University of Notre Dame

Size: px
Start display at page:

Download "University of Notre Dame"

Transcription

1 University of Notre Dame Aerospace and Mechanical Engineering ME 469: Introduction to Robotics Homework Solutions B. Goodwine Fall This is simply Equation.6 implemented in Mathematica: T[alph_, a_, d_, th_] := {{Cos[th], -Sin[th], 0, a}, {Sin[th]*Cos[alph], Cos[th]*Cos[alph], -Sin[alph], -Sin[alph]*d}, {Sin[th]*Sin[alph], Cos[th]*Sin[alph], Cos[alph], Cos[alph]*d}, {0, 0, 0, 1}} Can be used, for example, as T[Pi/,0,0,theta] //MatrixForm which will print out transformation with those parameter values in a nice matrix form in the Mathematica notebook.. (Craig,.4) Following the usual rules for affixing frames to manipulators results in the frames illustrated in Figure 1. Consulting the figure, the following link parameters are apparent: i α i 1 a i 1 d i θ i θ 1 π 0 0 θ 0 L 0 θ Determining 0 1 T,1 T and T is now a simple matter of substituting these values into Equation.6, or, even simpler, using the Mathematica function from Problem 1. cos θ 1 sin θ T = sin θ 1 cos θ

2 1 1 1 Figure 1. Frames for problem.

3 cos θ sin θ T = sin θ cos θ 0 0 cos θ sin θ 0 L T = sin θ cos θ (Craig,.9) We were given 0 T, and want to find the location of the tip in fram 0. Clearly, 0 P tip = 0 T P tip, where or P tip = l 0, 0 0 P tip = l cos θ 1 cos θ + l 1 cos θ 1 l sin θ 1 cos θ + l 1 sin θ 1 l sin θ 4. (Craig,.11) Following the usual rules for affixing frames to manipulators results in the frames illustrated in Figure. Consulting the figure, the following link parameters are apparent: i α i 1 a i 1 d i θ i θ 4 5 φ 0 0 θ 5 6 φ 0 0 θ 6 Determining B 4 T,4 5 T and 5 6T is now a simple matter of substituting these values into Equation.6, or, even simpler, using the Mathematica function from Problem 1. T[0,0,0,t4]. T[phi,0,0,t5]. T[-phi,0,0,t6] //Simplify produces the mess

4 16 16 Figure. Frames for problem 4. 4

5 {-(Sin[t4]*(Cos[phi]*Cos[t6]*Sin[t5] + Cos[phi]^*Cos[t5]*Sin[t6] + Sin[phi]^*Sin[t6])) + Cos[t4]*(Cos[t5]*Cos[t6] - Cos[phi]*Sin[t5]*Sin[t6]), -(Cos[phi]^*Cos[t5]*Cos[t6]*Sin[t4]) - Cos[t6]*Sin[phi]^*Sin[t4] - Cos[phi]*Cos[t4 + t6]*sin[t5] - Cos[t4]*Cos[t5]*Sin[t6], -(Sin[phi]*(Cos[phi]*(-1 + Cos[t5])*Sin[t4] + Cos[t4]*Sin[t5])), 0}, {Cos[phi]*Cos[t4 + t6]*sin[t5] + Cos[t4]*Sin[phi]^*Sin[t6] + Cos[t5]*(Cos[t6]*Sin[t4] + Cos[phi]^*Cos[t4]*Sin[t6]), Cos[phi]^*Cos[t4]*Cos[t5]*Cos[t6] + Cos[t4]*Cos[t6]*Sin[phi]^ - Cos[t5]*Sin[t4]*Sin[t6] - Cos[phi]*Sin[t5]*Sin[t4 + t6], Sin[phi]*(Cos[phi]*Cos[t4]*(-1 + Cos[t5]) - Sin[t4]*Sin[t5]), 0}, {Sin[phi]*(Cos[t6]*Sin[t5] + Cos[phi]*(-1 + Cos[t5])*Sin[t6]), Sin[phi]*(Cos[phi]*(-1 + Cos[t5])*Cos[t6] - Sin[t5]*Sin[t6]), Cos[phi]^ + Cos[t5]*Sin[phi]^, 0}, {0, 0, 0, 1}} To check to make sure it makes sense, take all the joint angles, θ 4, θ 5 and θ 6 to be zero: T[0,0,0,0]. T[phi,0,0,0]. T[-phi,0,0,0] //Simplify //MatrixForm which gives the expected answer B T = If θ 4 = π and the other joints are zero, then T[0,0,0,Pi]. T[phi,0,0,0]. T[-phi,0,0,0] //Simplify //MatrixForm B 6 T = , which also is expected because rotating joint 4 by π will rotate the x and y components of a vector by 180, which will make their components negative of what they start as. 5

6 1 1 a 1 Figure. Frames for problem (Craig,.17) Following the usual rules for affixing frames to manipulators results in the frames illustrated in Figure. Consulting the figure, and naming the distance a, the following link parameters are apparent: i α i 1 a i 1 d i θ i θ 1 π 0 0 π a d θ + π 0 bf: Note the π term added to θ! Determining 0 1T, 1 T and T is now a simple matter of substituting these values into Equation.6, or, even simpler, using the Mathematica function from Problem 1. T[0,0,0,t1]. T[Pi/,0,0,t+Pi/]. T[Pi/,a,d,0] //Simplify 6

7 produces the mess {{-Cos[t1]*Sin[t], Sin[t1], Cos[t1]*Cos[t], Cos[t1]*(d*Cos[t] - a*sin[t])}, {-Sin[t1]*Sin[t], -Cos[t1], Cos[t]*Sin[t1], Sin[t1]*(d*Cos[t] - a*sin[t])}, {Cos[t], 0, Sin[t], a*cos[t] + d*sin[t]}, {0, 0, 0, 1}} or cos θ 1 sin θ sin θ 1 cos θ 1 cos θ cos θ 1 (d cos θ a sin θ ) 0 T = sin θ 1 sin θ cos θ 1 cos θ sin θ 1 sin θ 1 (d cos θ a sin θ a ) cos θ 0 sinθ a cos θ + d sin θ To check to make sure it makes sense, take all the joint angles, θ 1, θ and d to be zero: T[0,0,0,0]. T[Pi/,0,0,0]. T[Pi/,a,0,0] //Simplify which gives the expected answer T = a 6. (Craig,.18) Following the usual rules for affixing frames to manipulators results in the frames illustrated in Figure 4. Consulting the figure, and naming the distance a, the following link parameters are apparent: i α i 1 a i 1 d i θ i θ 1 π 0 0 θ + π 0 a 0 θ bf: Note the π term added to θ! Determining 0 1 T,1 T and T is now a simple matter of substituting these values into Equation.6, or, even simpler, using the Mathematica function from Problem 1. T[0,0,0,t1]. T[Pi/,0,0,t+Pi/]. T[Pi/,a,d,0] //Simplify 7

8 1 a 1 1 Figure 4. Frames for problem 6. 8

9 gives cos θ 1 sin(θ + θ ) cos θ 1 cos(θ + θ ) sinθ 1 a cos θ 1 sin θ 0 T = sin θ 1 sin(θ + θ ) cos(θ + θ )sinθ 1 cos θ 1 a sin θ 1 sin θ cos(θ + θ ) sin(θ + θ ) 0 a cos θ To check to make sure it makes sense, take all the joint angles, θ 1, θ and θ to be zero: T[0,0,0,0]. T[Pi/,0,0,Pi/]. T[0,a,0,0] //Simplify which gives the expected answer T = a 7. (Craig,.0) Following the usual rules for affixing frames to manipulators results in the frames illustrated in Figure 5. Consulting the figure, and naming the distances a 1 and a, the following link parameters are apparent: i α i 1 a i 1 d i θ i d a 1 0 θ 0 a 0 θ Determining 0 1 T,1 T and T is now a simple matter of substituting these values into Equation.6, or, even simpler, using the Mathematica function from Problem 1. T[0,0,d1,0]. T[0,a1,0,t]. T[0,a,0,t] //Simplify gives cos(θ + θ ) sin(θ + θ ) 0 a 1 +cos(θ ) a 0 T = sin(θ + θ ) cos(θ + θ ) 0 sin(θ ) a d 1 9

10 a 1 a Figure 5. Frames for problem 7. 10

Section 8.4 Plane Curves and Parametric Equations

Section 8.4 Plane Curves and Parametric Equations Section 8.4 Plane Curves and Parametric Equations Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called parametric equations).

More information

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible. Practice Problems: Exam MATH, Spring Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.. Write down a table of x and y values associated with a few t values. Then, graph

More information

Math 334 A1 Homework 3 (Due Nov. 5 5pm)

Math 334 A1 Homework 3 (Due Nov. 5 5pm) Math 334 A1 Homework 3 Due Nov. 5 5pm No Advanced or Challenge problems will appear in homeworks. Basic Problems Problem 1. 4.1 11 Verify that the given functions are solutions of the differential equation,

More information

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form:

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form: ME 5(b): Homework #2 Solution Problem : Problem 2 (d,e), Chapter 3 of MLS. Let s review some material from the parts (b) of this problem: Part (b): Using the Product of Exponentials approach, the structure

More information

M343 Homework 6. Enrique Areyan May 31, 2013

M343 Homework 6. Enrique Areyan May 31, 2013 M343 Homework 6 Enrique Areyan May 31, 013 Section 3.5. + y + 5y = 3sin(t). The general solution is given by: y h : Characteristic equation: r + r + 5 = 0 r = 1 ± i. The solution in this case is: y h =

More information

Vector Functions. EXAMPLE Describethecurves cost,sint,0, cost,sint,t,and cost,sint,2t.

Vector Functions. EXAMPLE Describethecurves cost,sint,0, cost,sint,t,and cost,sint,2t. 13 Vector Functions ½ º½ ËÔ ÙÖÚ We have already seen that a convenient way to describe a line in three dimensions is to provide a vector that points to every point on the line as a parameter t varies,

More information

REVIEW 2, MATH 3020 AND MATH 3030

REVIEW 2, MATH 3020 AND MATH 3030 REVIEW, MATH 300 AND MATH 3030 1. Let P = (0, 1, ), Q = (1,1,0), R(0,1, 1), S = (1,, 4). (a) Find u = PQ and v = PR. (b) Find the angle between u and v. (c) Find a symmetric equation of the plane σ that

More information

Differential Equations: Homework 8

Differential Equations: Homework 8 Differential Equations: Homework 8 Alvin Lin January 08 - May 08 Section.6 Exercise Find a general solution to the differential equation using the method of variation of parameters. y + y = tan(t) r +

More information

Lecture 17: Nonhomogeneous equations. 1 Undetermined coefficients method to find a particular

Lecture 17: Nonhomogeneous equations. 1 Undetermined coefficients method to find a particular Lecture 17: Nonhomogeneous equations 1 Undetermined coefficients method to find a particular solution The method of undetermined coefficients (sometimes referred to as the method of justicious guessing)

More information

Problem Set 6 Math 213, Fall 2016

Problem Set 6 Math 213, Fall 2016 Problem Set 6 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

Green s Theorem. Fundamental Theorem for Conservative Vector Fields

Green s Theorem. Fundamental Theorem for Conservative Vector Fields Assignment - Mathematics 4(Model Answer) onservative vector field and Green theorem onservative Vector Fields If F = φ, for some differentiable function φ in a domaind, then we say that F is conservative

More information

Fall 2016 Math 2B Suggested Homework Problems Solutions

Fall 2016 Math 2B Suggested Homework Problems Solutions Fall 016 Math B Suggested Homework Problems Solutions Antiderivatives Exercise : For all x ], + [, the most general antiderivative of f is given by : ( x ( x F(x = + x + C = 1 x x + x + C. Exercise 4 :

More information

Problem Set 5 Math 213, Fall 2016

Problem Set 5 Math 213, Fall 2016 Problem Set 5 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

Principles of Linear Algebra With Maple TM Rolling an Ellipse Along a Curve

Principles of Linear Algebra With Maple TM Rolling an Ellipse Along a Curve Principles of Linear Algebra With Maple TM Rolling an Ellipse Along a Curve Kenneth Shiskowski and Karl Frinkle c Draft date February 6, 2011 Contents 1 Rolling an Ellipse Along a Curve 1 1.1 The Setup..............................

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination II April 7, 2014 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University Kinematics of a UR5 May 3, 28 Rasmus Skovgaard Andersen Aalborg University Contents Introduction.................................... Notation.................................. 2 Forward Kinematics for

More information

Homogeneous Transformations

Homogeneous Transformations Purpose: Homogeneous Transformations The purpose of this chapter is to introduce you to the Homogeneous Transformation. This simple 4 x 4 transformation is used in the geometry engines of CAD systems and

More information

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3.

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3. Complex Numbers Class Work Simplify using i. 1. 16 2. 36b 4 3. 8a 2 4. 32x 6 y 7 5. 16 25 6. 8 10 7. 3i 4i 5i 8. 2i 4i 6i 8i 9. i 9 10. i 22 11. i 75 Complex Numbers Homework Simplify using i. 12. 81 13.

More information

2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane

2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane Exam-style practice: Paper 1 1 a First we find y and d x. y t t ( = + y = t t + 1 1 y t t t t = + + 1. x= t+ t = 1+ t. We now find the limits in terms of t. x= t = x=.75= t+ t t t +.75= 1± 1+ 15 t = We

More information

374: Solving Homogeneous Linear Differential Equations with Constant Coefficients

374: Solving Homogeneous Linear Differential Equations with Constant Coefficients 374: Solving Homogeneous Linear Differential Equations with Constant Coefficients Enter this Clear command to make sure all variables we may use are cleared out of memory. In[1]:= Clearx, y, c1, c2, c3,

More information

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches:

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches: M th KINEMATICS 4 CHAPTER INTRODUCTION The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches: Kinematics: (i) Kinematics (ii) Kinetics The branch

More information

Calculus 152 Take Home Test 2 (50 points)

Calculus 152 Take Home Test 2 (50 points) Calculus 5 Take Home Test (5 points) Due Tuesday th November. The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

8/4/2016 PRACTICE EXAM III Maths 21a, O. Knill, Summer 2016

8/4/2016 PRACTICE EXAM III Maths 21a, O. Knill, Summer 2016 1 8/4/2016 PRACTICE EXAM III Maths 21a, O. Knill, Summer 2016 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

Literal Equations Manipulating Variables and Constants

Literal Equations Manipulating Variables and Constants Literal Equations Manipulating Variables and Constants A literal equation is one which is expressed in terms of variable symbols (such as d, v, and a) and constants (such as R, g, and π). Often in science

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3 Warm Up Simplify. 1) 99 = 3 11 2) 125 + 2 20 = 5 5 + 4 5 = 9 5 3) 2 + 7 2 + 3 7 = 4 + 6 7 + 2 7 + 21 4) 4 42 3 28 = 4 3 3 2 = 4 6 6 = 25 + 8 7 = 2 6 3 Test Results Average Median 5 th : 76.5 78 7 th :

More information

Chaotic Motion of the Double Pendulum

Chaotic Motion of the Double Pendulum MEGL 2016 - Mathematical Art and 3D Printing George Mason University: College of Science December 16, 2016 Table of Contents 1 The Mathematics 2 Inspiration for the Model Planning the Construction of the

More information

PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions

PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions What is an Identity? PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions What is it used for? The Reciprocal Identities: sin θ = cos θ = tan θ = csc θ = sec θ = ctn θ = The Quotient

More information

1 question on the cycloid

1 question on the cycloid Answers to question sheet, qs.tex question on the cycloid cycloid The position ct of particle of mass m and electric charge e in combined electric and magnetic fields E and B according to Newton and Lorenz

More information

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008 Robotics & Automation Lecture 17 Manipulability Ellipsoid, Singularities of Serial Arm John T. Wen October 14, 2008 Jacobian Singularity rank(j) = dimension of manipulability ellipsoid = # of independent

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

Solutions to the Homework Replaces Section 3.7, 3.8

Solutions to the Homework Replaces Section 3.7, 3.8 Solutions to the Homework Replaces Section 3.7, 3.8 1. Our text (p. 198) states that µ ω 0 = ( 1 γ2 4km ) 1/2 1 1 2 γ 2 4km How was this approximation made? (Hint: Linearize 1 x) SOLUTION: We linearize

More information

Name: Solutions Exam 4

Name: Solutions Exam 4 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Sum-to-Product and Product-to-Sum Formulas

Sum-to-Product and Product-to-Sum Formulas Sum-to-Product and Product-to-Sum Formulas By: OpenStaxCollege The UCLA marching band (credit: Eric Chan, Flickr). A band marches down the field creating an amazing sound that bolsters the crowd. That

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 116 Practice for Exam 2 Generated October 12, 215 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 8 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

F Tds. You can do this either by evaluating the integral directly of by using the circulation form of Green s Theorem.

F Tds. You can do this either by evaluating the integral directly of by using the circulation form of Green s Theorem. MATH 223 (alculus III) - Take Home Quiz 6 olutions April 22, 25. F. Ellermeyer Name Instructions. This is a take home quiz. It is due to be handed in to me on Wednesday, April 29 at class time. You may

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

Unit 4 Day 4 & 5. Piecewise Functions

Unit 4 Day 4 & 5. Piecewise Functions Unit 4 Day 4 & 5 Piecewise Functions Warm Up 1. Why does the inverse variation have a vertical asymptote? 2. Graph. Find the asymptotes. Write the domain and range using interval notation. a. b. f(x)=

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

9/27/2017 FIRST HOURLY PRACTICE 5 Math 21a, Fall Name:

9/27/2017 FIRST HOURLY PRACTICE 5 Math 21a, Fall Name: 9/27/2017 FIRST HOURLY PRACTICE 5 Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

1 Lecture 24: Linearization

1 Lecture 24: Linearization 1 Lecture 24: Linearization 1.1 Outline The linearization of a function at a point a. Linear approximation of the change in f. Error, absolute error. Examples 1.2 Linearization Functions can be complicated.

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information

physicsandmathstutor.com Paper Reference Core Mathematics C3 Advanced Thursday 15 January 2009 Morning Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C3 Advanced Thursday 15 January 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 15 January 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ =

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ = Mixed exercise x x a Parametric equations: cosθ and sinθ 9 cos θ + sin θ Substituting the values for cos θ and sinθ in the equation for ellipse E gives the Cartesian equation: + 9 b Comparing with the

More information

Chapter 5: Trigonometric Functions of Angles Homework Solutions

Chapter 5: Trigonometric Functions of Angles Homework Solutions Chapter : Trigonometric Functions of Angles Homework Solutions Section.1 1. D = ( ( 1)) + ( ( )) = + 8 = 100 = 10. D + ( ( )) + ( ( )) = + = 1. (x + ) + (y ) =. (x ) + (y + 7) = r To find the radius, we

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Section 4.3 version November 3, 2011 at 23:18 Exercises 2. The equation to be solved is

Section 4.3 version November 3, 2011 at 23:18 Exercises 2. The equation to be solved is Section 4.3 version November 3, 011 at 3:18 Exercises. The equation to be solved is y (t)+y (t)+6y(t) = 0. The characteristic equation is λ +λ+6 = 0. The solutions are λ 1 = and λ = 3. Therefore, y 1 (t)

More information

The distance between City C and City A is just the magnitude of the vector, namely,

The distance between City C and City A is just the magnitude of the vector, namely, Pysics 11 Homework III Solutions C. 3 - Problems 2, 15, 18, 23, 24, 30, 39, 58. Problem 2 So, we fly 200km due west from City A to City B, ten 300km 30 nort of west from City B to City C. (a) We want te

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes LESSON SIX - Trigonometric Identities I Example Understanding Trigonometric Identities. a) Why are trigonometric identities considered to be a special type of trigonometric equation? Trigonometric Identities

More information

Solutions to Homework 3, Introduction to Differential Equations, 3450: , Dr. Montero, Spring 2009 M = 3 3 Det(M) = = 24.

Solutions to Homework 3, Introduction to Differential Equations, 3450: , Dr. Montero, Spring 2009 M = 3 3 Det(M) = = 24. Solutions to Homework 3, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 Problem 1. Find the determinant of the matrix 3 3 9 M = 0 2 5 0 0 4 Solution: The determinant is

More information

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES SECTION 9. PARAMETRIC CURVES 9. PARAMETRIC CURVES A Click here for answers. S Click here for solutions. 5 (a) Sketch the curve b using the parametric equations to plot points. Indicate with an arrow the

More information

Introduction to Mathematica and Graphing in 3-Space

Introduction to Mathematica and Graphing in 3-Space 1 Mathematica is a powerful tool that can be used to carry out computations and construct graphs and images to help deepen our understanding of mathematical concepts. This document will serve as a living

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information

Section 8.2 Vector Angles

Section 8.2 Vector Angles Section 8.2 Vector Angles INTRODUCTION Recall that a vector has these two properties: 1. It has a certain length, called magnitude 2. It has a direction, indicated by an arrow at one end. In this section

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Designing Information Devices and Systems I Discussion 2A

Designing Information Devices and Systems I Discussion 2A EECS 16A Spring 218 Designing Information Devices and Systems I Discussion 2A 1. Visualizing Matrices as Operations This problem is going to help you visualize matrices as operations. For example, when

More information

CLASS XII CBSE MATHEMATICS INTEGRALS

CLASS XII CBSE MATHEMATICS INTEGRALS Using Partial Fractions LSS XII SE MTHEMTIS INTEGRLS () cos ( sin)(sin ) () ns: log sin sin () () (SE 8) tan (sin ) c Let sin t cos ( t)( t ) t ( )( ) cosθ (sin θ)(5 cos θ) t,,, t (SE 8 OMP) dθ (SE 7)

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Math 201 Lecture 09: Undetermined Coefficient Cont.

Math 201 Lecture 09: Undetermined Coefficient Cont. +B Math 201 Lecture 09: Undetermined Coefficient Cont. Jan. 27, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in the UA Custom edition, the second

More information

Trigonometric Ratios. θ + k 360

Trigonometric Ratios. θ + k 360 Trigonometric Ratios These notes are intended as a summary of section 6.1 (p. 466 474) in your workbook. You should also read the section for more complete explanations and additional examples. Coterminal

More information

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point. Forward kinematics: X e = c 1 + c 12 Y e = s 1 + s 12 = s 1 s 12 c 1 + c 12, = s 12 c 12 Illustrate the column vector of the Jacobian in the space at the end-effector point. points in the direction perpendicular

More information

1 of 6 7/10/2013 8:32 PM

1 of 6 7/10/2013 8:32 PM 1 of 6 7/10/2013 8:32 PM 2.2Basic Differentiation Rules and Rates of Change (2047326) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1. Question Details LarCalc9 2.2.003.

More information

University of Alberta. Math 214 Sample Exam Math 214 Solutions

University of Alberta. Math 214 Sample Exam Math 214 Solutions University of Alberta Math 14 Sample Exam Math 14 Solutions 1. Test the following series for convergence or divergence (a) ( n +n+1 3n +n+1 )n, (b) 3 n (n +1) (c) SOL: n!, arccos( n n +1 ), (a) ( n +n+1

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

PHYS XXXX-L. Title (of Lab) Name (your name) Date of the lab (date performed) Dr. Thomas Eaves

PHYS XXXX-L. Title (of Lab) Name (your name) Date of the lab (date performed) Dr. Thomas Eaves PHYS XXXX-L Title (of Lab) Name (your name) Date of the lab (date performed) Dr. Thomas Eaves The laboratory report is designed to answer the following questions: a. What did you try to find out? b. How

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 π. Give the value of α to 3 decimal places. (b) Hence write down the minimum value of 7 cos

More information

Math 4013 Solutions to Homework Problems from Chapter 2

Math 4013 Solutions to Homework Problems from Chapter 2 Math 4013 Solutions to Homework Problems from Chapter 2 Section 2.1 1. Sketch the level curves and graphs of the following functions: a f : R 2 R, x, y x y +2 The level curves are just the lines x y +2C

More information

Engineering Notebook

Engineering Notebook Engineering Notebook miscellaneous problems and solutions compiled by C Bond Vol1 no9 Actuator with zero bend angle Rotary Actuator Equations Given two points at which the track radius and gap skew angle

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

Modal analysis of shear buildings

Modal analysis of shear buildings Modal analysis of shear buildings A comprehensive modal analysis of an arbitrary multistory shear building having rigid beams and lumped masses at floor levels is obtained. Angular frequencies (rad/sec),

More information

2D Geometric Transformations. (Chapter 5 in FVD)

2D Geometric Transformations. (Chapter 5 in FVD) 2D Geometric Transformations (Chapter 5 in FVD) 2D geometric transformation Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2 2D Geometric Transformations Question:

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

EEL6667: Homework #1 Solutions

EEL6667: Homework #1 Solutions EEL6667: Homework #1 Solutions Problem 1: Note: homework1.nb is a Mathematica notebook that solves many of the problems in this homework. (a) See homework1.nb. (b) See homework1.nb. Problem :[raig, Exercise.14

More information

Chapter DEs with Discontinuous Force Functions

Chapter DEs with Discontinuous Force Functions Chapter 6 6.4 DEs with Discontinuous Force Functions Discontinuous Force Functions Using Laplace Transform, as in 6.2, we solve nonhomogeneous linear second order DEs with constant coefficients. The only

More information

These items need to be included in the notebook. Follow the order listed.

These items need to be included in the notebook. Follow the order listed. * Use the provided sheets. * This notebook should be your best written work. Quality counts in this project. Proper notation and terminology is important. We will follow the order used in class. Anyone

More information

Kinematics. Professor Sanjay Sarma. September 12, 2007

Kinematics. Professor Sanjay Sarma. September 12, 2007 Kinematics Professor Sanjay Sarma September 12, 2007 1.0 What is Dynamics? The goal of the field of dynamics is to understand how mechanical systems move under the effect of forces. There are 3 components

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Lecture Notes for Math 21: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Shawn D. Ryan Spring 2012 1 Complex Roots of the Characteristic Equation Last Time: We considered the

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Teaching Computers To Make Plans

Teaching Computers To Make Plans November 14, 2018 Millersville University UNIV 103 Making lock-moving Plans What Is True Now? There are blocks and on a table and a block on top of block Making lock-moving Plans What Is True Now? There

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2 Names Date. Consider the function Math 0550 Worksheet SHOW ALL OF YOUR WORK! f() = + 6 + 7 (a) Complete the square and write the function in the form f() = ( a) + b. f() = + 6 + 7 = + 6 + ( 6 ) ( 6 ) +

More information