminar flow, common and presented interest. a kind distortion priles reflecting nonlinear interaction between various disturbances. Under By assumptions using such distortions, one-dimensional th paper plane discussed stability and rigid problem flying plate, parallel normal shear approach solving problem motion flyor is to solve following system equations flows. n linear stability analysis, stability behav.iour plane Poiseuille flow, plane Couette flow governing flow field products behind flyor (Fig. ): and pipe Poiseuille flow are investigated by a uniform method, results indicated that se flows are all linear unstable under circumstances background perturbations. The nonlinear stability behaviours plane Poiseuille flow ap and +u_~_xp pipe + Poiseuille au flow are also discussed, numerical calculations showed some differences au between au se 1 two flows. This paper discusses nonlinear stabifity behaviour plane Couette flow, and finds out that we can make some comparison between as its nonlinear as stability behaviour and that plane Poiseuille flow in spite many.differences. n a--t this paper author discusses in detail such similarities and differences. where. The p, p, Nonlinear S, u are pressure, Evolution density, Equation specific entropy Disturbance and particle velocity Amplitude products respectively, By using with artificial trajectory neutrality R reflected method shock suggested by Pr. wave Zhou D as a Heng, boundary nonlinear and trajectory evolution F equation flyor as anor disturbance boundary. amplitude Both can are unknown; be obtained as position follows: R and state parameters on it are governed by flow field central rarefaction wave behind wave D and by initial stage motion flyor also; 439 position F and state parameters products

2 440 Zhou Zhe-wei or da = (Alle + A,le 2 + A31e s + A,le s + A,le*)a dt + ( A,eZ + Asse3 + A,3e')aS + A,Be'a5 (2.1) d (ca) = (A,e + A~xe ~ + A~le 3 + A,le') (ca) dt + (A,3 + As3e + A,se ~) (ca) 8 + A,6(ea)5 ----Cl (ca) + C~(ea) s + Cs(ea) ~ = f (ca) (2.2) where C t, C 2, C 3 are constants determined by numerical calculations, C L is just linear growth rate dc~ disturbance amplitude. When d(ea)/dt=o, we obtain critical value (ca)c, 9 When 5th order term (ca) is involved, /(ca) =0 becomes a quadratic algebraic equation (ca) z, so in general situation, it has two real roots (or two equivalent real roots), we do not consider complex roots and negative real roots. The one-dimensional problem motion a rigid flying plate under explosive attack has an analytic f(ea) solution may have only two when situations polytropic as in figure index 1, arrow indicates products equals direction to three. n development disturbance amplitude (ca) with time, behavior reflection shock in explosive products, and applying small parameter pur- i(~a) /(ca) terbation method, an analytic, first-order approximate solution is obtained for problem flying plate driven by various high explosives with polytropic indices or than but nearly equal to three. Final velocities flying plate obtained agree very well with numerical results by computers. Thus an analytic formula with two parameters high explosive (i.e. velocity and polytropic index) for estimation velocity flying plate is established. a/(~a) d(ea) Fig. 1 Situation /(ca) Explosive driven flying-plate technique ffmds its important use in study behavior When 0, ~>0, critical amplitude obtained is threshold amplitude, above which materials under intense impulsive loading, shock synsis diamonds, and explosive welding and cladding metals. The method a/(ea) estimation [ flyor velocity and way raising it are questions disturbance grows; when d(ea) or <0, critical amplitude obtained is equilibrium common interest. Under assumptions one-dimensional plane and rigid flying plate, normal amplitude, disturbance amplitude will approach this value. We denote threshold amplitude by approach solving problem motion flyor is to solve following system equations governing flow field products behind flyor (Fig. ): Because ap +u_~_xp + au d( ea ) =C, + 3Cz( ea )~ + scs( ea )' (2.3) When two unequal positive real roots are obtained, if C3>0, larger root is threshold amplitude, smaller root is equilibrium a--t amplitude; ifc 3 <0, situation is opposite. When only one positive real root is obtained, we have to calculate (2.3).. Nonlinear Development Linear Neutral Disturbances where p, p, S, u are pressure, density, specific entropy and particle velocity products respectively, n reference with [], trajectory we changed R reflected amplitude shock distortion priles wave D to as make a boundary flow and into trajectory subcritical F or supercriticai flyor as anor range, boundary. and see Both variation are unknown; coefficients position in R nonlinear and state evolution parameters equation on (2.3). it are Here governed we use by this method flow field to calculate central plane rarefaction Couette wave flow, behind and compare results wave D with and those by initial plane stage Poiseuille motion flow flyor under also; same position conditions. F and state parameters products cr

3 Nonlinear Stability Distorted Plane Couette Flow 441 At first stage, we select an amplitude some distortion prile to make linear growth rate disturbance in plane Couette flow and plane Poiseuille flow vanish, namely C z = 0. The numerical results se two flows under various parameters are showed in Table!. Table Nonlinear stability behaviour linear neutral perturbations R now 6 C2 Cs lea) o, (eo)%r Couette X X10 -a Poiseuihe ~ 4.804X 101 Couette x X 10 -a Poiseuille ~ Coutttc x X 10 -a Poiseuille X 10 -'3 Couette o X 109 ~ X 10 -s The one-dimensional problem motion a rigid flying plate under explosive attack has Poiseuil/e o x 10 -z an analytic solution only when polytropic index products equals to three. n We can see that plane Couette flow requires Stronger modification to make disturbance behavior reflection shock in explosive products, and applying small parameter purterbation linear neutral, method, indicating an analytic, that first-order plane Couette approximate flow is solution more stable is obtained than for plane problem PoiseuiUe flying flow to plate infinitesimal driven by disturbances. various high explosives After such with modification, polytropic although indices or than disturbances but nearly are equal linear to three. neutral, Final nonlinear velocities development flying plate are obtained different. agree n plane very Couette well with flow, numerical we can obtain results a by threshold computers. amplitude Thus an analytic order formula magnitude with two parameters l0-3 under several high explosive Reynolds (i.e. numbers. But velocity in plane and Poiseuille polytropic flow, index) when for R=1500, estimation modification velocity flying plate mean is established. velocity is strong, we can obtain a threshold amplitude order magnitude 10-2, when Reynolds number is higher, modification mean velocity is weaker, we can only obtain an equilibrium amplitude or even a decaying amplitude, which shows that nonlinear development disturbances depends more Explosive driven flying-plate technique ffmds its important use in study behavior upon intensity modification on mean velocity than upon influence viscosity. materials under intense impulsive loading, shock synsis diamonds, and explosive welding and cladding V. Nonlinear metals. The Development method estimation Linear flyor Non-Neutral velocity and Disturbances way raising it are questions common interest. The Under results assumptions in last section one-dimensional show a tendency plane that and nonlinear rigid flying development plate, normal approach disturbances solving se two problem flows relate motion much to flyor amplitude is to solve distortion following priles. system Here we equations compare governing results flow se field two flows under products same behind Reynolds flyor numbers (Fig. ): and same modification intensity. We first calculate plane Couette flow, change amplitude distortion priles to make it in subcritical or supercritical range, n calculate plane Poiseuitle flow under same ap +u_~_xp + au parameters: From results we can see, in lower Reynolds y number =0, (R = 1500), both linear growth rate and nonlinear development disturbance in plane Poiseuille flow are more unstable than those in plane Couette flow. When Reyfiolds a--t number increases (R~ 1800), things are different. Although linear growth rate disturbance in plane Poiseuille is more unstable than that in plane Couette flow, threshold amplitude disturbance in plane Poiseuille flow is larger than that in plane where Couette p, p, flow, S, u which are pressure, is because density, in plane specific Poiseuille entropy flow, and particle coefficient velocity C 3 5th order products term respectively, nonlinear evolution with equation trajectory R disturbance reflected shock amplitude is less than wave zero, D as a but boundary in plane and Couette trajectory flow, C 3 is F greater flyor than as anor zero. So boundary. plane Couette Both are flow unknown; is more unstable position than plane R and Poiseuille state flow para- to meters finite-amplitude on it are governed disturbances. by flow field central rarefaction wave behind wave D and by initial stage motion flyor also; position F and state parameters products

4 442 Zhou Zhe-wei V. Discussions Through numerical calculation on nonlinear stability behaviour plane Couette flow, we obtain result that plane Couette flow is more unstable to finite-amplitude disturbances than plane Poiseuille flow. The result shows that growth rate infinitesimal disturbance would not decide ultimate stability behaviour flow, behaviour depends furr on wher nonlinear action will destabilize (C 2, C 3 > 0) or stabilize (C v C 3 < 0) fow. n se two different flows, we find some results that linear growth rate is large but threshold amplitude finite- amplitude disturbance is also-large. t is worth investigating wher in same flow such results can be found. So far mode whose decaying rate is minimum in linear stability analysis has been selected as fundamental mode in nonlinear stability analysis. Perhaps range mode selecting could be enlarged when searching most unstable situations. n reference [1], we suggested that instability flow results from occurrence reflections on distortion priles, namely, instability is non-viscous. From numerical results this paper, we can also see that when Reynolds number is rar small (R = 1500), linear growth rate is low, and threshold amplitude is large, linear and nonlinear action have same stabilizing The one-dimensional tendency; when problem Reynolds number motion is rar a rigid large, flying namely, plate under influence explosive attack viscosity has is an analytic solution only when polytropic index products equals to three. n small, action distortions dominates, The curvature mean velocity in plane Poiseuille flow is ~" = 2 and in plane Couette flow is ~" = 0, thus we can assume it is strong variation behavior reflection shock in explosive products, and applying small parameter purterbation curvature method, and an analytic, occurrence first-order reflections approximate on solution distortion is obtained priles that for make problem non-viscous flying plate instability driven behaviour by various in high plane explosives Couette with flow polytropic more remarkable indices and or than threshold but nearly amplitude equal to three. finite- Final amplitude velocities disturbance flying smaller. plate obtained agree very well with numerical results by computers. Thus an Table analytic 2 Nonlinear formula stability with two behaviour parameters linear high non-neutral explosive perturbations (i.e. velocity and polytropic index) for estimation velocity flying plate is established. cz~l, 1 R 6 flow C, C2 C, (ca) c~ (ca)%,. 1 Couette -- t, 1470X X10 to ~ 1.350)<10-3 Explosive O. driven 0098 flying-plate technique ffmds its important use in study behavior Poiseuilc , materials under intense impulsive loading, shock synsis diamonds, and explosive welding and 1500 cladding metals. The method Couelt~. estimation X 10 --~ flyor velocity and X way 10 lo 1.697X raising 0 it -4 are questions. 318X common interest. Poiseuille Under assumptions ~ _ one-dimensional plane and rigid flying plate, normal approach solving problem Couette --0,1495X motion 10-: flyor is to solve X following 109 system equations X governing flow field products behind flyor (Fig. ): 1800 T O Poiseui] r x x io -~ 2.671Xi0 1 Couettc O. 1549X lo-a -27t X 10 ~ 2.406X X i0-3 ap +u_~_xp + Poiseui]]e "X X X 0 -z Couette X 0 --~ X X Poiseuillc X X X a--t Couette o. 1262x x O g 2.336X lo x Poiseuitle x 10 -z X X 0 -z Couettc ] X 0 -~ x x 0-~ respectively, with trajectory Poiscuillr R X reflected 0 -z shock wave D 1.730X as a boundary 10 -z 1.685X and 0-2 trajectory 2500 F flyor as anor boundary. Both are unknown; position R and state parameters on it are governed Couette by flow u.3300x10-3 field central rarefaction x wave r v behind 3.959x x10 wave i au where p, p, S, u are pressure, density, specific entropy and particle velocity products D and by initial stage motion flyor also; position F and state parameters products Poiseuile x 0 -j 9, X 10 -z 1.795X lo -=

5 Nonlinear Stability Distorted Plane Couette Flow 443 This paper is under financial support Science Foundation Shanghai University Technology. References [ 1 ] Zhou Zhe-wei, On stability distorted laminar flow, Ph.D. Disertation Shanghai University Technology, July (1987), partly published in Applied Mamatics and Mechanics, 10, 2, 3, 4 (1989). [ 2 ] Kao, T.W. and C. Park, Experimental investigations stability channel flow: Part 1. Flow a single liquid in a rectangular channel, J. Fluid Mech., 43 (1970), 145. [3] Reichardt, H., Gesetzm~ssigkeiten der geradlinigen turbulenten Couette Str~Smung, Mitteilungen aus den Max-Planck lnstitute fiir Str~mungsforschung und der Aerodynamischen Versuchsanstalt, 22 (1959). [4 ] Rosenblat, S. and S.H. Davis, Bifurcation from infinity, SAM J. Appl. Math., 37, 1 (1979), 1. [ 5 ] Zhou, H., On nonlinear ory plane Poiseuille flow in subcritical range, Proc. R. Soc. The London, one-dimensional A381 (1982), problem 407. motion a rigid flying plate under explosive attack has an analytic solution only when polytropic index products equals to three. n behavior reflection shock in explosive products, and applying small parameter purterbation method, an analytic, first-order approximate solution is obtained for problem flying plate driven by various high explosives with polytropic indices or than but nearly equal to three. Final velocities flying plate obtained agree very well with numerical results by computers. Thus an analytic formula with two parameters high explosive (i.e. velocity and polytropic index) for estimation velocity flying plate is established. Explosive driven flying-plate technique ffmds its important use in study behavior materials under intense impulsive loading, shock synsis diamonds, and explosive welding and cladding metals. The method estimation flyor velocity and way raising it are questions common interest. Under assumptions one-dimensional plane and rigid flying plate, normal approach solving problem motion flyor is to solve following system equations governing flow field products behind flyor (Fig. ): ap +u_~_xp + au as a--t as where p, p, S, u are pressure, density, specific entropy and particle velocity products respectively, with trajectory R reflected shock wave D as a boundary and trajectory F flyor as anor boundary. Both are unknown; position R and state parameters on it are governed by flow field central rarefaction wave behind wave D and by initial stage motion flyor also; position F and state parameters products

A FREE RECTANGULAR PLATE ON ELASTIC FOUNDATION. Cheng Xiang-sheng (~ ~-~) ( Tongji University, Shanghai.)

A FREE RECTANGULAR PLATE ON ELASTIC FOUNDATION. Cheng Xiang-sheng (~ ~-~) ( Tongji University, Shanghai.) Applied Mamatics Mechanics (English Edition, Vol. 13, No. 10, Oct. 1992) Published by SUT, Shanghai, China A FREE RECTANGULAR PLATE ON ELASTIC FOUNDATION Cheng Xiang-sheng (~ ~-~) ( Tongji University,

More information

FIRST-ORDER PERTURBATION SOLUTION TO THE COMPLEX EIGENVALUES. Li Ji-ming (~ji:l~fj) Wang Wei (3_ ~ ) (Zhengzhou Institute of Technology, Zhengzhou)

FIRST-ORDER PERTURBATION SOLUTION TO THE COMPLEX EIGENVALUES. Li Ji-ming (~ji:l~fj) Wang Wei (3_ ~ ) (Zhengzhou Institute of Technology, Zhengzhou) Applied Mamatics Mechanics (English Edition, Vol.8, No.6, June 1987) Published by SUT, Shanghai, China FIRST-ORDER PERTURBATION SOLUTION TO THE COMPLEX EIGENVALUES Li Ji-ming (~ji:l~fj) Wang Wei (3_ ~

More information

WAVELET-NUMERICAL METHOD IN CRACK ANALYSIS *

WAVELET-NUMERICAL METHOD IN CRACK ANALYSIS * Applied Mamatics and Mechanics (English Edition, Vol 21, No 10, Oct 2000) Published by Shanghai University, Shanghai, China Article ID: 0253-4827 (2000) 10-1139-06 WAVELET-NUMERICAL METHOD IN CRACK ANALYSIS

More information

CONSERVATION INTEGRALS AND DETERMINATION OF HRR SINGULARITY. Wang Ke-ren (:Ej~_Z) Wang Tzu-chiang (71: ~1~[)

CONSERVATION INTEGRALS AND DETERMINATION OF HRR SINGULARITY. Wang Ke-ren (:Ej~_Z) Wang Tzu-chiang (71: ~1~[) Applied Mathematics and Mechanics (English Edition, ol.8, No.9, Sep 1987) Published by SUT, Shanghai, China CONSERATION INTEGRALS AND DETERMINATION OF HRR SINGULARITY FIELDS Wang Ke-ren (:Ej~_Z) Wang Tzu-chiang

More information

COMPARISON OF TWO METHODS IN SATELLITE FORMATION FLYING *

COMPARISON OF TWO METHODS IN SATELLITE FORMATION FLYING * Applied Mamatics and Mechanics (English Edition, Vol 24, No 8, Aug 2003) Published by Shanghai University, Shanghai, China Article ID: 0253-4827 (2003) 08-0902-07 COMPARISON OF TWO METHODS IN SATELLITE

More information

STATISTIC MODELING OF THE CREEP BEHAVIOR OF METAL MATRIX COMPOSITES BASED ON FINITE ELEMENT ANALYSIS ~ YUE Zhu-feng (~-~t~) 1'2

STATISTIC MODELING OF THE CREEP BEHAVIOR OF METAL MATRIX COMPOSITES BASED ON FINITE ELEMENT ANALYSIS ~ YUE Zhu-feng (~-~t~) 1'2 Applied Mamatics Mechanics (English Edition, Vol 23, No 4, Apr 2002) Published by Shanghai University, Shanghai, China Article ID: 0253-4827(2002)04-0421-14 STATISTIC MODELING OF THE CREEP BEHAVIOR OF

More information

BLOWUP PROPERTIES FOR A CLASS OF NONLINEAR DEGENERATE DIFFUSION EQUATION WITH NONLOCAL SOURCE*

BLOWUP PROPERTIES FOR A CLASS OF NONLINEAR DEGENERATE DIFFUSION EQUATION WITH NONLOCAL SOURCE* Applied Mamatics Mechanics (English Edition, Vol 24, No 11, Nov. 2003) Published by Shanghai University, Shanghai, China Article ID: 0253-4827(2003) 11-1362-07 BLOWUP PROPERTIES FOR A CLASS OF NONLINEAR

More information

(English Edition, Vol. 14, No. 3, Mar. 1993) A FINITE DIFFERENCE METHOD AT ARBITRARY MESHES FOR THE BENDING OF PLATES WITH VARIABLE THICKNESS

(English Edition, Vol. 14, No. 3, Mar. 1993) A FINITE DIFFERENCE METHOD AT ARBITRARY MESHES FOR THE BENDING OF PLATES WITH VARIABLE THICKNESS i Applied Mathematics and Mechanics (English Edition, Vol. 14, No. 3, Mar. 1993) Published by SUT, Shanghai, China A FINITE DIFFERENCE METHOD AT ARBITRARY MESHES FOR THE BENDING OF PLATES WITH VARIABLE

More information

Applied Mathematics and Mechanics Published by SU: (English Edition, Vol. 18, No. 7, Jul. 1997) Shanghai, China

Applied Mathematics and Mechanics Published by SU: (English Edition, Vol. 18, No. 7, Jul. 1997) Shanghai, China Applied Mamatics Mechanics Published by SU: (English Edition, Vol. 18, No. 7, Jul. 1997) Shanghai, China A MODIFIED HELLINGER-REISSNER VARIATIONAL FUNCTIONAL INCLUDING ONLY TWO INDEPENDENT VARIABLES FOR

More information

THERMODYNAMIC ENTROPY MODELS OF THE FROZEN-WALL SYSTEM (I) Zan Ting-quan ( ~ ) ( Lanzhou (]niversity. Lanzhou)

THERMODYNAMIC ENTROPY MODELS OF THE FROZEN-WALL SYSTEM (I) Zan Ting-quan ( ~ ) ( Lanzhou (]niversity. Lanzhou) Applied Mamatics and Mechanics (English Edition, Vol.8, No.8, Aug. 1987) Published by SUT, Shanghai, China THERMODYNAMIC ENTROPY MODELS OF THE FROZEN-WALL SYSTEM (I) Zan Ting-quan ( ~ ) ( Lanzhou (]niversity.

More information

BOUNDARY ELEMENT METHOD FOR SOLVING DYNAMICAL RESPONSE OF VISCOEI]ASTIC THIN I~LATE (I)* Ding Rui (7 ~:)~ Zhu Zhengyou (~i~)": Cheng Changjun (~)":

BOUNDARY ELEMENT METHOD FOR SOLVING DYNAMICAL RESPONSE OF VISCOEI]ASTIC THIN I~LATE (I)* Ding Rui (7 ~:)~ Zhu Zhengyou (~i~): Cheng Changjun (~): Applied Mamatics and Mechanics (English Edition, Vol. 18, No. 3, Mar. 1997) Published by SU, Shanghai, China BOUNDARY ELEMENT METHOD FOR SOLVING DYNAMICAL RESPONSE OF VISCOEI]ASTIC THIN I~LATE (I)* Ding

More information

NUMERICAL SIMULATION OF WING-BODY JUNCTION TURBULENCE FLOW. IChm,~ Sbtp S~'icntilh" Rc.seurJ~ Centrr. ~luxi. Jiangsu)

NUMERICAL SIMULATION OF WING-BODY JUNCTION TURBULENCE FLOW. IChm,~ Sbtp S~'icntilh Rc.seurJ~ Centrr. ~luxi. Jiangsu) Applied Mamatics and Mechanics [English Edition, Vol 14, No6, Jun 1993) Published by SUT, Shanghai, China NUMERICAL SIMULATION OF WING-BODY JUNCTION TURBULENCE FLOW Wang Xi-liang (t:~t~) Hc Mo-qin (("I

More information

A MICROSCOPIC DAMAGE MODEL CONSIDERING THE CHANGE OF VOID SHAPE AND APPLICATION IN THE VOID CLOSING. Zhu Ming (J~ ~) Jin Quan-lin (~Jj~]~k)

A MICROSCOPIC DAMAGE MODEL CONSIDERING THE CHANGE OF VOID SHAPE AND APPLICATION IN THE VOID CLOSING. Zhu Ming (J~ ~) Jin Quan-lin (~Jj~]~k) Applied Mamatics and Mechanics (English Edition, Voi. 13, No. 8, Aug. 1992) Published by SUT, Shanghai, China A MICROSCOPIC DAMAGE MODEL CONSIDERING THE CHANGE OF VOID SHAPE AND APPLICATION IN THE VOID

More information

SIMPLIFICATION OF FREQUENCY EQUATION OF MULTILAYERED CYLINDERS AND SOME RECURSION OF BESSEL FUNCTIONS

SIMPLIFICATION OF FREQUENCY EQUATION OF MULTILAYERED CYLINDERS AND SOME RECURSION OF BESSEL FUNCTIONS Applied Mathematics Mechanics (English Edition, Vol. 20, No. 3, Mar. 1999) Published by SU, Shanghai, China SIMPLIFICATION OF FREQUENCY EQUATION OF MULTILAYERED CYLINDERS AND SOME RECURSION FORMULAE OF

More information

THE SOLUTION OF A CRACK EMANATING FROM AN ARBITRARY HOLE BY BOUNDARY COLLOCATION METHOD. Wang Yuan-han (SE::~Y.)

THE SOLUTION OF A CRACK EMANATING FROM AN ARBITRARY HOLE BY BOUNDARY COLLOCATION METHOD. Wang Yuan-han (SE::~Y.) Applied amatics echanics (English Edition, Voi. 11, No. 7, Jul. 1990) Published by SUT, Shanghai, China t THE SOLUTON OF A CRACK EANATNG FRO AN ARBTRARY HOLE BY BOUNDARY COLLOCATON ETHOD Wang Yuan-han

More information

INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION*

INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION* Applied Mamatics Mechanics (English Edition, Vol 22, No 5, May 2001) Published by Shanghai University, Shanghai, China Article ID: 0253-4827(2001)05-0510-10 INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION*

More information

ON THE METHOD OF ORTHOGONALITY CONDITIONS FOR SOLVING THE PROBLEM OF LARGE DEFLECTION OF CIRCULAR PLATE* Dai Shi-qiang ( ~ )

ON THE METHOD OF ORTHOGONALITY CONDITIONS FOR SOLVING THE PROBLEM OF LARGE DEFLECTION OF CIRCULAR PLATE* Dai Shi-qiang ( ~ ) Applied Mathematics and Mechanics (English Edition, Vol. 12, No. 7, July 1991) Published by SUT, Shanghai, China ON THE METHOD OF ORTHOGONALITY CONDITIONS FOR SOLVING THE PROBLEM OF LARGE DEFLECTION OF

More information

CHAOS IN TRANSIENTLY CHAOTIC NEURAL NETWORKS *

CHAOS IN TRANSIENTLY CHAOTIC NEURAL NETWORKS * Applied Mathematics and Mechanics (English Edition, Vol 24, No 8, Aug 2003) Published by Shanghai University, Shanghai, China Article ID : 0253-4827(2003)08-0989-08 CHAOS IN TRANSIENTLY CHAOTIC NEURAL

More information

APPLICATIONS OF WAVELET GALERKIN FEM TO BENDING OF BEAM AND PLATE STRUCTURES*

APPLICATIONS OF WAVELET GALERKIN FEM TO BENDING OF BEAM AND PLATE STRUCTURES* Applied Mamatics Mechanics (English Edition, Vol. 19, No.. 8, Aug~ 1998) Published by SU, Shanghai, China APPLICATIONS OF WAVELET GALERKIN FEM TO BENDING OF BEAM AND PLATE STRUCTURES* Zhou Youhe (,1~J,2.~I1)'

More information

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING 1 INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING M. J. McCready, D. D. Uphold, K. A. Gifford Department of Chemical Engineering University of Notre Dame Notre

More information

THE THEORY OF RELATIVISTIC ANALYTICAL MECHANICS OF THE ROTATIONAL SYSTEMS* Luo Shaokai (~)~

THE THEORY OF RELATIVISTIC ANALYTICAL MECHANICS OF THE ROTATIONAL SYSTEMS* Luo Shaokai (~)~ Applied Mathematics and Mechanics (English Edition, Vol. 19, No. 1, Jan. 1998) Published by SU, Shanghai, China THE THEORY OF RELATIVISTIC ANALYTICAL MECHANICS OF THE ROTATIONAL SYSTEMS* Luo Shaokai (~)~

More information

THE EXPLICIT SOLUTION OF THE MATRIX EQUATION AX-XB = C* the memory of Prof. Guo Zhonghcng. Chen Yuming (~)' Xiao Heng (~ ~)2

THE EXPLICIT SOLUTION OF THE MATRIX EQUATION AX-XB = C* the memory of Prof. Guo Zhonghcng. Chen Yuming (~)' Xiao Heng (~ ~)2 Applied Mathematics Mechanics (English Edition, Vol. 16, No. 12, Dec. 1995) Published by SU, Shanghai, China THE EXPLICIT SOLUTION OF THE MATRIX EQUATION AX-XB = C* --To the memory Pr. Guo Zhonghcng Chen

More information

STABILITY OF BOREHOLES IN A GEOLOGIC MEDIUM INCLUDING THE EFFECTS OF ANISOTROPY *

STABILITY OF BOREHOLES IN A GEOLOGIC MEDIUM INCLUDING THE EFFECTS OF ANISOTROPY * Applied Mamatics Mechanics (English Edition, Vol. 20, No. 8, Aug 1999) Published by SU, Shanghai, China Article I.D: 0253-4827( 1999)08-0837-30 STABILITY OF BOREHOLES IN A GEOLOGIC MEDIUM : INCLUDING THE

More information

1. Comparison of stability analysis to previous work

1. Comparison of stability analysis to previous work . Comparison of stability analysis to previous work The stability problem (6.4) can be understood in the context of previous work. Benjamin (957) and Yih (963) have studied the stability of fluid flowing

More information

DIFFERENTIAL QUADRATURE METHOD FOR BENDING OF ORTHOTROPIC PLATES WITH FINITE DEFORMATION AND TRANSVERSE SHEAR EFFECTS*

DIFFERENTIAL QUADRATURE METHOD FOR BENDING OF ORTHOTROPIC PLATES WITH FINITE DEFORMATION AND TRANSVERSE SHEAR EFFECTS* Applied Mamatics Mechanics (English Edition, Vol 25, No 8, Aug 2004) Published by Shanghai University, Shanghai, China 9 Committee Appl. Math. Mech., ISSN 0253-4827 Article ID: 0253-4827(2004)08-0878-09

More information

DERIVATION OF SOME SPECIAL STRESS FUNCTION FROM BELTRAMI-SCHAEFER STRESS FUNCTION. Wang Min-zhong (:_Ei'~tp) Wang Lu-nan (:_.

DERIVATION OF SOME SPECIAL STRESS FUNCTION FROM BELTRAMI-SCHAEFER STRESS FUNCTION. Wang Min-zhong (:_Ei'~tp) Wang Lu-nan (:_. Applied Manmtics and Mechanics (English Edition, Vol. 10, No. 7, July 1989) Published by SUT~ Shanghai, China DERIVATION OF SOME SPECIAL STRESS FUNCTION FROM BELTRAMI-SCHAEFER STRESS FUNCTION Wang Min-zhong

More information

FIXED POINT INDEXES AND ITS APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS MODELLING INFECTIOUS DISEASES* Zhang Shi-sheng ( ~ )

FIXED POINT INDEXES AND ITS APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS MODELLING INFECTIOUS DISEASES* Zhang Shi-sheng ( ~ ) Applied Mamatics and Mechanics (English Edition, Vol. 10, No. 5, May 1989) Published by SUT, Shanghai, China FIXED POINT INDEXES AND ITS APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS MODELLING INFECTIOUS

More information

(i.0 where x~n-dimensional state vector, u--r-dimensional control matrix, A--nx,

(i.0 where x~n-dimensional state vector, u--r-dimensional control matrix, A--nx, Applied Mathematics and Mechanics (English Edition, Vol.3, No.5, Oct. 1982) Published by HUST Press, Wuhan, Hubei. i APPLICATION OF THE THEORY OF BRANCHING OF SOLUTIONS OF NONLINEAR EQUATIONS IN THE ESTIMATION

More information

GENERAL SOLUTION FOR LARGE DEFLECTION PROBLEMS OF NONHOMOGENEOUS CIRCULAR PLATES ON ELASTIC FOUNDATION* Ji Zhen-yi (~i~[~)

GENERAL SOLUTION FOR LARGE DEFLECTION PROBLEMS OF NONHOMOGENEOUS CIRCULAR PLATES ON ELASTIC FOUNDATION* Ji Zhen-yi (~i~[~) Applied Mamatics Mechanics.(English Edition, Vol.13,No.I i,nov.1992) Published by SUT, Shanghai, China GENERAL SOLUTION FOR LARGE DEFLECTION PROBLEMS OF NONHOMOGENEOUS CIRCULAR PLATES ON ELASTIC FOUNDATION*

More information

Stability of Shear Flow

Stability of Shear Flow Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear

More information

An Analysis and Calculation on Unsteady Flow in Exhaust System of Diesel Engine*

An Analysis and Calculation on Unsteady Flow in Exhaust System of Diesel Engine* Applied Mathematics and Mechanics (English Edition, Vol. 2 No. 2, Aug. 1981) Published by Techmodern Business Promotion Centre. Hong Kong An Analysis and Calculation on Unsteady Flow in Exhaust System

More information

Shear Turbulence. Fabian Waleffe. Depts. of Mathematics and Engineering Physics. Wisconsin

Shear Turbulence. Fabian Waleffe. Depts. of Mathematics and Engineering Physics. Wisconsin Shear Turbulence Fabian Waleffe Depts. of Mathematics and Engineering Physics, Madison University of Wisconsin Mini-Symposium on Subcritical Flow Instability for training of early stage researchers Mini-Symposium

More information

THERMAL CONTACT STRESSES OF BI-METAL STRIP THERMOSTAT. Chang Fo-van(~U~) (Tsing-hua University, Beijing) (Received Sept. 16, 1981)

THERMAL CONTACT STRESSES OF BI-METAL STRIP THERMOSTAT. Chang Fo-van(~U~) (Tsing-hua University, Beijing) (Received Sept. 16, 1981) Applied Mathematics and Mechanics (English Edis Vol.4 No.3 Jun. 1983) Published by HUST Press, Wuhan, China THERMAL CONTACT STRESSES OF BI-METAL STRIP THERMOSTAT Chang Fo-van(~U~) (Tsing-hua University,

More information

Transition to turbulence in plane Poiseuille flow

Transition to turbulence in plane Poiseuille flow Proceedings of the 55th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, February 25-26, 2015 ThL2T5.1 Transition to turbulence in plane Poiseuille flow F. Roizner, M. Karp and

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

ANALYSIS OF THE MOTION OF A GYRO-THEODOLITE. Wang Hong-lan (7: ~ ~.) (Shandong Mining Institute, Tai'an, Shangdong)

ANALYSIS OF THE MOTION OF A GYRO-THEODOLITE. Wang Hong-lan (7: ~ ~.) (Shandong Mining Institute, Tai'an, Shangdong) Applied Mathematics and Mechanics (English Edition, Vol.8, No.9, Sep 1987) Published by SUT, Shanghai, China ANALYSIS OF THE MOTION OF A GYRO-THEODOLITE Wang Hong-lan (7: ~ ~.) (Shandong Mining Institute,

More information

SINGULAR PERTURBATION OF NONLINEAR VECTOR BOUNDARY VALUE PROBLEM. Kang Sheng-liang (~l~]~),and Chen Qi(l~ ~)~) ( Tong/i University, ShanghaO

SINGULAR PERTURBATION OF NONLINEAR VECTOR BOUNDARY VALUE PROBLEM. Kang Sheng-liang (~l~]~),and Chen Qi(l~ ~)~) ( Tong/i University, ShanghaO Applied Mathematics and Mechanics (English Edition, Vol.9, No.9, Sep. 1988) Published by SUT, Shanghai, China SINGULAR PERTURBATION OF NONLINEAR VECTOR BOUNDARY VALUE PROBLEM Kang Sheng-liang (~l~]~),and

More information

The Reynolds experiment

The Reynolds experiment Chapter 13 The Reynolds experiment 13.1 Laminar and turbulent flows Let us consider a horizontal pipe of circular section of infinite extension subject to a constant pressure gradient (see section [10.4]).

More information

Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario

Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario NDAMS Workshop @ YITP 1 st November 2011 Meheboob Alam and Priyanka Shukla Engineering Mechanics Unit

More information

Energy Transfer Analysis of Turbulent Plane Couette Flow

Energy Transfer Analysis of Turbulent Plane Couette Flow Energy Transfer Analysis of Turbulent Plane Couette Flow Satish C. Reddy! and Petros J. Ioannou2 1 Department of Mathematics, Oregon State University, Corvallis, OR 97331 USA, reddy@math.orst.edu 2 Department

More information

PANSYSTEMS ANALYSIS: MATHEMATICS, METHODOLOGY, RELATIVITY AND DIALECTICAL THINKING * GUO Ding-he (~tg~2~l) 1, WU Xue-mou (:~]~)0-,

PANSYSTEMS ANALYSIS: MATHEMATICS, METHODOLOGY, RELATIVITY AND DIALECTICAL THINKING * GUO Ding-he (~tg~2~l) 1, WU Xue-mou (:~]~)0-, Applied Mamatics Mechanics (English Edition, Vol 22, No 2, Feb 2001) Published by Shanghai Univemity, Shanghai, China Article ID: 0253-4827(2001 )02-0237-24 PANSYSTEMS ANALYSIS: MATHEMATICS, METHODOLOGY,

More information

DEVELOPING FLOWS AND DEVELOPED FLOWS. Cen Ren-jing (~A,8~) Liu Bao-sen (~]'-~:~:) (South China Institute of 7~,chnology.

DEVELOPING FLOWS AND DEVELOPED FLOWS. Cen Ren-jing (~A,8~) Liu Bao-sen (~]'-~:~:) (South China Institute of 7~,chnology. Applied Mamatics and Mechanics (English Edition, Vol.9, No.l I, Nov. 1988) Publi,~hed by SUT, Shanghai, China DEVELOPING FLOWS AND DEVELOPED FLOWS Cen Ren-jing (~A,8~) Liu Bao-sen (~]'-~:~:) (South China

More information

NONLINEAR AND ELASTO-PLASTICITY CONSOLIDATION MODELS OF UNSATURATED SOIL AND APPLICATIONS *

NONLINEAR AND ELASTO-PLASTICITY CONSOLIDATION MODELS OF UNSATURATED SOIL AND APPLICATIONS * Applied Mathematics and Mechanics (English Edition, Vol 22, No 1, Jan 2001) Published by Shanghai University, Shanghai, China A_rtiele IO: 0253-4827(2001 ) 01-0105413 NONLINEAR AND ELASTO-PLASTICITY CONSOLIDATION

More information

Lecture 1. Hydrodynamic Stability F. H. Busse NotesbyA.Alexakis&E.Evstatiev

Lecture 1. Hydrodynamic Stability F. H. Busse NotesbyA.Alexakis&E.Evstatiev Lecture Hydrodynamic Stability F. H. Busse NotesbyA.Alexakis&E.Evstatiev Introduction In many cases in nature, like in the Earth s atmosphere, in the interior of stars and planets, one sees the appearance

More information

Inertial migration of a sphere in Poiseuille flow

Inertial migration of a sphere in Poiseuille flow J. Fluid Mech. (1989), vol. 203, pp. 517-524 Printed in Great Britain 517 Inertial migration of a sphere in Poiseuille flow By JEFFREY A. SCHONBERG AND E. J. HINCH Department of Applied Mathematics and

More information

Flow Transition in Plane Couette Flow

Flow Transition in Plane Couette Flow Flow Transition in Plane Couette Flow Hua-Shu Dou 1,, Boo Cheong Khoo, and Khoon Seng Yeo 1 Temasek Laboratories, National University of Singapore, Singapore 11960 Fluid Mechanics Division, Department

More information

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET N. Vetcha S. Smolentsev and M. Abdou Fusion Science and Technology Center at University of California Los Angeles CA

More information

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1) Free Convective Dusty Visco-Elastic Fluid Flow Through a Porous Medium in Presence of Inclined Magnetic Field and Heat Source/ Sink 1 Debasish Dey, 2 Paban Dhar 1 Department of Mathematics, Dibrugarh University,

More information

A GENERAL SOLUTION OF RECTANGULAR. HuangYan (~ ~) (National University q/ D~:/bnse Technology. Changsha)

A GENERAL SOLUTION OF RECTANGULAR. HuangYan (~ ~) (National University q/ D~:/bnse Technology. Changsha) Applied Matheatics and Mechanics (English Edition, Vol.8, No.8, Aug. 1987) Published by SUT, Shanghai. China A GENERAL SOLUTION OF RECTANGULAR THIN PLATES IN BENDING HuangYan (~ ~) (National University

More information

ROUTES TO TRANSITION IN SHEAR FLOWS

ROUTES TO TRANSITION IN SHEAR FLOWS ROUTES TO TRANSITION IN SHEAR FLOWS Alessandro Bottaro with contributions from: D. Biau, B. Galletti, I. Gavarini and F.T.M. Nieuwstadt ROUTES TO TRANSITION IN SHEAR FLOWS Osborne Reynolds, 1842-1912 An

More information

SLIP-LINE FIELD THEORY OF TRANSVERSELY. Ruan Huai-ning (~'t~'~) (Hehai University. Nanjhrg) Wang Wei-xiang (~_e~)

SLIP-LINE FIELD THEORY OF TRANSVERSELY. Ruan Huai-ning (~'t~'~) (Hehai University. Nanjhrg) Wang Wei-xiang (~_e~) Applied Mathematics and Mechanics (English Edition, Vol. 15, No. 4, Apr. 1994) Published by SUT, Shanghai, China SLIP-LINE FIELD THEORY OF TRANSVERSELY ISOTROPIC BODY Ruan Huai-ning (~'t~'~) (Hehai University.

More information

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1551-1555 1551 DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS by Zhan-Hong WAN a*, Zhen-Jiang YOU b, and Chang-Bin WANG c a Department of Ocean

More information

The Enigma of The Transition to Turbulence in a Pipe

The Enigma of The Transition to Turbulence in a Pipe 4th Brooke Benjamin Lecture The Enigma of The Transition to Turbulence in a Pipe T. Mullin Manchester Centre for Nonlinear Dynamics The University of Manchester, UK Joint work with: A.G. Darbyshire, B.

More information

On fully developed mixed convection with viscous dissipation in a vertical channel and its stability

On fully developed mixed convection with viscous dissipation in a vertical channel and its stability ZAMM Z. Angew. Math. Mech. 96, No. 12, 1457 1466 (2016) / DOI 10.1002/zamm.201500266 On fully developed mixed convection with viscous dissipation in a vertical channel and its stability A. Barletta 1,

More information

LINEAR STABILITY ANALYSIS FOR THE HARTMANN FLOW WITH INTERFACIAL SLIP

LINEAR STABILITY ANALYSIS FOR THE HARTMANN FLOW WITH INTERFACIAL SLIP MAGNETOHYDRODYNAMICS Vol. 48 (2012), No. 1, pp. 147 155 LINEAR STABILITY ANALYSIS FOR THE HARTMANN FLOW WITH INTERFACIAL SLIP N. Vetcha, S. Smolentsev, M. Abdou Fusion Science and Technology Center, UCLA,

More information

EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION

EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION Vladimir V. KULISH & José L. LAGE School of Mechanical & Aerospace Engineering,

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

Feedback control of transient energy growth in subcritical plane Poiseuille flow

Feedback control of transient energy growth in subcritical plane Poiseuille flow Feedback control of transient energy growth in subcritical plane Poiseuille flow Fulvio Martinelli, Maurizio Quadrio, John McKernan and James F. Whidborne Abstract Subcritical flows may experience large

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Experiments at the University of Minnesota (draft 2)

Experiments at the University of Minnesota (draft 2) Experiments at the University of Minnesota (draft 2) September 17, 2001 Studies of migration and lift and of the orientation of particles in shear flows Experiments to determine positions of spherical

More information

Centrifugal Destabilization and Restabilization of Plane Shear Flows

Centrifugal Destabilization and Restabilization of Plane Shear Flows Centrifugal Destabilization and Restabilization of Plane Shear Flows A. J. Conley Mathematics and Computer Science Division Argonne National Laboratory Argonne, L 60439 Abstract The flow of an incompressible

More information

Theory and simulations of hydrodynamic instabilities in inertial fusion

Theory and simulations of hydrodynamic instabilities in inertial fusion Theory and simulations of hydrodynamic instabilities in inertial fusion R. Betti Fusion Science Center, Laboratory for Laser Energetics, University of Rochester IPAM/UCLA Long Program PL2012 - March 12

More information

Implementation of a Thermo- Hydrodynamic Model to Predict Morton Effect

Implementation of a Thermo- Hydrodynamic Model to Predict Morton Effect Implementation of a Thermo- Hydrodynamic Model to Predict Morton Effect Antonini *, Fausti and Mor Polibrixia srl, Via A. Tadini 49, 25125 Brescia. *orresponding author: Via Branze 45, 25123 Brescia, massimo.antonini@polibrixia.it

More information

Primary, secondary instabilities and control of the rotating-disk boundary layer

Primary, secondary instabilities and control of the rotating-disk boundary layer Primary, secondary instabilities and control of the rotating-disk boundary layer Benoît PIER Laboratoire de mécanique des fluides et d acoustique CNRS Université de Lyon École centrale de Lyon, France

More information

The Turbulent Rotational Phase Separator

The Turbulent Rotational Phase Separator The Turbulent Rotational Phase Separator J.G.M. Kuerten and B.P.M. van Esch Dept. of Mechanical Engineering, Technische Universiteit Eindhoven, The Netherlands j.g.m.kuerten@tue.nl Summary. The Rotational

More information

ON LAMINAR FLOW THROUGH A CHANNEL OR TUBE WITH INJECTION: APPLICATION OF METHOD OF AVERAGES*

ON LAMINAR FLOW THROUGH A CHANNEL OR TUBE WITH INJECTION: APPLICATION OF METHOD OF AVERAGES* 361 ON LAMINAR FLOW THROUGH A CHANNEL OR TUBE WITH INJECTION: APPLICATION OF METHOD OF AVERAGES* BY MORRIS MORDUCHOW Polytechnic Institute of Brooklyn Introduction. The equations for the two-dimensional

More information

A NOTE ON APPLICATION OF FINITE-DIF TitleMETHOD TO STABILITY ANALYSIS OF BOU LAYER FLOWS.

A NOTE ON APPLICATION OF FINITE-DIF TitleMETHOD TO STABILITY ANALYSIS OF BOU LAYER FLOWS. A NOTE ON APPLICATION OF FINITE-DIF TitleMETHOD TO STABILITY ANALYSIS OF BOU LAYER FLOWS Author(s) ASAI, Tomio; NAKASUJI, Isao Citation Contributions of the Geophysical In (1971), 11: 25-33 Issue Date

More information

Applications of parabolized stability equation for predicting transition position in boundary layers

Applications of parabolized stability equation for predicting transition position in boundary layers Appl. Math. Mech. -Engl. Ed., 33(6), 679 686 (2012) DOI 10.1007/s10483-012-1579-7 c Shanghai University and Springer-Verlag Berlin Heidelberg 2012 Applied Mathematics and Mechanics (English Edition) Applications

More information

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison What is Turbulence? Fabian Waleffe Depts of Mathematics and Engineering Physics University of Wisconsin, Madison it s all around,... and inside us! Leonardo da Vinci (c. 1500) River flow, pipe flow, flow

More information

Chapter 2 Mass Transfer Coefficient

Chapter 2 Mass Transfer Coefficient Chapter 2 Mass Transfer Coefficient 2.1 Introduction The analysis reported in the previous chapter allows to describe the concentration profile and the mass fluxes of components in a mixture by solving

More information

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls Mechanics and Mechanical Engineering Vol. 21, No. 2 (2017) 379 387 c Lodz University of Technology Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder

More information

CURRICULUM VITAE SANDIPAN GHOSH MOULIC

CURRICULUM VITAE SANDIPAN GHOSH MOULIC CURRICULUM VITAE SANDIPAN GHOSH MOULIC Designation Professor, Department of Mechanical Engineering, I.I.T. Kharagpur Educational Background Ph.D in Mechanical Engineering December 1993 Arizona State University

More information

Numerical simulations of the edge tone

Numerical simulations of the edge tone Numerical simulations of the edge tone I. Vaik, G. Paál Department of Hydrodynamic Systems, Budapest University of Technology and Economics, P.O. Box 91., 1521 Budapest, Hungary, {vaik, paal}@vizgep.bme.hu

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

DYNAMIC STRESS INTENSITY FACTORS AROUND TWO CRACKS NEAR AN INTERFACE OF TWO DISSIMILAR ELASTIC HALF-PLANES UNDER IN-PLANE SHEAR IMPACT LOAD*

DYNAMIC STRESS INTENSITY FACTORS AROUND TWO CRACKS NEAR AN INTERFACE OF TWO DISSIMILAR ELASTIC HALF-PLANES UNDER IN-PLANE SHEAR IMPACT LOAD* Applied Mamatics and Mechanics (English Edition, Vol. 16, No. I, Jan. 1995) Published by SU, Shanghai, China DYNAMIC STRESS INTENSITY FACTORS AROUND TWO CRACKS NEAR AN INTERFACE OF TWO DISSIMILAR ELASTIC

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

Intermittency in spiral Poiseuille flow

Intermittency in spiral Poiseuille flow Intermittency in spiral Poiseuille flow M. Heise, J. Abshagen, A. Menck, G. Pfister Institute of Experimental and Applied Physics, University of Kiel, 2498 Kiel, Germany E-mail: heise@physik.uni-kiel.de

More information

Problem Set Number 2, j/2.036j MIT (Fall 2014)

Problem Set Number 2, j/2.036j MIT (Fall 2014) Problem Set Number 2, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Mon., September 29, 2014. 1 Inverse function problem #01. Statement: Inverse function

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

More information

O. A Survey of Critical Experiments

O. A Survey of Critical Experiments O. A Survey of Critical Experiments 1 (A) Visualizations of Turbulent Flow Figure 1: Van Dyke, Album of Fluid Motion #152. Generation of turbulence by a grid. Smoke wires show a uniform laminar stream

More information

Review of Fluid Mechanics

Review of Fluid Mechanics Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

More information

DSMC Calculation of Vortex Shedding behind a Flat Plate with a New Intermolecular Collision Scheme

DSMC Calculation of Vortex Shedding behind a Flat Plate with a New Intermolecular Collision Scheme DSMC Calculation of Vortex Shedding behind a Flat Plate with a New Intermolecular Collision Scheme M. Usami and K. Mizuguchi Dept. of Mechanical Eng., Mie University, 1515 Kamihama-cho, Tsu 514-8507, Japan

More information

Résonance et contrôle en cavité ouverte

Résonance et contrôle en cavité ouverte Résonance et contrôle en cavité ouverte Jérôme Hœpffner KTH, Sweden Avec Espen Åkervik, Uwe Ehrenstein, Dan Henningson Outline The flow case Investigation tools resonance Reduced dynamic model for feedback

More information

Self-similar solutions for the diffraction of weak shocks

Self-similar solutions for the diffraction of weak shocks Self-similar solutions for the diffraction of weak shocks Allen M. Tesdall John K. Hunter Abstract. We numerically solve a problem for the unsteady transonic small disturbance equations that describes

More information

Unsteady Boundary Layer Flow and Symmetry Analysis of a Carreau Fluid

Unsteady Boundary Layer Flow and Symmetry Analysis of a Carreau Fluid Mathematics and Statistics: Open Access Received: Dec, 5, Accepted: Jan 5, 6, Published: Jan 8, 6 Math Stat, Volume, Issue http://crescopublications.org/pdf/msoa/msoa--.pdf Article Number: MSOA-- Research

More information

Modeling of Suspension Flow in Pipes and Rheometers

Modeling of Suspension Flow in Pipes and Rheometers Modeling of Suspension Flow in Pipes and Rheometers Nicos S. Martys, Chiara F. Ferraris, William L. George National Institute of Standards and Technology Abstract: Measurement and prediction of the flow

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

On the displacement of two immiscible Stokes fluids in a 3D Hele-Shaw cell

On the displacement of two immiscible Stokes fluids in a 3D Hele-Shaw cell On the displacement of two immiscible Stokes fluids in a 3D Hele-Shaw cell Gelu Paşa Abstract. In this paper we study the linear stability of the displacement of two incompressible Stokes fluids in a 3D

More information

LAMINAR FLOW BEHIND A TWO-DIMENSIONAL GRID

LAMINAR FLOW BEHIND A TWO-DIMENSIONAL GRID LAMINAR FLOW BEHIND A TWO-DIMENSIONAL GRID BY L. I. G. KOVASZNAY Communicated by Sir GEOFFREY TAYLOR Received 20 May 1947 INTRODUCTION The production of a 'wake' behind solid bodies has been treated by

More information

Percolation: Statistical Description of a Spatial and Temporal Highly Resolved Boundary Layer Transition

Percolation: Statistical Description of a Spatial and Temporal Highly Resolved Boundary Layer Transition Percolation: Statistical Description of a Spatial and Temporal Highly Resolved Boundary Layer Transition Tom T. B. Wester, Dominik Traphan, Gerd Gülker and Joachim Peinke Abstract In this article spatio-temporally

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

Viscosity of magmas containing highly deformable bubbles

Viscosity of magmas containing highly deformable bubbles Journal of Volcanology and Geothermal Research 105 (2001) 19±24 www.elsevier.nl/locate/jvolgeores Viscosity of magmas containing highly deformable bubbles M. Manga a, *, M. Loewenberg b a Department of

More information

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September -6, 01 Numerical simulation of hydrodynamic loading on submerged rectangular bridge decks

More information

THE AUTO-ADJUSTABLE DAMPING METHOD FOR. (Received June 20, 199-5; Revised June 10, 1996; Communicated by Zhong Wanxic) Abstract

THE AUTO-ADJUSTABLE DAMPING METHOD FOR. (Received June 20, 199-5; Revised June 10, 1996; Communicated by Zhong Wanxic) Abstract Applied Mamatics and Mechanics (English Edition, Vol. 19, No. 2, Feb. 1998) Published by SU, Shanghai, China THE AUTO-ADJUSTABLE DAMPING METHOD FOR SOLVING NONLINEAR EQUATIONS Chang Haiping (~)~ Huang

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

Nonlinear stability of steady flow of Giesekus viscoelastic fluid

Nonlinear stability of steady flow of Giesekus viscoelastic fluid Nonlinear stability of steady flow of Giesekus viscoelastic fluid Mark Dostalík, V. Průša, K. Tůma August 9, 2018 Faculty of Mathematics and Physics, Charles University Table of contents 1. Introduction

More information

Physics of irregularity flow and tumultuous conversion in shear flows

Physics of irregularity flow and tumultuous conversion in shear flows African Journal of Physics Vol. 1 (3), 15 pages, November, 2013. Available online at www.internationalscholarsjournals.org International Scholars Journals Full Length Research Paper Physics of irregularity

More information

Interfacial waves in steady and oscillatory, two-layer Couette flows

Interfacial waves in steady and oscillatory, two-layer Couette flows Interfacial waves in steady and oscillatory, two-layer Couette flows M. J. McCready Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 Page 1 Acknowledgments Students: M.

More information

ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK

ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, -4 8 ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK Javier García*,

More information