Shear Turbulence. Fabian Waleffe. Depts. of Mathematics and Engineering Physics. Wisconsin

Size: px
Start display at page:

Download "Shear Turbulence. Fabian Waleffe. Depts. of Mathematics and Engineering Physics. Wisconsin"

Transcription

1 Shear Turbulence Fabian Waleffe Depts. of Mathematics and Engineering Physics, Madison University of Wisconsin

2 Mini-Symposium on Subcritical Flow Instability for training of early stage researchers

3 Mini-Symposium on Subcritical Flow Instability for training of early stage researchers... by late stage researchers?!

4 Mini-Symposium on Subcritical Flow Instability for training of early stage researchers Instability?... by late stage researchers?!

5 Mini-Symposium on Subcritical Flow Instability for training of early stage researchers Instability?... by late stage researchers?! Subcritical instability?

6 Mini-Symposium on Subcritical Flow Instability for training of early stage researchers Instability?... by late stage researchers?! Subcritical instability? Transition to turbulence?

7 Mini-Symposium on Subcritical Flow Instability for training of early stage researchers Instability?... by late stage researchers?! Subcritical instability? Transition to turbulence? What is turbulence?

8 Incompressible flow: Navier-Stokes equations 3D velocity field u(x, t): u = 0 t u + (uu) + p = 1 R 2 u R: Reynolds number

9 Simple geometries, simple flow? Pipe, Channel u = (1 y 2 ) ˆx R 2, 000 Plane Couette u = y ˆx R 350

10 Channel flow for R 2, not simple! Front Top Side Green, M. A., Rowley, C. W. & Haller, G. Detection of Lagrangian coherent structures in three-dimensional turbulence, J. Fluid Mech., 572, 2007,

11 Instability?

12 Instability? NSE: du dt = f (u; R)

13 Instability? NSE: du = f (u; R) dt Equilibrium u 0 : 0 = f (u 0 ; R)

14 Instability? du NSE: = f (u; R) dt Equilibrium u 0 : 0 = f (u 0 ; R) ( ) d(u u Linear stability: 0 ) f = (u u dt u 0 ) 0

15 Instability? du NSE: = f (u; R) dt Equilibrium u 0 : 0 = f (u 0 ; R) ( ) d(u u Linear stability: 0 ) f = (u u dt u 0 ) u u 0 = ve λt, 0 ( ) f u 0 v = λv, Instability if R(λ) > 0, typically for R > R c

16 Linear instability stable R c unstable R

17 Nonlinear bifurcation u u 0 stable R c unstable R

18 Bifurcations R c R Supercritical, NL stabilizes da dt = (R R c)a A 3

19 Bifurcations R c R Supercritical, NL stabilizes da dt = (R R c)a A 3 R c R Subcritical, NL de -stabilizes, da dt = (R R c)a+a 3

20 Bifurcations R c R Supercritical, NL stabilizes da dt = (R R c)a A 3 R c R Subcritical, NL de -stabilizes, da dt = (R R c)a+a 3 R c R Higher order NL stabilization? da dt = (R R c)a+a 3 A 5

21 Supercritical or subcritical?

22 Supercritical or subcritical? Nonlinearity decides: da dt = (R R c)a ± A 3

23 Supercritical or subcritical? Nonlinearity decides: NSE: du dt da dt = (R R c)a ± A 3 dv = f (u; R) dt = L(v; u 0, R) + N(v, v)

24 Supercritical or subcritical? Nonlinearity decides: NSE: du dt da dt = (R R c)a ± A 3 dv = f (u; R) dt = L(v; u 0, R) + N(v, v) v, N(v, v) = 0 d v, v dt = v, L(v) = v, L T (v)

25 Supercritical or subcritical? Nonlinearity decides: NSE: du dt da dt = (R R c)a ± A 3 dv = f (u; R) dt = L(v; u 0, R) + N(v, v) v, N(v, v) = 0 d v, v dt = v, L(v) = v, L T (v) sufficient for supercritical: L = L T

26 Supercritical or subcritical? Nonlinearity decides: NSE: du dt da dt = (R R c)a ± A 3 dv = f (u; R) dt = L(v; u 0, R) + N(v, v) v, N(v, v) = 0 d v, v dt = v, L(v) = v, L T (v) sufficient for supercritical: L = L T necessary for subcritical: L L T

27 Linear stability: L L T... Back to shear flows

28 Back to shear flows Linear stability: L L T... Hard! Confusing!

29 Back to shear flows Linear stability: L L T... Hard! Confusing! Need inflection point for inviscid ( R = ) instability (Rayleigh 1880)

30 Back to shear flows Linear stability: L L T... Hard! Confusing! Need inflection point for inviscid ( R = ) instability (Rayleigh 1880) Viscosity can lead to instability! (Prandtl, Heisenberg, Tollmien, Lin)

31 Back to shear flows Linear stability: L L T... Hard! Confusing! Need inflection point for inviscid ( R = ) instability (Rayleigh 1880) Viscosity can lead to instability! (Prandtl, Heisenberg, Tollmien, Lin)... but only in BL and Channel, not pipe and plane Couette... and weak instability seems unrelated to natural transition

32 Back to shear flows Linear stability: L L T... Hard! Confusing! Need inflection point for inviscid ( R = ) instability (Rayleigh 1880) Viscosity can lead to instability! (Prandtl, Heisenberg, Tollmien, Lin)... but only in BL and Channel, not pipe and plane Couette... and weak instability seems unrelated to natural transition Who said: Subtle is the Lord, but malicious s/he is not.?!

33 Shear turbulence turbulence?! u u 0 stable stable?! R c R

34 Shear turbulence turbulence?! u u 0 transition?! stable stable?! R c R

35 Streaks in turbulent shear flows... R 10 9? (OK, some convection too... )

36 Streaks in turbulent channel flow... Skin friction (Kim, Moin, Moser JFM 2007)

37 Characteristic near-wall coherent structure Derek Stretch, CTR Stanford, 1990 Streaks + staggered quasi-streamwise vortices: why?

38 Self-Sustaining Process (SSP) advection of mean shear Streaks O(1) instability of U(y,z) Streamwise Rolls O(1/R) nonlinear self interaction Streak wave mode (3D) O(1/R) WKH 1993, HKW 1995, W 1995, 1997

39 SSP theory SSP method (1) Add F forcing of streamwise rolls to NSE R2 O( 1 R ) rolls, O(1) streaks ( Full NSE, Newton s method) PRL 1998, JFM 2001, PoF 2003

40 SSP theory SSP method (1) Add F forcing of streamwise rolls to NSE R2 O( 1 R ) rolls, O(1) streaks (2) Find F c subcritical bifurcation point (streak instability) ( Full NSE, Newton s method) PRL 1998, JFM 2001, PoF 2003

41 SSP theory SSP method (1) Add F forcing of streamwise rolls to NSE R2 O( 1 R ) rolls, O(1) streaks (2) Find F c subcritical bifurcation point (streak instability) (3) Continue to F = 0. Ta da! ( Full NSE, Newton s method) PRL 1998, JFM 2001, PoF 2003

42 SSP theory SSP method (1) Add F forcing of streamwise rolls to NSE R2 O( 1 R ) rolls, O(1) streaks (2) Find F c subcritical bifurcation point (streak instability) (3) Continue to F = 0. Ta da! (4) (optional) Recall: Subtle is the Lord, but malicious s/he is not. ( Full NSE, Newton s method) PRL 1998, JFM 2001, PoF 2003

43 Laminar Couette flow: u=0 & u= Wx Fr

44 SSP: Streamwise Rolls create Streaks Wx Fr

45 SSP: Rolls create Streaks Wx Fr

46 SSP: Rolls create Streaks Wx Fr

47 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

48 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

49 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

50 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

51 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

52 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

53 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

54 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

55 SSP in action: Subcritical Bifurcation from Streaks Wx Fr

56 SSP: Self-Sustained! 3D Lower branch Wx Fr

57 SSP: Self-Sustained! 3D Lower branch Wx Fr

58 SSP: Bifurcation from Streaks Wx Fr

59 SSP: Bifurcation from Streaks Wx Fr

60 SSP: Self-Sustained! 3D Upper branch Wx Fr

61 SSP: Self-Sustained! 3D Upper branch Wx Fr

62 Homotopy Free-Free Couette (FFC) Rigid-Free Poiseuille (RFP) µ = 0 1 BC : (1 µ) du dy + µu = 0 Flow : ( 1 U L (y) = y + µ 6 y 2 ) 2

63 FFC RFP

64 FFC RFP

65 FFC RFP

66 FFC RFP

67 FFC RFP

68 Poiseuille traveling wave!

69 Poiseuille traveling wave!

70 Optimum Traveling Wave: 100 +! min R τ = 2h + = 44 for L + x = 274, L + z = 105 just right!

71 Out-of-the-blue-sky DRAG R Lower branch does NOT bifurcate from laminar flow! RRC (α, γ) = (1, 2), (1.14, 2.5), up to R asymptotics

72 Vortex visualization ω x 2Q= 2 p = Ω ij Ω ij S ij S ij

73 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

74 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

75 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

76 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

77 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

78 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

79 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

80 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

81 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

82 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

83 Upper and Lower branches 0.6 max(q), (α, γ) = (1.14, 2.5).

84 Structure of LBS, R advection of mean shear Streamwise Rolls O(1/R) Streaks O(1) exp ( i α x) mode O(1/R) instability of U(y,z) nonlinear self-interaction u ū ˆx = [u 0 ū, v 0, w 0 ](y, z) + e iαx u 1 (y, z) y max z rms R

85 Structure of LBS, R = advection of mean shear Streamwise Rolls O(1/R) Streaks O(1) exp ( i α x) mode O(1/R) instability of U(y,z) nonlinear self-interaction u = [u 0, v 0, w 0 ](y, z) + e iαx [u 1, v 1, w 1 ](y, z) y u 0 (y, z), v 0 (y, z) w 1 (y, z) z y z critical layer!

86 LB eigenvalues, (α, γ) = (1.14, 2.5), (1, 2), R = Only 1 unstable eig!

87 Stability of LBS real(λ) R

88 LB Transition (α, γ) = (1.14, 2.5), (1, 2), R = Dissipation Rate Dissipation Rate Energy Input Rate Energy Input Rate Dissipation Rate Dissipation Rate Energy Input Rate Energy Input Rate

89 Lower branch R = max(q), R = 1000, (α, γ) = (1.14, 2.5).

90 Two states of fluid flow? Turbulent Laminar

91 Separatrix, transition threshold Turbulent Laminar

92 Unstable Coherent States! Turbulent Laminar

93 PCF data (R = 400) 5 4 Dissipation Rate Energy Input Rate Periodic solutions in HKW (1.14, 1.67) by Viswanath, JFM 2007 & Gibson (TBA)

94 Visualizing State Space ( 10 5 dof s) 0.1 u NB u LM a a a RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/

95 Visualizing State Space (PCF, R=400) u UB 0.1 u LB τ z u UB u LM a 3 0 τ xz u LB τ x u UB τ xz u UB 0 a a 1 RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/

96 Conclusions Go nonlinear, young men and women!

97 Conclusions Go nonlinear, young men and women! Instabilities? bifurcations! coherent flows!

98 Conclusions Go nonlinear, young men and women! Instabilities? bifurcations! coherent flows! Laminar or turbulent? lots, and lots of coherent too!

99 Conclusions Go nonlinear, young men and women! Instabilities? bifurcations! coherent flows! Laminar or turbulent? lots, and lots of coherent too! Go coherent, young men and women!

100 Conclusions Go nonlinear, young men and women! Instabilities? bifurcations! coherent flows! Laminar or turbulent? lots, and lots of coherent too! Go coherent, young men and women! Bypass transition = instability of streaks? NO! instability of Lower Branch States!

101 Conclusions Go nonlinear, young men and women! Instabilities? bifurcations! coherent flows! Laminar or turbulent? lots, and lots of coherent too! Go coherent, young men and women! Bypass transition = instability of streaks? NO! instability of Lower Branch States! Lower Branch = Gate to Turbulence!

102 Upper and Lower branches no-slip Couette 5 4 Dissipation Rate Energy Input Rate Steady State & turbulent (by Jue Wang & John Gibson) in RRC, R = 400, (α, γ)=(0.95,1.67)

103 Upper branches Turbulence (no-slip Couette) y 0 y U RMS solid: Turbulent (avg t=2000), dash: fixed point Mean and RMS velocity profiles

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison What is Turbulence? Fabian Waleffe Depts of Mathematics and Engineering Physics University of Wisconsin, Madison it s all around,... and inside us! Leonardo da Vinci (c. 1500) River flow, pipe flow, flow

More information

Stability of Shear Flow

Stability of Shear Flow Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear

More information

EXACT COHERENT STRUCTURES IN TURBULENT SHEAR FLOWS

EXACT COHERENT STRUCTURES IN TURBULENT SHEAR FLOWS EXACT COHERENT STRUCTURES IN TURBULENT SHEAR FLOWS Fabian Waleffe Departments of Mathematics and Engineering Physics University of Wisconsin, Madison, WI 53706, USA waleffe@math.wisc.edu Abstract Exact

More information

Exact coherent structures and their instabilities: toward a dynamical-system theory of shear turbulence 1

Exact coherent structures and their instabilities: toward a dynamical-system theory of shear turbulence 1 Exact coherent structures and their instabilities: toward a dynamical-system theory of shear turbulence 1 Fabian Waleffe Departments of Mathematics and Engineering Physics University of Wisconsin-Madison,

More information

Transition to turbulence in plane Poiseuille flow

Transition to turbulence in plane Poiseuille flow Proceedings of the 55th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, February 25-26, 2015 ThL2T5.1 Transition to turbulence in plane Poiseuille flow F. Roizner, M. Karp and

More information

Turbulent boundary layer

Turbulent boundary layer Turbulent boundary layer 0. Are they so different from laminar flows? 1. Three main effects of a solid wall 2. Statistical description: equations & results 3. Mean velocity field: classical asymptotic

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW

OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW Shingo Motoki, Genta Kawahara and Masaki Shimizu Graduate School of Engineering Science Osaka University 1-3 Machikaneyama, Toyonaka, Osaka

More information

Stability of Shear Flow: part 2

Stability of Shear Flow: part 2 Stability of Shear Flow: part 2 Fabian Waleffe notes by Matthew Chantry and Lindsey Ritchie Revised by FW WHOI GFD Lecture 4 June 23, 2011 We derive necessary conditions for linear instability of shear

More information

Flow Transition in Plane Couette Flow

Flow Transition in Plane Couette Flow Flow Transition in Plane Couette Flow Hua-Shu Dou 1,, Boo Cheong Khoo, and Khoon Seng Yeo 1 Temasek Laboratories, National University of Singapore, Singapore 11960 Fluid Mechanics Division, Department

More information

Visualizing the geometry of state space in plane Couette flow

Visualizing the geometry of state space in plane Couette flow Accepted for publication in J. Fluid Mech. 1 Visualizing the geometry of state space in plane Couette flow By J. F. G I B S O N, J. H A L C R O W A N D P. C V I T A N O V I Ć School of Physics, Georgia

More information

Feedback on vertical velocity. Rotation, convection, self-sustaining process.

Feedback on vertical velocity. Rotation, convection, self-sustaining process. Feedback on vertical velocity. Rotation, convection, self-sustaining process. Fabian Waleffe//notes by Andrew Crosby, Keiji Kimura, Adele Morrison Revised by FW WHOI GFD Lecture 5 June 24, 2011 We have

More information

Energy Transfer Analysis of Turbulent Plane Couette Flow

Energy Transfer Analysis of Turbulent Plane Couette Flow Energy Transfer Analysis of Turbulent Plane Couette Flow Satish C. Reddy! and Petros J. Ioannou2 1 Department of Mathematics, Oregon State University, Corvallis, OR 97331 USA, reddy@math.orst.edu 2 Department

More information

Equilibrium and traveling-wave solutions of plane Couette flow

Equilibrium and traveling-wave solutions of plane Couette flow To be submitted to J. Fluid Mech. 1 Equilibrium and traveling-wave solutions of plane Couette flow By J. H A L C R O W, J. F. G I B S O N A N D P. C V I T A N O V I Ć School of Physics, Georgia Institute

More information

Coherent structures in stably stratified plane Couette flow

Coherent structures in stably stratified plane Couette flow Coherent structures in stably stratified plane Couette flow D. Olvera * & R. R. Kerswell School of Mathematics, University of Bristol, Bristol, UK. * do2542@bristol.ac.uk Abstract A large body of recent

More information

HOW STREAMWISE ROLLS AND STREAKS SELF-SUSTAIN IN A SHEAR FLOW: PART 2

HOW STREAMWISE ROLLS AND STREAKS SELF-SUSTAIN IN A SHEAR FLOW: PART 2 HOW STREAMWISE ROLLS AND STREAKS SELF-SUSTAIN IN A SHEAR FLOW: PART 2 Fabian Waleffe and John Kim 2 Mathematics and Engineering Physics Departments, University of Wisconsin, Madison, WI 5376-33 2 Mechanical

More information

ÉCOLE DE PHYSIQUE DES HOUCHES. Institut de Mécanique des Fluides Toulouse CNRS Université de Toulouse, also at

ÉCOLE DE PHYSIQUE DES HOUCHES. Institut de Mécanique des Fluides Toulouse CNRS Université de Toulouse, also at ÉCOLE DE PHYSIQUE DES HOUCHES STABILITY OF FLUID FLOWS Carlo COSSU Institut de Mécanique des Fluides Toulouse CNRS Université de Toulouse, also at Département de Mécanique, École Polytechinique http://www.imft.fr/carlo-cossu/

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

Homotopy of exact coherent structures in plane shear flows

Homotopy of exact coherent structures in plane shear flows PHYSICS OF FLUIDS VOLUME 15, NUMBER 6 JUNE 2003 Homotopy of exact coherent structures in plane shear flows Fabian Waleffe a) Departments of Mathematics and Engineering Physics, University of Wisconsin

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Patterns of Turbulence. Dwight Barkley and Laurette Tuckerman

Patterns of Turbulence. Dwight Barkley and Laurette Tuckerman Patterns of Turbulence Dwight Barkley and Laurette Tuckerman Plane Couette Flow Re = U gap/2 ν Experiments by Prigent and Dauchot Re400 Z (Spanwise) 40 24 o Gap 2 Length 770 X (Streamwise) Examples: Patterns

More information

4 Shear flow instabilities

4 Shear flow instabilities 4 Shear flow instabilities Here we consider the linear stability of a uni-directional base flow in a channel u B (y) u B = 0 in the region y [y,y 2. (35) 0 y = y 2 y z x u (y) B y = y In Sec. 4. we derive

More information

Shear Turbulence: Onset and Structure

Shear Turbulence: Onset and Structure Shear Turbulence: Onset and Structure Fabian Waleffe notes by Martín Hoecker-Martínez and Chao Ma revised and massively expanded by FW WHOI GFD Lecture 1 June 20, 2011 1 Introduction Figure 1: Reynolds

More information

Physics of irregularity flow and tumultuous conversion in shear flows

Physics of irregularity flow and tumultuous conversion in shear flows African Journal of Physics Vol. 1 (3), 15 pages, November, 2013. Available online at www.internationalscholarsjournals.org International Scholars Journals Full Length Research Paper Physics of irregularity

More information

Stochastic excitation of streaky boundary layers. Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden

Stochastic excitation of streaky boundary layers. Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden Stochastic excitation of streaky boundary layers Jérôme Hœpffner Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden Boundary layer excited by free-stream turbulence Fully turbulent inflow

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Σχηματισμός και εξισορρόπηση ζωνικών ανέμων σε πλανητικές τυρβώδεις ατμόσφαιρες

Σχηματισμός και εξισορρόπηση ζωνικών ανέμων σε πλανητικές τυρβώδεις ατμόσφαιρες Σχηματισμός και εξισορρόπηση ζωνικών ανέμων σε πλανητικές τυρβώδεις ατμόσφαιρες Ναβίτ Κωνσταντίνου και Πέτρος Ιωάννου Τμήμα Φυσικής Εθνικό και Καποδιστριακό Παν/μιο Αθηνών Πανεπιστήμιο Κύπρου 7 Ιανουαρίου

More information

Understanding and Controlling Turbulent Shear Flows

Understanding and Controlling Turbulent Shear Flows Understanding and Controlling Turbulent Shear Flows Bassam Bamieh Department of Mechanical Engineering University of California, Santa Barbara http://www.engineering.ucsb.edu/ bamieh 23rd Benelux Meeting

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Low-speed streak instability in near wall turbulence with adverse pressure gradient

Low-speed streak instability in near wall turbulence with adverse pressure gradient Journal of Physics: Conference Series Low-speed streak instability in near wall turbulence with adverse pressure gradient To cite this article: U Ehrenstein et al 2011 J. Phys.: Conf. Ser. 318 032027 View

More information

Using Statistical State Dynamics to Study the Mechanism of Wall-Turbulence

Using Statistical State Dynamics to Study the Mechanism of Wall-Turbulence Using Statistical State Dynamics to Study the Mechanism of Wall-Turbulence Brian Farrell Harvard University Cambridge, MA IPAM Turbulence Workshop UCLA November 19, 2014 thanks to: Petros Ioannou, Dennice

More information

Topics in Fluid Dynamics: Classical physics and recent mathematics

Topics in Fluid Dynamics: Classical physics and recent mathematics Topics in Fluid Dynamics: Classical physics and recent mathematics Toan T. Nguyen 1,2 Penn State University Graduate Student Seminar @ PSU Jan 18th, 2018 1 Homepage: http://math.psu.edu/nguyen 2 Math blog:

More information

Application of wall forcing methods in a turbulent channel flow using Incompact3d

Application of wall forcing methods in a turbulent channel flow using Incompact3d Application of wall forcing methods in a turbulent channel flow using Incompact3d S. Khosh Aghdam Department of Mechanical Engineering - University of Sheffield 1 Flow control 2 Drag reduction 3 Maths

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

The mean velocity profile in the smooth wall turbulent boundary layer : 1) viscous sublayer

The mean velocity profile in the smooth wall turbulent boundary layer : 1) viscous sublayer The mean velocity profile in the smooth wall turbulent boundary layer : 1) viscous sublayer u = τ 0 y μ τ = μ du dy the velocity varies linearly, as a Couette flow (moving upper wall). Thus, the shear

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

Résonance et contrôle en cavité ouverte

Résonance et contrôle en cavité ouverte Résonance et contrôle en cavité ouverte Jérôme Hœpffner KTH, Sweden Avec Espen Åkervik, Uwe Ehrenstein, Dan Henningson Outline The flow case Investigation tools resonance Reduced dynamic model for feedback

More information

ON TRANSITION SCENARIOS IN CHANNEL FLOWS

ON TRANSITION SCENARIOS IN CHANNEL FLOWS ON TRANSITION SCENARIOS IN CHANNEL FLOWS FABIAN WALEFFE Abstract. [Cha2] has proposed scaling estimates for the magnitude of the smallest perturbations that could trigger turbulence in channel flows. Those

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows Published in Phys. Fluids 14, L73-L76 (22). Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows Koji Fukagata, Kaoru Iwamoto, and Nobuhide Kasagi Department of Mechanical

More information

The Enigma of The Transition to Turbulence in a Pipe

The Enigma of The Transition to Turbulence in a Pipe 4th Brooke Benjamin Lecture The Enigma of The Transition to Turbulence in a Pipe T. Mullin Manchester Centre for Nonlinear Dynamics The University of Manchester, UK Joint work with: A.G. Darbyshire, B.

More information

(1) Transition from one to another laminar flow. (a) Thermal instability: Bernard Problem

(1) Transition from one to another laminar flow. (a) Thermal instability: Bernard Problem Professor Fred Stern Fall 2014 1 Chapter 6: Viscous Flow in Ducts 6.2 Stability and Transition Stability: can a physical state withstand a disturbance and still return to its original state. In fluid mechanics,

More information

very elongated in streamwise direction

very elongated in streamwise direction Linear analyses: Input-output vs. Stability Has much of the phenomenology of boundary la ut analysis of Linearized Navier-Stokes (Cont.) AMPLIFICATION: 1 y. z x 1 STABILITY: Transitional v = (bypass) T

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

LOW SPEED STREAKS INSTABILITY OF TURBULENT BOUNDARY LAYER FLOWS WITH ADVERSE PRESSURE GRADIENT

LOW SPEED STREAKS INSTABILITY OF TURBULENT BOUNDARY LAYER FLOWS WITH ADVERSE PRESSURE GRADIENT LOW SPEED STREAKS INSTABILITY OF TURBULENT BOUNDARY LAYER FLOWS WITH ADVERSE PRESSURE GRADIENT J.-P. Laval (1) CNRS, UMR 8107, F-59650 Villeneuve d Ascq, France (2) Univ Lille Nord de France, F-59000 Lille,

More information

The Turbulent Rotational Phase Separator

The Turbulent Rotational Phase Separator The Turbulent Rotational Phase Separator J.G.M. Kuerten and B.P.M. van Esch Dept. of Mechanical Engineering, Technische Universiteit Eindhoven, The Netherlands j.g.m.kuerten@tue.nl Summary. The Rotational

More information

Transition in shear flows: non-linear normality versus non-normal linearity

Transition in shear flows: non-linear normality versus non-normal linearity Transition in shear flows: non-linear normality versus non-normal linearity Fabian Waleffe MIT, Department of Mathematics, Room 2-378, Cambridge, MA 02139 Physics of Fluids 7, pp. 3060-3066. Abstract A

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes

More information

arxiv:physics/ v2 [physics.flu-dyn] 3 Jul 2007

arxiv:physics/ v2 [physics.flu-dyn] 3 Jul 2007 Leray-α model and transition to turbulence in rough-wall boundary layers Alexey Cheskidov Department of Mathematics, University of Michigan, Ann Arbor, Michigan 4819 arxiv:physics/6111v2 [physics.flu-dyn]

More information

COHERENT STATES IN TRANSITIONAL PIPE FLOW

COHERENT STATES IN TRANSITIONAL PIPE FLOW COHERENT STATES IN TRANSITIONAL PIPE FLOW Maria Isabella Gavarini 1, Alessandro Bottaro 2 and Frans T.M. Nieuwstadt 1 1 J.M. Burgers Centre, Delft University of Technology, The Netherlands 2 DIAM, Università

More information

Bifurcations and multistability in turbulence

Bifurcations and multistability in turbulence Bifurcations and multistability in turbulence VKS team A. Chiffaudel L. Marié F. Ravelet F.Daviaud CEA/Saclay, France O. Dauchot A. Prigent Conceptual Aspects of turbulence, Vienna, February 28 1 Bifurcations

More information

Systems Theory and Shear Flow Turbulence Linear Multivariable Systems Theory is alive and well

Systems Theory and Shear Flow Turbulence Linear Multivariable Systems Theory is alive and well Systems Theory and Shear Flow Turbulence Linear Multivariable Systems Theory is alive and well Dedicated to J. Boyd Pearson Bassam Bamieh Mechanical & Environmental Engineering University of California

More information

Applied Mathematics and Mechanics (English Edition)

Applied Mathematics and Mechanics (English Edition) Appl. Math. Mech. -Engl. Ed., 39(9), 1267 1276 (2018) Applied Mathematics and Mechanics (English Edition) https://doi.org/10.1007/s10483-018-2364-7 Direct numerical simulation of turbulent flows through

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

Turbulent-laminar patterns in plane Couette flow

Turbulent-laminar patterns in plane Couette flow Turbulent-laminar patterns in plane Couette flow Dwight Barkley Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom Laurette S. Tuckerman LIMSI-CNRS, BP 133, 91403 Orsay, France

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Generation of initial fields for channel flow investigation

Generation of initial fields for channel flow investigation Generation of initial fields for channel flow investigation Markus Uhlmann Potsdam Institut für Klimafolgenforschung, D-442 Potsdam uhlmann@pik-potsdam.de (Mai 2) In the framework of the DFG-funded research

More information

Localized vortex/tollmien-schlichting wave interaction states in plane Poiseuille flow

Localized vortex/tollmien-schlichting wave interaction states in plane Poiseuille flow Accepted for publication in the Journal of Fluid Mechanics Localized vortex/tollmien-schlichting wave interaction states in plane Poiseuille flow L. J. Dempsey, K. Deguchi, P. Hall and A. G. Walton Department

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Polymer maximum drag reduction: A unique transitional state

Polymer maximum drag reduction: A unique transitional state Center for Turbulence Research Annual Research Briefs 47 Polymer maximum drag reduction: A unique transitional state By Y. Dubief, C. M. White, E. S. G. Shaqfeh AND V. E. Terrapon. Motivation and objectives

More information

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint. " = " x,t,#, #

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint.  =  x,t,#, # Notes Assignment 4 due today (when I check email tomorrow morning) Don t be afraid to make assumptions, approximate quantities, In particular, method for computing time step bound (look at max eigenvalue

More information

OPTIMUM SUCTION DISTRIBUTION FOR TRANSITION CONTROL *

OPTIMUM SUCTION DISTRIBUTION FOR TRANSITION CONTROL * OPTIMUM SUCTION DISTRIBUTION FOR TRANSITION CONTROL * P. Balakumar* Department of Aerospace Engineering Old Dominion University Norfolk, Virginia 23529 P. Hall Department of Mathematics Imperial College

More information

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows Center for Turbulence Research Annual Research Briefs 1998 267 On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows By Jeffrey S. Baggett 1. Motivation and objectives

More information

Regularity diagnostics applied to a turbulent boundary layer

Regularity diagnostics applied to a turbulent boundary layer Center for Turbulence Research Proceedings of the Summer Program 208 247 Regularity diagnostics applied to a turbulent boundary layer By H. J. Bae, J. D. Gibbon, R. M. Kerr AND A. Lozano-Durán Regularity

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

Lecture 1. Hydrodynamic Stability F. H. Busse NotesbyA.Alexakis&E.Evstatiev

Lecture 1. Hydrodynamic Stability F. H. Busse NotesbyA.Alexakis&E.Evstatiev Lecture Hydrodynamic Stability F. H. Busse NotesbyA.Alexakis&E.Evstatiev Introduction In many cases in nature, like in the Earth s atmosphere, in the interior of stars and planets, one sees the appearance

More information

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio

More information

FLOW-NORDITA Spring School on Turbulent Boundary Layers1

FLOW-NORDITA Spring School on Turbulent Boundary Layers1 Jonathan F. Morrison, Ati Sharma Department of Aeronautics Imperial College, London & Beverley J. McKeon Graduate Aeronautical Laboratories, California Institute Technology FLOW-NORDITA Spring School on

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions June 30 - July 3, 2015 Melbourne, Australia 9 P-26 Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering

More information

Hydrodynamic Turbulence in Accretion Disks

Hydrodynamic Turbulence in Accretion Disks Hydrodynamic Turbulence in Accretion Disks Banibrata Mukhopadhyay, Niayesh Afshordi, Ramesh Narayan Harvard-Smithsonian Center for Astrophysics, 6 Garden Street, MA 38, USA Turbulent viscosity in cold

More information

Chapter 8 Flow in Conduits

Chapter 8 Flow in Conduits 57:00 Mechanics of Fluids and Transport Processes Chapter 8 Professor Fred Stern Fall 013 1 Chapter 8 Flow in Conduits Entrance and developed flows Le = f(d, V,, ) i theorem Le/D = f(re) Laminar flow:

More information

Bounds on Surface Stress Driven Flows

Bounds on Surface Stress Driven Flows Bounds on Surface Stress Driven Flows George Hagstrom Charlie Doering January 1, 9 1 Introduction In the past fifteen years the background method of Constantin, Doering, and Hopf has been used to derive

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Hydrodynamics. l. mahadevan harvard university

Hydrodynamics. l. mahadevan harvard university Thermodynamics / statistical mechanics : Hydrodynamics N>>1; large number of interacting particles! Hydrodynamics : L >> l; T >> t; long wavelength, slow time - average over (some) microscopic length and

More information

INTRODUCTION OBJECTIVES

INTRODUCTION OBJECTIVES INTRODUCTION The transport of particles in laminar and turbulent flows has numerous applications in engineering, biological and environmental systems. The deposition of aerosol particles in channels and

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

The need for de-aliasing in a Chebyshev pseudo-spectral method

The need for de-aliasing in a Chebyshev pseudo-spectral method The need for de-aliasing in a Chebyshev pseudo-spectral method Markus Uhlmann Potsdam Institut für Klimafolgenforschung, D-442 Potsdam uhlmann@pik-potsdam.de (March 2) Abstract In the present report, we

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Compressible turbulent channel flow with impedance boundary conditions

Compressible turbulent channel flow with impedance boundary conditions Center for Turbulence Research Proceedings of the Summer Program 2014 305 Compressible turbulent channel flow with impedance boundary conditions By C. Scalo, J. Bodart, S. K. Lele AND L. Joly We have performed

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and turbulent, was discovered by Osborne Reynolds (184 191) in 1883

More information

Vorticity and Dynamics

Vorticity and Dynamics Vorticity and Dynamics In Navier-Stokes equation Nonlinear term ω u the Lamb vector is related to the nonlinear term u 2 (u ) u = + ω u 2 Sort of Coriolis force in a rotation frame Viscous term ν u = ν

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Lecture 9: Triggering Transition: Towards Minimal Seeds

Lecture 9: Triggering Transition: Towards Minimal Seeds Lecture 9: Triggering Transition: Towards Minimal Seeds Rich Kerswell Notes by Andrew Crosby, Keiji Kimura 3 June 11 1 Introduction In the previous lecture we discussed the edge and tracking it forward

More information

Optimum algorithm for channel flow analysis in direct numerical simulation method

Optimum algorithm for channel flow analysis in direct numerical simulation method International Journal of Civil Engineering Optimum algorithm for channel flow analysis in direct numerical simulation method M. R. Kavianpour,*, E. Rajabi Received: May 0, Revised: February 0,Accepted:

More information

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION Joongnyon Kim, Kyoungyoun Kim, Hyung Jin Sung Department of Mechanical Engineering, Korea Advanced Institute of Science

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

The large-scale organization of autonomous turbulent wall regions

The large-scale organization of autonomous turbulent wall regions Center for Turbulence Research Annual Research Briefs 21 317 The large-scale organization of autonomous turbulent wall regions By Javier Jiménez, Oscar Flores AND Manuel García Villalba 1. Introduction

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information