Stable Boundary Layer Parameterization

Size: px
Start display at page:

Download "Stable Boundary Layer Parameterization"

Transcription

1 Stable Boundary Layer Parameterization Sergej S. Zilitinkevich Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland Atmospheric Sciences and Geophysics,, Finland Nansen Environmental and Remote Sensing Centre, Bergen, Norway Seminar: New developments in Modelling ABLs for NWP 17 June 008

2 Key references Zilitinkevich, S., and Calanca, P., 000: An extended similarity-theory for the stably stratified atmospheric surface layer. Quart. J. Roy. Meteorol. Soc., 16, Zilitinkevich, S., 00: Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Quart, J. Roy. Met. Soc. 18, Zilitinkevich, S.S., Perov, V.L., and King, J.C., 00: Near-surface turbulent fluxes in stable stratification: calculation techniques for use in general circulation models. Quart, J. Roy. Met. Soc. 18, Zilitinkevich S. S., and Esau I. N., 005: Resistance and heat/mass transfer laws for neutral and stable planetary boundary layers: old theory advanced and re-evaluated. Quart. J. Roy. Met. Soc. 131, Zilitinkevich, S., Esau, I. and Baklanov, A., 007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quart. J. Roy. Met. Soc. 133, Zilitinkevich, S. S., and Esau, I. N., 007: Similarity theory and calculation of turbulent fluxes at the surface for stably stratified atmospheric boundary layers. Boundary-Layer Meteorol. 15, Zilitinkevich, S.S., Elperin, T., Kleeorin, N., and Rogachevskii, I., 007: Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes. Boundary-Layer Meteorol. 15, Zilitinkevich, S. S., Mammarella, I., Baklanov, A. A., and Joffre, S. M., 008: The effect of stratification on the roughness length and displacement height. Boundary-Layer Meteorol. In press

3 State of the art

4 Basic types of the stable and neutral ABLs Until recently ABLs were distinguished accounting only for F bs = F : neutral at F =0 stable at F <0 Now more detailed classification: truly neutral (TN) ABL: F =0, N=0 conventionally neutral (CN) ABL: F =0, N>0 nocturnal stable (NS) ABL: F <0, N=0 long-lived stable (LS) ABL: F <0, N>0 Realistic surface flux calculation scheme should be based on a model applicable to all these types of the ABL

5 Content Revision of the similarity theory for stable and neutral ABLs Analytical approximation of mean profiles across the ABL Validation against LES and observational data (to be proceeded) Diagnostic & prognostic ABL height equations (to be included in operational routines) Surface-flux & ABL-height schemes for use in operational models

6 Classical similarity theory and current surface-flux schemes (based on the SL-concept)

7 Neutral stratification (no problem) From logarithmic wall law: du dz 1/ τ =, kz dθ dz = k T τ F θ 1/, z U 1/ τ z = ln, k z 0u Θ Fθ Θ0 = ln 1/ k τ T z z 0u k, k T von Karman constants; z 0 u aerodynamic roughness length for momentum; Θ 0 aerodynamic surface potential temperature (at z 0 u ) [ Θ0-Θ s through z 0 T ] It follows: 1/ 1 τ1 = ku 1 (ln z / z 0u ), F θ1 = kk TU ( Θ1 Θ 0 )(ln z / z 0u τ1 = τ, Fθ 1= F when z1 30 m << h OK in neutral stratification 1 )

8 Stable stratification: current theory (i) local scaling, (ii) log-linear Θ-profile both questionable When z 1 is much above the surface layer τ 1 F τ, θ1 F 3/ τ Monin-Obukhov (MO) theory L = (neglects other scales) βfθ 1/ kz du ktτ z dθ z = Φ ( ξ ) 1/ M, = Φ H ( ξ ), where ξ = τ dz F dz L θ Φ M = + C ξ, Φ H = + C ξ from z-less stratification concept Ri 1 U1 u 1 Θ1 z z ln + CU, zu0 L U = 1 k s Θ Θ β ( dθ / dz)( du / dz) Ric = F 0 = ln + C Θ 1 kt u zu0 Ls k C k T C (unacceptable) 1 Θ1 U1 CU1 ~, C Θ1 also ~ (factually increases with z\l) z z

9 Stable stratification: current parameterization To avoid critical Ri modellers use empirical, heuristic correction functions to the neutral drag and heat/mass transfer coefficients Drag and heat transfer coefficients: C D = τ /(U 1 ), C H = F θs /(U 1 Θ) Neutral: C Dn, C Hn from the logarithmic wall law To account for stratification, correction functions (dependent only of Ri): f D (Ri 1 ) = C D / C Dn and f H (Ri 1 ) = C H / C Hn Ri 1 = β( Θ)z 1 /(U 1 ) (surface-layer Richardson number ) - given parameter

10

11

12 Revised similarity theory and ABL flux-profile relationships

13 Revised similarity theory Zilitinkevich, Esau (005) besides Obukhov s L = τ 3/ (βf θ ) -1 two additional length scales: 1/ τ L = non-local effect of the free flow static stability N N τ L f = f 1/ the effect of the Earth s rotation N ~10 - s -1 Brunt-Väisälä frequency at z>h, f Coriolis parameter τ= τ(z) Interpolation: 1/ 1 1 = C C N f + + L LN Lf L where C N= 0.1 and C f =1

14 Velocity gradient (conventionally neutral ABLs!) Φ M = kzτ --1/ du/dz vs. z/l (a), z/ L (b) x nocturnal; o long-lived; conv. neutral

15 Φ H = (k T τ 1/ z/f θ )dθ/dz vs. z/l (a), z/ L (b) x nocturnal; o long-lived

16 Vertical profiles of turbulent fluxes Turbulent fluxes: data points LES; dashed lines atmospheric data, Lenshow, 1988); solid lines τ = exp( 8 ς ) / u 3, θ F / F θ = exp( ς ) s ; ζ = z/h. ABL height h =?

17 New mean-gradient formulation (no critical Ri) βf Flux Richardson number is limited: Ri f = θ > Rif 0. τdu / dz 1/ du τ Hence asymptotically, and interpolating Φ M = 1+ CU1 ξ dz Ri f L dθ/ dz Gradient Richardson number becomes Ri β k ξφ H ( ξ) = ( du / dz) k T (1 + CU 1ξ ) To assure no Ri-critical, ξ -dependence of Φ should be stronger then linear. H Including CN and LS ABLs: z z z Φ M = 1 + C U1, Φ H= 1+ C Θ1 + CΘ L L L

18 Φ M vs. ξ = z / L, after LES DATABASE64 (all types of SBL). Dark grey points for z<h; light grey points for z>h; the line corresponds to C = U1.

19 Φ H vs. ξ = z / L (all SBLs). Bold curve is our approximation: C Θ1 = 1. 8, C Θ = 0.; thin lines are Φ H = 0.ξ and traditional Φ H = 1+ξ.

20 Ri vs. ξ = z / L, after LES and field data (SHEBA - green points). Bold curve is our model with C U1=, C Θ1=1.6, C Θ=0.. Thin curve is Φ H =1+ξ.

21 Mean profiles and flux-profile relationships We consider wind/velocity and potential/temperature functions Ψ U = ku ( z) ln 1/ τ z z 0u and Ψ Θ = k T τ 1/ [ Θ( z) Θ ] F θ 0 ln z z 0u Our analyses show that Ψ U and Ψ Θ are universal functions of ξ = z / L 5 / 6 Ψ =, U C U ξ 4 / 5 ΨΘ = C, with U Θξ C =3.0 and C Θ =.5 The problem is solved given (i) z 0u and (ii) τ and L as functions of z/h

22 1/ Wind-velocity function Ψ U = kτ U ln( z / z0u ) vs. ξ = z / L, after 5 / 6 LES DATABASE64 (all types of SBL). The line: Ψ U = C U ξ, C U =3.0.

23 Ψ ( ) ln( z / z ) 1/ 1 Pot.-temperature function Θ = kτ Θ Θ0 Fθ ) 5 (all types of SBL). The line: Ψ Θξ 4 / Θ = C with C U =3.0 and ( 0u C =.5. Θ

24 Analytical wind and temperature profiles (SBL) 5 /1 6 5 / 0 1/ ) ( ) ( 1 ln = L f C N C L z C z z ku f N U u τ τ 5 / 5 4 / 0 0 / 1 ) ( ) ( 1 ln ) ( = Θ Θ Θ L f C N C L z C z z F k f N u T τ τ θ where N C =0.1 and f C =1. Given U(z), Θ(z) and N, these equations allow determining τ, θ F, and 1 3/ ) ( = θ β τ F L, at the computational level z.

25 Remain to be determined: ABL height and Roughmess length

26 ABL height

27 References Zilitinkevich, S., Baklanov, A., Rost, J., Smedman, A.-S., Lykosov, V., and Calanca, P., 00: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart, J. Roy. Met. Soc., 18, Zilitinkevich, S.S., and Baklanov, A., 00: Calculation of the height of stable boundary layers in practical applications. Boundary-Layer Meteorol. 105, Zilitinkevich S. S., and Esau, I. N., 00: On integral measures of the neutral, barotropic planetary boundary layers. Boundary-Layer Meteorol. 104, Zilitinkevich S. S. and Esau I. N., 003: The effect of baroclinicity on the depth of neutral and stable planetary boundary layers. Quart, J. Roy. Met. Soc. 19, Zilitinkevich, S., Esau, I. and Baklanov, A., 007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quart. J. Roy. Met. Soc., 133,

28 Factors controlling ABL height

29 Neutral and stable ABL height The dependence of the equilibrium conventionally neutral PPL height, h E, on the freeflow Brunt-Väisälä frequency N after new theory (Z et al., 007a, shown by the curve), LES (red) and field data (blue). Until recently the effect of N on h E was disregarded

30 General case

31 Equilibrium 1 = h E C R Modelling the stable ABL height f τ + N f C CN τ fβf + C NS τ ( C R=0.6, C CN =1.36, C NS =0.51) Baroclinic: substitute u T = u * (1+C 0 Γ/N) 1/ for u * in the nd term on the r.h.s. Vertical motions: h E corr = E h + w h T t, where t T = Ct h E / u * Generally prognostic equation (Z. and Baklanov, 00): h r u + U h wh = K h h Ct ( h he ) t h E ( C t = 1) h 4 1 Θ Given h, the free-flow Brunt-Väisälä frequency is N = β h z h dz

32 Conclusions (surface fluxes and ABL height) Background: Generalised scaling accounting for the free-flow stability, No critical Ri (Φ H consistent with TTE closure) Stable ABL height model Verified against LES DATABASE64 (4 ABL types: TN, CN, NS and LS) Data from the field campaign SHEBA More detailed validation needed Deliverable 1: analytical wind & temperature profiles in SBLs Deliverable : surface flux and ABL height schemes for use in operational models

33 Roughmess length

34 Stability dependences of the roughness length and displacement height S. S. Zilitinkevich 1,,3, I. Mammarella 1,, A. Baklanov 4, and S. M. Joffre 1. Atmospheric Sciences,, Finland. Finnish Meteorological Institute, Helsinki, Finland 3. Nansen Environmental and Remote Sensing Centre / Bjerknes Centre for Climate Research, Bergen, Norway 4. Danish Meteorological Institute, Copenhagen, Denmark New developments in modelling ABLs for NWP 17 June 008

35 Reference S. S. Zilitinkevich, I. Mammarella, A. A. Baklanov, and S. M. Joffre, 007: The roughness length in environmental fluid mechanics: the classical concept and the effect of stratification. Boundary-Layer Meteorology. In press.

36 Content Roughness length and displacement height: u* z d0u u( z) = ln + Ψ k z No stability dependence of z 0 u (and d 0 u ) in engineering fluid mechanics: neutral-stability z 0 = level, at which u (z) plotted vs. ln z approaches zero; z 0 ~ 1 of typical height of roughness elements, h 5 0 Meteorology / oceanography: h 0 comparable with MO length Stability dependence of the actual roughness length, z 0 u : z 0 < z 0 in stable stratification; z 0 > z 0 in unstable stratification u 0u u u z L L u 3 = βfθ s

37 Surface layer and roughness length 1 Self similarity in the surface layer (SL) 1.6h 0 <z< 10 h Height-constant fluxes: τ τ z= 5h u 0 u and z serve as turbulent scales: u T ~ u, l T ~ z Eddy viscosity ( k 0. 4) K M (~ u l )= ku z T T Velocity gradient U / z = τ / K M = u / kz 1 1 Integration constant: U = k u ln z + constant = k u ln( z / z0u ) z 0 u (redefined constant of integration) is roughness length 1 Displacement height u U = k u ln ( z d u 0 ) / zu Not applied to the roughness layer (RL) 0<z<5h 0 d 0 [ ] 0

38 Parameters controlling z 0u Smooth surfaces: viscous layer z 0 u ~ ν /u Very rough surfaces: pressure forces depend on: obstacle height h 0 velocity in the roughness layer U R~ u z 0 u = z 0 u ( h 0, u )~ h 0 (in sand roughness experiments No dependence on u ; surfaces characterised by Generally z 0 u= h 0 f 0 (Re 0 ) where Re0 = u h 0 / ν Stratification at M-O length ) z 1 0 u 30 h 0 z 0 u= constant 3 1 L = u Fb comparable with h 0

39 Stability Dependence of Roughness Length For urban and vegetation canopies with roughness-element heights (0-50 m) comparable with the Obukhov turbulent length scale, L, the surface resistance and roughness length depend on stratification

40 Background physics and effect of stratification Physically z 0 u = depth of a sub-layer within RL ( 0 < z < 1.6h0 ) with 90% of the velocity drop from U R ~ u (approached at z ~ h0 ) From τ = K U / z, τ u and U / z ~ U R / z0u~ u / z0u M ( RL ) z ~ 0 u ~ KM ( RL) / u K M (RL) = K M ( h 0 + 0) from matching the RL and the surface-layer Neutral: Stable: K Unstable: ~ u h classical formula z0 u ~ h0 1 = ku z(1 + Cuz / L) ~ u L z0 u ~ L 1 1/ 3 4 / 3 1/ 3 4 / 3 K = ku z C F z ~ z z u ~ h ( h / L K M 0 M M + U b F b 1/ )

41 Recommended formulation Neutral stable z 0u = 1 z 0 1+ C SS h 0 / L Neutral unstable 1/3 z h 0u = 1+ C 0 US z L 0 Constants: C =8. 13±0.1, C = 1.4±0.05 SS US

42 Experimental datasets Sodankyla Meteorological Observatory, Boreal forest (FMI) BUBBLE urban BL experiment, Basel, Sperrstrasse (Rotach et al., 004) h 13 m, measurement levels 3, 5, 47 m h 14.6 m, measurement levels 3.6, 11.3, 14.7, 17.9,.4, 31.7 m

43 Stable stratification Bin-average values of z / z (neutral- over actual-roughness lengths) versus h 0 0u 0/L in stable stratification for Boreal forest (h0=13.5 m; z 0 =1.1±0.3 m). Bars are standard errors; the curve is z / z = h / L 0 0u + 0.

44 Stable stratification Bin-average values of z / z 0 u 0 (actual- over neutral-roughness lengths) versus h 0 /L in stable stratification for boreal forest (h0=13.5 m; z 0 =1.1±0.3 m). Bars are standard errors; the curve is z / z 1 0 u 0 = ( h / L. 0 )

45 Stable stratification Displacement height over its neutral-stability value in stable stratification. Boreal forest (h 0 = 15 m, d 0 = 9.8 m). ( ) The curve is 1 d0 u / d ( h0 / L) h0 / = L

46 Unstable stratification Convective eddies extend in the vertical causing z > 0 z0u VOLUME 81, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AUGUST 1998 Y.-B. Du and P. Tong, Enhanced Heat Transport in Turbulent Convection over a Rough Surface

47 Unstable stratification Unstable stratification, Basel, z 0 / z 0u vs. Ri = (gh 0 /Θ 3 )(Θ 18 Θ 3 )/(U 3 ) Building height =14.6 m, neutral roughness z 0 =1. m; BUBBLE, Rotach et al., 005). h 0 /L through empirical dependence on Ri on (next figure) The curve (z 0 / z 0u =1+5.31Ri 6/13 ) confirms theoretical z 0u /z 0 = (h 0 /-L) 1/3

48 Unstable stratification Empirical Ri = (h 0 / L) 13/18

49 Unstable stratification Displacement height in unstable stratification (Basel): The line confirms theoretical dependence: d 0u d0 / d ou 1 versus d0 = 1/3 1+ C ( h / L) DC 0 Ri

50 STABILITY DEPENDENCE OF THE ROUGHNESS LENGTH in the meteorological interval -10 < h 0 /L <10 after new theory and experimental data Solid line: z 0u /z 0 versus h 0 /L Thin line: traditional formulation z 0u = z 0

51 STABILITY DEPENDENCE OF THE DISPLACEMENT HEIGHT in the meteorological interval -10 < h 0 /L <10 after new theory and experimental data Solid line: d 0u /d 0 versus h 0 /L Dashed line: the upper limit: d 0 = h 0

52 Conclusions (roughness & displacement) Traditional: roughness length and displacement height fully characterised by geometric features of the surface New: essential dependence on hydrostatic stability especially in stable stratification Logarithmic intervals in the velocity profiles diminish over very rough surfaces in both very stable and very unstable stratification Applications: to urban and terrestrial-ecosystem meteorology Especially: urban air pollution episodes in very stable stratification

53 Thank you

Sergej S. Zilitinkevich 1,2,3. Division of Atmospheric Sciences, University of Helsinki, Finland

Sergej S. Zilitinkevich 1,2,3. Division of Atmospheric Sciences, University of Helsinki, Finland Atmospheric Planetary Boundary Layers (ABLs / PBLs) in stable, neural and unstable stratification: scaling, data, analytical models and surface-flux algorithms Sergej S. Zilitinkevich 1,,3 1 Division of

More information

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008 1966-10 Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling 9 September - 10 October, 008 Physic of stable ABL and PBL? Possible improvements of their parameterizations

More information

THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT

THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT S. S. Zilitinkevich 1,2,3, I. Mammarella 1,2, A. Baklanov 4, and S. M. Joffre 2 1. Atmospheric Sciences,, Finland 2. Finnish

More information

Sergej S. Zilitinkevich 1,2,3. Helsinki 27 May 1 June Division of Atmospheric Sciences, University of Helsinki, Finland 2

Sergej S. Zilitinkevich 1,2,3. Helsinki 27 May 1 June Division of Atmospheric Sciences, University of Helsinki, Finland 2 Atmospheric Planetary Boundary Layers (ABLs / PBLs) in stable, neural and unstable stratification: scaling, data, analytical models and surface-flux algorithms Sergej S. Zilitinkevich 1,2,3 1 Division

More information

On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models

On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models Boundary-Layer Meteorol (2010) 135:513 517 DOI 10.1007/s10546-010-9487-y RESEARCH NOTE On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models Rostislav D. Kouznetsov

More information

Spring Semester 2011 March 1, 2011

Spring Semester 2011 March 1, 2011 METR 130: Lecture 3 - Atmospheric Surface Layer (SL - Neutral Stratification (Log-law wind profile - Stable/Unstable Stratification (Monin-Obukhov Similarity Theory Spring Semester 011 March 1, 011 Reading

More information

Turbulence closure for stably stratified geophysical flows S. Zilitinkevich1-5, T. Elperin6, N. Kleeorin3,6, I. Rogachevskii3,6

Turbulence closure for stably stratified geophysical flows S. Zilitinkevich1-5, T. Elperin6, N. Kleeorin3,6, I. Rogachevskii3,6 Turbulence closure for stably stratified geophysical flows S. Zilitinkevich1-5, T. Elperin6, N. Kleeorin3,6, I. Rogachevskii3,6 1 Finnish Meteorological Institute, Helsinki, Finland 2 Atmospheric Sciences,

More information

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization Julia Palamarchuk Odessa State Environmental University, Ukraine The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization The low-level katabatic

More information

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer Logarithmic velocity profile in the atmospheric (rough wall) boundary layer P =< u w > U z = u 2 U z ~ ε = u 3 /kz Mean velocity profile in the Atmospheric Boundary layer Experimentally it was found that

More information

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3 Contents 1 The Richardson Number 1 1a Flux Richardson Number...................... 1 1b Gradient Richardson Number.................... 2 1c Bulk Richardson Number...................... 3 2 The Obukhov

More information

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica S. Argentini, I. Pietroni,G. Mastrantonio, A. Viola, S. Zilitinchevich ISAC-CNR Via del Fosso del Cavaliere 100,

More information

Surface layer parameterization in WRF

Surface layer parameterization in WRF Surface layer parameteriation in WRF Laura Bianco ATOC 7500: Mesoscale Meteorological Modeling Spring 008 Surface Boundary Layer: The atmospheric surface layer is the lowest part of the atmospheric boundary

More information

3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures

3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures 3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures Igor ROGACHEVSKII and Nathan KLEEORIN Ben-Gurion University of the Negev, Beer-Sheva, Israel N.I. Lobachevsky State University

More information

AIRCRAFT MEASUREMENTS OF ROUGHNESS LENGTHS FOR SENSIBLE AND LATENT HEAT OVER BROKEN SEA ICE

AIRCRAFT MEASUREMENTS OF ROUGHNESS LENGTHS FOR SENSIBLE AND LATENT HEAT OVER BROKEN SEA ICE Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research AIRCRAFT

More information

Large eddy simulation studies on convective atmospheric boundary layer

Large eddy simulation studies on convective atmospheric boundary layer Large eddy simulation studies on convective atmospheric boundary layer Antti Hellsten & Sergej Zilitinkevich Finnish Meteorological Institute Outline Short introduction to atmospheric boundary layer (ABL)

More information

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface:

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface: Chapter five (Wind profile) 5.1 The Nature of Airflow over the surface: The fluid moving over a level surface exerts a horizontal force on the surface in the direction of motion of the fluid, such a drag

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Atm S 547 Lecture 4,

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

COMMENTS ON "FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER" Zbigniew Sorbjan

COMMENTS ON FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER Zbigniew Sorbjan COMMENTS ON "FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER" Zbigniew Sorbjan Department of Physics, Marquette University, Milwaukee, WI 5301, U.S.A. A comment

More information

H A NOVEL WIND PROFILE FORMULATION FOR NEUTRAL CONDITIONS IN URBAN ENVIRONMENT

H A NOVEL WIND PROFILE FORMULATION FOR NEUTRAL CONDITIONS IN URBAN ENVIRONMENT HARMO13-1- June 1, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes H13-178 A NOVEL WIND PROFILE FORMULATION FOR NEUTRAL CONDITIONS IN URBAN

More information

Wind farm performance in conventionally neutral atmospheric boundary layers with varying

Wind farm performance in conventionally neutral atmospheric boundary layers with varying Home Search Collections Journals About Contact us My IOPscience Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths This content has been downloaded

More information

τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization

τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization Note that w *3 /z i is used to normalized the TKE equation in case of free

More information

The parametrization of the planetary boundary layer May 1992

The parametrization of the planetary boundary layer May 1992 The parametrization of the planetary boundary layer May 99 By Anton Beljaars European Centre for Medium-Range Weather Forecasts Table of contents. Introduction. The planetary boundary layer. Importance

More information

Third-order transport due to internal waves and non-local turbulence in the stably strati ed surface layer

Third-order transport due to internal waves and non-local turbulence in the stably strati ed surface layer Q. J. R. Meteorol. Soc. (00), 18, pp. 913 95 Third-order transport due to internal waves and non-local turbulence in the stably strati ed surface layer By SERGEJ S. ZILITINKEVICH Uppsala University, Sweden

More information

Part I: Overview of modeling concepts and techniques Part II: Modeling neutrally stratified boundary layer flows

Part I: Overview of modeling concepts and techniques Part II: Modeling neutrally stratified boundary layer flows Physical modeling of atmospheric boundary layer flows Part I: Overview of modeling concepts and techniques Part II: Modeling neutrally stratified boundary layer flows Outline Evgeni Fedorovich School of

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

6A.3 Stably stratified boundary layer simulations with a non-local closure model

6A.3 Stably stratified boundary layer simulations with a non-local closure model 6A.3 Stably stratified boundary layer simulations with a non-local closure model N. M. Colonna, E. Ferrero*, Dipartimento di Scienze e Tecnologie Avanzate, University of Piemonte Orientale, Alessandria,

More information

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain Pure appl. geophys. 160 (2003) 395 404 0033 4553/03/020395 10 Ó Birkhäuser Verlag, Basel, 2003 Pure and Applied Geophysics A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds

More information

Land/Atmosphere Interface: Importance to Global Change

Land/Atmosphere Interface: Importance to Global Change Land/Atmosphere Interface: Importance to Global Change Chuixiang Yi School of Earth and Environmental Sciences Queens College, City University of New York Outline Land/atmosphere interface Fundamental

More information

On the limiting effect of the Earth s rotation on the depth of a stably stratified boundary layer

On the limiting effect of the Earth s rotation on the depth of a stably stratified boundary layer Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1473 148, July 21 Part B On the limiting effect of the Earth s rotation on the depth of a stably stratified boundary layer

More information

Part III: Modeling atmospheric convective boundary layer (CBL) Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, USA

Part III: Modeling atmospheric convective boundary layer (CBL) Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, USA Physical modeling of atmospheric boundary layer flows Part III: Modeling atmospheric convective boundary layer (CBL) Outline Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, USA

More information

Strategy for Urbanization of Different Types of Models

Strategy for Urbanization of Different Types of Models Chapter 3. Strategy for Urbanization of Different Types of Models 3.1 FUMAPEX Experience of Model Urbanisation Alexander Baklanov and FUMAPEX Team Danish Meteorological Institute, DMI, Copenhagen, Denmark

More information

Sea-surface roughness and drag coefficient as function of neutral wind speed

Sea-surface roughness and drag coefficient as function of neutral wind speed 630 Sea-surface roughness and drag coefficient as function of neutral wind speed Hans Hersbach Research Department July 2010 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found

More information

Multichoice (22 x 1 2 % = 11%)

Multichoice (22 x 1 2 % = 11%) EAS572, The Atmospheric Boundary Layer Final Exam 7 Dec. 2010 Professor: J.D. Wilson Time available: 150 mins Value: 35% Notes: Indices j = (1, 2, 3) are to be interpreted as denoting respectively the

More information

Atmospheric stability parameters and sea storm severity

Atmospheric stability parameters and sea storm severity Coastal Engineering 81 Atmospheric stability parameters and sea storm severity G. Benassai & L. Zuzolo Institute of Meteorology & Oceanography, Parthenope University, Naples, Italy Abstract The preliminary

More information

Atmospheric Boundary Layers

Atmospheric Boundary Layers Lecture for International Summer School on the Atmospheric Boundary Layer, Les Houches, France, June 17, 2008 Atmospheric Boundary Layers Bert Holtslag Introducing the latest developments in theoretical

More information

Frictional boundary layers

Frictional boundary layers Chapter 12 Frictional boundary layers Turbulent convective boundary layers were an example of boundary layers generated by buoyancy forcing at a boundary. Another example of anisotropic, inhomogeneous

More information

A simple operative formula for ground level concentration from a point source

A simple operative formula for ground level concentration from a point source Air Pollution XX 3 A simple operative formula for ground level concentration from a point source T. Tirabassi, M. T. Vilhena & D. Buske 3 Institute of Atmospheric cience and Climate (IAC-CNR), Bologna,

More information

Implementation of the Quasi-Normal Scale Elimination (QNSE) Model of Stably Stratified Turbulence in WRF

Implementation of the Quasi-Normal Scale Elimination (QNSE) Model of Stably Stratified Turbulence in WRF Implementation of the Quasi-ormal Scale Elimination (QSE) odel of Stably Stratified Turbulence in WRF Semion Sukoriansky (Ben-Gurion University of the egev Beer-Sheva, Israel) Implementation of the Quasi-ormal

More information

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow.

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow. Victor S. L vov: Israeli-Italian March 2007 Meeting Phenomenology of Wall Bounded Turbulence: Minimal Models In collaboration with : Anna Pomyalov, Itamar Procaccia, Oleksii Rudenko (WIS), Said Elgobashi

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Lei Zhao. F&ES Yale University

Lei Zhao. F&ES Yale University Lei Zhao F&ES Yale University Outline Basic Idea Algorithm Results: modeling vs. observation Discussion Basic Idea Surface Energy Balance Equation Diagnostic form: Heat capacity of ground zero ; ground

More information

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman 1. Characteristics of the Roughness Sub layer With well understood caveats, the time averaged statistics of flow in the atmospheric

More information

ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS

ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS Radi Sadek 1, Lionel Soulhac 1, Fabien Brocheton 2 and Emmanuel Buisson 2 1 Laboratoire de Mécanique des Fluides et d Acoustique,

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

and Meteorology Amir A. Aliabadi July 16, 2017 The 2017 Connaught Summer Institute in Arctic Science: Atmosphere, Cryosphere, and Climate

and Meteorology Amir A. Aliabadi July 16, 2017 The 2017 Connaught Summer Institute in Arctic Science: Atmosphere, Cryosphere, and Climate The 2017 Connaught Summer Institute in Science: Atmosphere, Cryosphere, and Climate July 16, 2017 Modelling Outline Modelling Modelling A zonal-mean flow field is said to be hydro-dynamically unstable

More information

IMPROVEMENT OF THE MELLOR YAMADA TURBULENCE CLOSURE MODEL BASED ON LARGE-EDDY SIMULATION DATA. 1. Introduction

IMPROVEMENT OF THE MELLOR YAMADA TURBULENCE CLOSURE MODEL BASED ON LARGE-EDDY SIMULATION DATA. 1. Introduction IMPROVEMENT OF THE MELLOR YAMADA TURBULENCE CLOSURE MODEL BASED ON LARGE-EDDY SIMULATION DATA MIKIO NAKANISHI Japan Weather Association, Toshima, Tokyo 70-6055, Japan (Received in final form 3 October

More information

Report from stay in Bratislava : 5 April - 2 May 2013

Report from stay in Bratislava : 5 April - 2 May 2013 Report from stay in Bratislava : 5 April - 2 May 2013 executed by: Ivan Bašták Ďurán supported by: Jozef Vívoda, Martin Beluš, Mária Derková and Michal Neštiak 29.7.2014 Contents 1 TOUCANS 2 2 TOUCANS

More information

Transactions on Ecology and the Environment vol 13, 1997 WIT Press, ISSN

Transactions on Ecology and the Environment vol 13, 1997 WIT Press,   ISSN A Study of the Evolution of the Nocturnal Boundary-Layer Height at the Central Nuclear de Almaraz (Spain): Diagnostic Relationships Jose A Garcia*, M L Cancillo', J L Cano\ G Maqueda^, L Cana^, C Yagiie^

More information

Aeroelectric structures and turbulence in the atmospheric boundary layer

Aeroelectric structures and turbulence in the atmospheric boundary layer Nonlin. Processes Geophys., 20, 819 824, 2013 doi:10.5194/npg-20-819-2013 Author(s) 2013. CC Attribution 3.0 License. Nonlinear Processes in Geophysics Open Access Aeroelectric structures and turbulence

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

Environmental Fluid Dynamics

Environmental Fluid Dynamics Environmental Fluid Dynamics ME EN 7710 Spring 2015 Instructor: E.R. Pardyjak University of Utah Department of Mechanical Engineering Definitions Environmental Fluid Mechanics principles that govern transport,

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 8. Parameterization of BL Turbulence I In this lecture Fundamental challenges and grid resolution constraints for BL parameterization Turbulence closure (e. g. first-order closure and TKE) parameterizations

More information

Pollutant dispersion in urban geometries

Pollutant dispersion in urban geometries Pollutant dispersion in urban geometries V. Garbero 1, P. Salizzoni 2, L. Soulhac 2 1 Politecnico di Torino - Department of Mathematics 2 Ecole Centrale de Lyon - Laboratoire de Méchaniques des Fluides

More information

The refinement of a meteorological preprocessor for the urban environment. Ari Karppinen, Sylvain M. Joffre and Jaakko Kukkonen

The refinement of a meteorological preprocessor for the urban environment. Ari Karppinen, Sylvain M. Joffre and Jaakko Kukkonen Int. J. Environment and Pollution, Vol. 14, No. 1-6, 000 1 The refinement of a meteorological preprocessor for the urban environment Ari Karppinen, Slvain M. Joffre and Jaakko Kukkonen Finnish Meteorological

More information

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Motivation Objective I: Assess and improve parameterizations of the bottom boundary

More information

Papers. On the resistance law in a shallow sea. Abstract

Papers. On the resistance law in a shallow sea. Abstract Papers On the resistance law in a shallow sea Bottom stress Shallow sea R afał L e w a n d o w ic z Institute of Meteorology and Water Management Gdynia Manuscript received June 27, 1984, in final form

More information

Validation of 2-meters temperature forecast at cold observed conditions by different NWP models

Validation of 2-meters temperature forecast at cold observed conditions by different NWP models Validation of 2-meters temperature forecast at cold observed conditions by different NWP models Evgeny Atlaskin Finnish Meteorological Institute / Russian State Hydrometeorological University OUTLINE Background

More information

5.07 THE CALCULATED MIXING HEIGHT IN COMPARISON WITH THE MEASURED DATA

5.07 THE CALCULATED MIXING HEIGHT IN COMPARISON WITH THE MEASURED DATA 5.7 THE CALCULATED MIXING HEIGHT IN COMPARISON WITH THE MEASURED DATA J. Burzynski, J. Godłowska, A. M. Tomaszewska, J. Walczewski Institute of Meteorology and Water Management Division for Remote Sensing

More information

Local Similarity in the Stable Boundary Layer and Mixing-Length Approaches: Consistency of Concepts

Local Similarity in the Stable Boundary Layer and Mixing-Length Approaches: Consistency of Concepts oundary-layer Meteorol (2008 28:03 6 DOI 0.007/s0546-008-9277-y OTE Local Similarity in the Stable oundary Layer and Mixing-Length Approaches: Consistency of Concepts. J. H. van de Wiel A. F. Moene W.

More information

BOUNDARY LAYER STRUCTURE SPECIFICATION

BOUNDARY LAYER STRUCTURE SPECIFICATION August 2017 P09/01X/17 BOUNDARY LAYER STRUCTURE SPECIFICATION CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and ADMS-Airport 4.1. Where information refers to a subset of

More information

Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model

Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model 1528 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 70 Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model JING HUANG* AND

More information

An Update of Non-iterative Solutions for Surface Fluxes Under Unstable Conditions

An Update of Non-iterative Solutions for Surface Fluxes Under Unstable Conditions Boundary-Layer Meteorol 2015 156:501 511 DOI 10.1007/s10546-015-0032-x NOTES AND COMMENTS An Update of Non-iterative Solutions for Surface Fluxes Under Unstable Conditions Yubin Li 1 Zhiqiu Gao 2 Dan Li

More information

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS CHAPTER 7: THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS 7.1: Introduction The atmosphere is sensitive to variations in processes at the land surface. This was shown in the earlier

More information

Improving non-local parameterization of the convective boundary layer

Improving non-local parameterization of the convective boundary layer Boundary-Layer Meteorol DOI ORIGINAL PAPER Improving non-local parameterization of the convective boundary layer Zbigniew Sorbjan 1, 2, 3 Submitted on 21 April 2008 and revised on October 17, 2008 Abstract

More information

Mellor-Yamada Level 2.5 Turbulence Closure in RAMS. Nick Parazoo AT 730 April 26, 2006

Mellor-Yamada Level 2.5 Turbulence Closure in RAMS. Nick Parazoo AT 730 April 26, 2006 Mellor-Yamada Level 2.5 Turbulence Closure in RAMS Nick Parazoo AT 730 April 26, 2006 Overview Derive level 2.5 model from basic equations Review modifications of model for RAMS Assess sensitivity of vertical

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg Boundary layer processes Bjorn Stevens Max Planck Institute for Meteorology, Hamburg The Atmospheric Boundary Layer (ABL) An Abstraction (Wippermann 76) The bottom 100-3000 m of the Troposphere (Stull

More information

Development and validation of an operational model for air quality predictions SIRANE Salizzoni P., Garbero V., Soulhac L.,

Development and validation of an operational model for air quality predictions SIRANE Salizzoni P., Garbero V., Soulhac L., Ecole Centrale de Lyon Laboratoire de Mécanique des Fluides et d'acoustique Development and validation of an operational model for air quality predictions SIRANE Salizzoni P., Garbero V., Soulhac L., Flow

More information

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 A puff-particle dispersion model P. de Haan and M. W. Rotach Swiss Federal Institute of Technology, GGIETH, Winterthurerstrasse 190, 8057 Zürich,

More information

ESTIMATION OF SURFACE ROUGHNESS LENGTH FOR URBAN LAND: A REVIEW

ESTIMATION OF SURFACE ROUGHNESS LENGTH FOR URBAN LAND: A REVIEW ESTIMATION OF SURFACE ROUGHNESS LENGTH FOR URBAN LAND: A REVIEW Arasi Dobariya 1, Prof. Dr. N. S. Varandani 2, Prof. Huma Syed 3 1 M.E. Student, Department of environmental engineering, L.D College of

More information

Horizontal buoyancy-driven flow along a differentially cooled underlying surface

Horizontal buoyancy-driven flow along a differentially cooled underlying surface Horizontal buoyancy-driven flow along a differentially cooled underlying surface By Alan Shapiro and Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, OK, USA 6th Baltic Heat Transfer

More information

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques 1 Fluxes, or technically flux densities, are the number

More information

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Stimit Shah, Elie Bou-Zeid Princeton University 64 th APS DFD Baltimore, Maryland Nov 21, 211 Effect of Stability on Atmospheric

More information

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Ann-Sofi Smedman Uppsala University Uppsala, Sweden Effect of transfer process

More information

Quasi-Normal Scale Elimination (QNSE) theory of anisotropic turbulence and waves in flows with stable stratification

Quasi-Normal Scale Elimination (QNSE) theory of anisotropic turbulence and waves in flows with stable stratification Quasi-Normal Scale Elimination QNSE theory of anisotropic turbulence and waves in flows with stable stratification Semion Suoriansy, Boris Galperin Ben-Gurion University of the Negev, Beer-Sheva, Israel

More information

BOUNDARY-LAYER METEOROLOGY

BOUNDARY-LAYER METEOROLOGY BOUNDARY-LAYER METEOROLOGY Han van Dop, September 2008 D 08-01 Contents 1 INTRODUCTION 3 1.1 Atmospheric thermodynamics.................... 3 1.2 Statistical aspects of fluid mechanics................

More information

Nonlinear Balance on an Equatorial Beta Plane

Nonlinear Balance on an Equatorial Beta Plane Nonlinear Balance on an Equatorial Beta Plane David J. Raymond Physics Department and Geophysical Research Center New Mexico Tech Socorro, NM 87801 April 26, 2009 Summary Extension of the nonlinear balance

More information

The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods

The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods Resources 2014, 3, 81-105; doi:10.3390/resources3010081 OPEN ACCESS resources ISSN 2079-9276 www.mdpi.com/journal/resources Article The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation

More information

M. Mielke et al. C5816

M. Mielke et al. C5816 Atmos. Chem. Phys. Discuss., 14, C5816 C5827, 2014 www.atmos-chem-phys-discuss.net/14/c5816/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric

More information

Time and length scales based on the Brunt Vasala frequency N BV. (buoyancy) length scale l B = σ w / N BV

Time and length scales based on the Brunt Vasala frequency N BV. (buoyancy) length scale l B = σ w / N BV Time and length scales based on the Brunt Vasala frequency N BV time scale: t BV = 1/N BV (buoyancy) length scale l B = σ w / N BV period of oscillation of a parcel in a statistically stable environment:

More information

A ONE-DIMENSIONAL FINITE-ELEMENT BOUNDARY-LAYER MODEL WITH A VERTICAL ADAPTIVE GRID

A ONE-DIMENSIONAL FINITE-ELEMENT BOUNDARY-LAYER MODEL WITH A VERTICAL ADAPTIVE GRID A ONE-DIMENSIONAL FINITE-ELEMENT BOUNDARY-LAYER MODEL WITH A VERTICAL ADAPTIVE GRID T. M. DUNBAR, E. HANERT AND R. J. HOGAN July 1, Abstract A one-dimensional atmospheric boundary-layer model is developed

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers

Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers Igor N. Esau Øyvind Byrkjedal Abstract Large-eddy simulation (LES)

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

Collapse of turbulence in atmospheric flows turbulent potential energy budgets in a stably stratified couette flow

Collapse of turbulence in atmospheric flows turbulent potential energy budgets in a stably stratified couette flow Eindhoven University of Technology BACHELOR Collapse of turbulence in atmospheric flows turbulent potential energy budgets in a stably stratified couette flow de Haas, A.W. Award date: 2015 Link to publication

More information

1.18 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN

1.18 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN .8 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN Joseph Levitin, Jari Härkönen, Jaakko Kukkonen and Juha Nikmo Israel Meteorological Service (IMS),

More information

Boundary Layer Parametrization for Atmospheric Diffusion Models by Meteorological Measurements at Ground Level.

Boundary Layer Parametrization for Atmospheric Diffusion Models by Meteorological Measurements at Ground Level. IL NUOVO CIMENTO VOL. 17 C, N. 2 Marzo-Aprile 1994 Boundary Layer Parametrization for Atmospheric Diffusion Models by Meteorological Measurements at Ground Level. R. BELLASIO('), G. LANZANI('), M. TAMPONI(2)

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

The Von Kármán constant retrieved from CASES-97 dataset using a variational method

The Von Kármán constant retrieved from CASES-97 dataset using a variational method Atmos. Chem. Phys., 8, 7045 7053, 2008 Authors 2008. This work is distributed under the Creative Commons Attribution 3.0 icense. Atmospheric Chemistry Physics The Von Kármán constant retrieved from CASES-97

More information

Statistical turbulence modelling in the oceanic mixed layer

Statistical turbulence modelling in the oceanic mixed layer Statistical turbulence modelling in the oceanic mixed layer Hans Burchard hans.burchard@io-warnemuende.de Baltic Sea Research Institute Warnemünde, Germany Seminar at Bjerknes Centre, October 16, 23, Bergen,

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information