Announcements Monday, November 20

Size: px
Start display at page:

Download "Announcements Monday, November 20"

Transcription

1 Announcements Monday, November 20 You already have your midterms! Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be awarded depends on many factors, and will not be determined until all grades are in. Individual exam grades are not curved. WeBWorK 6.1, 6.2, 6.3 due the Wednesday after Thanksgiving. Reading day: Math is 1 3pm on December 6 in Clough 144 and 152. I ll be there for part of it. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am.

2 Section 6.2/6.3 Orthogonal Projections

3 Best Approximation Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W. x x y y W Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the closest point to x on W. How do you know that y is the closest point? The vector from y to x is orthogonal to W : it is in the orthogonal complement W.

4 Orthogonal Decomposition Recall: If W is a subspace of R n, its orthogonal complement is W = { v in R n v is perpendicular to every vector in W } Theorem Every vector x in R n can be written as x = x W + x W for unique vectors x W in W and x W in W. The equation x = x W + x W (with respect to W ). is called the orthogonal decomposition of x The vector x W is the closest vector to x on W. x [interactive 1] [interactive 2] x W x W W

5 Orthogonal Decomposition Justification Theorem Every vector x in R n can be written as x = x W + x W for unique vectors x W in W and x W in W. Why? Uniqueness: suppose x = x W + x W = x W + x W for x W, x W in W and x W, x W in W. Rewrite: x W x W = x W x W. The left side is in W, and the right side is in W, so they are both in W W. But the only vector that is perpendicular to itself is the zero vector! Hence 0 = x W x W = x W = x W 0 = x W x W = x W = x W Existence: We will compute the orthogonal decomposition later using orthogonal projections.

6 Orthogonal Decomposition Example Let W be the xy-plane in R 3. Then W is the z-axis x = 2 = x W = 2 x W = a a 0 x = b = x W = b x W = 0. c 0 c This is just decomposing a vector into a horizontal component (in the xy-plane) and a vertical component (on the z-axis). x x W x W W [interactive]

7 Orthogonal Decomposition Computation? Problem: Given x and W, how do you compute the decomposition x = x W + x W? Observation: It is enough to compute x W, because x W = x x W. First we need to discuss orthogonal sets. Definition A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if, in addition, each vector is a unit vector. Lemma An orthogonal set of vectors is linearly independent. Hence it is a basis for its span. Suppose {u 1, u 2,..., u m} is orthogonal. We need to show that the equation c 1u 1 + c 2u c mu m = 0 has only the trivial solution c 1 = c 2 = = c m = 0. 0 = u 1 (c 1u 1 + c 2u c mu m) = c 1(u 1 u 1) Hence c 1 = 0. Similarly for the other c i.

8 Orthogonal Sets Examples Example: B = 1, 2, 0 is an orthogonal set. Check: = = = Example: B = {e 1, e 2, e 3} is an orthogonal set. Check: = = = Example: Let x = ( ) ( a b be a nonzero vector, and let y = b a orthogonal set: ( ) a b ( ) b = ab + ab = 0. a ). Then {x, y} is an

9 Orthogonal Projections Definition Let W be a subspace of R n, and let {u 1, u 2,..., u m} be an orthogonal basis for W. The orthogonal projection of a vector x onto W is proj W (x) def = m i=1 x u i u i u i u i = x u1 u 1 u 1 u 1 + x u2 u 2 u 2 u x un u n u n u n. This is a vector in W because it is in Span{u 1, u 2,..., u m}. Theorem Let W be a subspace of R n, and let x be a vector in R n. Then x W = proj W (x) and x W = x proj W (x). In particular, proj W (x) is the closest point to x in W. Why? Let y = proj W (x). We need to show that x y is in W. In other words, u i (x y) = 0 for each i. Let s do u 1: ( ) m x u i u 1 (x y) = u 1 x u i = u 1 x x u1 (u 1 u 1) 0 = 0. u i u i u 1 u 1 i=1

10 Orthogonal Projection onto a Line The formula for orthogonal projections is simple when W is a line. Let L = Span{u} be a line in R n, and let x be in R n. The orthogonal projection of x onto L is the point proj L (x) = x u u u u. x y x u [interactive] L y = proj L (x) Example: Compute the orthogonal projection of x = ( ) 6 4 onto the line L spanned by u = ( 3 2). ( ) 6 4 y = proj L (x) = x u u u u = ( ) 3 = ( ) 3. 2 L 10 ( ) ( 3 2)

11 Orthogonal Projection onto a Plane Easy example 1 What is the projection of x = 2 onto the xy-plane? 3 Answer: The xy-plane is W = Span{e 1, e 2}, and {e 1, e 2} is an orthogonal basis. 1 x W = proj W 2 = x e1 e 1 + x e2 e 2 = 1 1 e 3 1 e 1 e 2 e e e2 = 2. 0 So this is the same projection as before. x x W x W W [interactive]

12 Orthogonal Projections More complicated example What is the projection of x = 1.4 onto W = Span 0, 1.1? Answer: The basis is orthogonal, so 1.1 x W = proj W 1.4 = x u1 u 1 + x u2 u 2 u u 1 u 2 u 2 = ( 1.1)(1) 1 0 (1.4)(1.1) + (1.45)(.2) (.2) 2 This turns out to be equal to u 2 1.1u x x W xw u 2 u 1 W [interactive]

13 Orthogonal Projections Properties First we restate the property we ve been using all along. Let x be a vector and let x = x W +x W be its orthogonal decomposition with respect to a subspace W. The following vectors are the same: x W proj W (x) The closest vector to x on W We can think of orthogonal projection as a transformation: Theorem Let W be a subspace of R n. proj W : R n R n 1. proj W is a linear transformation. 2. For every x in W, we have proj W (x) = x. 3. For every x in W, we have proj W (x) = 0. x proj W (x). 4. The range of proj W is W and the null space of proj W is W.

14 Poll Let W be a subspace of R n. Poll Let A be the matrix for proj W. What is/are the eigenvalue(s) of A? A. 0 B. 1 C. 1 D. 0, 1 E. 1, 1 F. 0, 1 G. 1, 0, 1 The 1-eigenspace is W. The 0-eigenspace is W. We have dim W + dim W = n, so that gives n linearly independent eigenvectors already. So the answer is D.

15 Orthogonal Projections Matrices What is the matrix for proj W : R 3 R 3, where 1 1 W = Span 0, 1? 1 1 Answer: Recall how to compute the matrix for a linear transformation: A = proj W (e 1) proj W (e 2) proj W (e 3). We compute: proj W (e 1) = proj W (e 2) = proj W (e 3) = e1 u1 e1 u2 u 1 + u 2 = 1 u 1 u 1 u 2 u 2 2 e2 u1 e2 u2 u 1 + u 2 = u 1 u 1 u 2 u 2 3 e3 u1 e3 u2 u 1 + u 2 = 1 u 1 u 1 u 2 u 2 2 5/6 1/3 1/6 Therefore A = 1/3 1/3 1/3. 1/6 1/3 5/6 5/6 1/3 1/ = = 1/3 1 1/ = 1/6 1/ /6

16 Orthogonal Projections Matrix facts Let W be an m-dimensional subspace of R n, let proj W : R n W be the projection, and let A be the matrix for proj L. Fact 1: A is diagonalizable with eigenvalues 0 and 1; it is similar to the diagonal matrix with m ones and n m zeros on the diagonal. Why? Let v 1, v 2,..., v m be a basis for W, and let v m+1, v m+2,..., v n be a basis for W. These are (linearly independent) eigenvectors with eigenvalues 1 and 0, respectively, and they form a basis for R n because there are n of them. Example: If W is a plane in R 3, then A is similar to projection onto the xy-plane: Fact 2: A 2 = A. Why? Projecting twice is the same as projecting once: proj W proj W = proj W = A A = A.

17 Coordinates with respect to Orthogonal Bases Let W be a subspace with orthogonal basis B = {u 1, u 2,..., u m}. For x in W we have proj W (x) = x, so x = proj W (x) = m i=1 x u i u i u i u i = x u1 u 1 u 1 u 1 + x u2 u 2 u 2 u x un u n u n u n. This makes it easy to compute the B-coordinates of x. Corollary Let W be a subspace with orthogonal basis B = {u 1, u 2,..., u m}. Then ( ) x u1 x u 2 x u m [x] B =,,...,. u 1 u 1 u 2 u 2 u m u m [interactive]

18 Coordinates with respect to Orthogonal Bases Example Problem: Find the B-coordinates of x = ( 0 3), where {( ) ( )} 1 4 B =,. 2 2 Old way:( 1 4 ) 0 rref ( 1 0 ) 6/ /20 = [x] B = New way: note B is an orthogonal basis. ( ) ( ) x u1 x u [x] B =, u 2 = u 1 u 1 u 2 u , ( 4) ( ) 6/5. 6/20 = ( ) 6 5, x u u 2 u u 1 [interactive]

19 Orthogonal Projections Distance to a subspace 1 1 What is the distance from e 1 to W = Span 0, 1? 1 1 5/6 Answer: The closest point on W to e 1 is proj W (e 1) = 1/3. 1/6 The distance from e 1 to this point is dist ( e 1, proj W (e ) 1) = (e 1) W 1 5/6 = 0 1/3 0 1/6 1/6 = 1/3 1/6 = (1/6) 2 + ( 1/3) 2 + ( 1/6) 2 = y [interactive] 1 e 1 6 (e 1 ) W W

20 Summary Let W be a subspace of R n. Any vector x in R n can be written in a unique way as x = x W + x W for x W in W and x W in W. This is called its orthogonal decomposition. The vector x W is the closest point to x in W : it is the best approximation. The distance from x to W is x W. If you have an orthogonal basis {u 1, u 2,..., u m} for W, then x W = proj W (x) = x u i u i u i u i = x u1 u 1 u 1 u 1 + x u2 u 2 u 2 u x un u n u n u n. Hence x W = x proj W (x). If you have an orthogonal basis {u 1, u 2,..., u m} for W, then ( ) x u1 x u 2 x u m [x] B =,,...,. u 1 u 1 u 2 u 2 u m u m We can think of proj W : R n R n as a linear transformation. Its null space is W, and its range is W. The matrix A for proj W is diagonalizable with eigenvalues 0 and 1. It is idempotent: A 2 = A.

Announcements Monday, November 19

Announcements Monday, November 19 Announcements Monday, November 19 You should already have the link to view your graded midterm online. Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be

More information

Announcements Monday, November 19

Announcements Monday, November 19 Announcements Monday, November 19 You should already have the link to view your graded midterm online. Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be

More information

Announcements Monday, November 26

Announcements Monday, November 26 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244

More information

Announcements Monday, November 26

Announcements Monday, November 26 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244

More information

Announcements Wednesday, November 15

Announcements Wednesday, November 15 Announcements Wednesday, November 15 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

Announcements Wednesday, November 15

Announcements Wednesday, November 15 3π 4 Announcements Wednesday, November 15 Reviews today: Recitation Style Solve and discuss Practice problems in groups Preparing for the exam tips and strategies It is not mandatory Eduardo at Culc 141,

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Orthogonal Complements

Orthogonal Complements Orthogonal Complements Definition Let W be a subspace of R n. If a vector z is orthogonal to every vector in W, then z is said to be orthogonal to W. The set of all such vectors z is called the orthogonal

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Chapter 6. Orthogonality and Least Squares

Chapter 6. Orthogonality and Least Squares Chapter 6 Orthogonality and Least Squares Section 6.1 Inner Product, Length, and Orthogonality Orientation Recall: This course is about learning to: Solve the matrix equation Ax = b Solve the matrix equation

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 16 That is one week from this Friday The exam covers 45, 51, 52 53, 61, 62, 64, 65 (through today s material) WeBWorK 61, 62

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections Section 6. 6. Orthogonal Sets Orthogonal Projections Main Ideas in these sections: Orthogonal set = A set of mutually orthogonal vectors. OG LI. Orthogonal Projection of y onto u or onto an OG set {u u

More information

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4 Linear Systems Math Spring 8 c 8 Ron Buckmire Fowler 9 MWF 9: am - :5 am http://faculty.oxy.edu/ron/math//8/ Class 7 TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5. Summary

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter 6 ( ), 7.1 Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

More information

Announcements Wednesday, October 04

Announcements Wednesday, October 04 Announcements Wednesday, October 04 Please fill out the mid-semester survey under Quizzes on Canvas. WeBWorK 1.8, 1.9 are due today at 11:59pm. The quiz on Friday covers 1.7, 1.8, and 1.9. My office is

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 6 That is one week from this Friday The exam covers 45, 5, 52 53, 6, 62, 64, 65 (through today s material) WeBWorK 6, 62 are

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Announcements Monday, November 13

Announcements Monday, November 13 Announcements Monday, November 13 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.

More information

March 27 Math 3260 sec. 56 Spring 2018

March 27 Math 3260 sec. 56 Spring 2018 March 27 Math 3260 sec. 56 Spring 2018 Section 4.6: Rank Definition: The row space, denoted Row A, of an m n matrix A is the subspace of R n spanned by the rows of A. We now have three vector spaces associated

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

80 min. 65 points in total. The raw score will be normalized according to the course policy to count into the final score.

80 min. 65 points in total. The raw score will be normalized according to the course policy to count into the final score. This is a closed book, closed notes exam You need to justify every one of your answers unless you are asked not to do so Completely correct answers given without justification will receive little credit

More information

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST me me ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Exam 2 Exam date: 10/31/17 Time Limit: 80 Minutes Name: Student ID: GSI or Section: This exam contains 7 pages (including this cover page) and 7 problems. Problems are printed

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

More information

MTH 2310, FALL Introduction

MTH 2310, FALL Introduction MTH 2310, FALL 2011 SECTION 6.2: ORTHOGONAL SETS Homework Problems: 1, 5, 9, 13, 17, 21, 23 1, 27, 29, 35 1. Introduction We have discussed previously the benefits of having a set of vectors that is linearly

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

I. Multiple Choice Questions (Answer any eight)

I. Multiple Choice Questions (Answer any eight) Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

More information

Announcements Monday, November 06

Announcements Monday, November 06 Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference

More information

Announcements Monday, November 13

Announcements Monday, November 13 Announcements Monday, November 13 The third midterm is on this Friday, November 17 The exam covers 31, 32, 51, 52, 53, and 55 About half the problems will be conceptual, and the other half computational

More information

Section 6.1. Inner Product, Length, and Orthogonality

Section 6.1. Inner Product, Length, and Orthogonality Section 6. Inner Product, Length, and Orthogonality Orientation Almost solve the equation Ax = b Problem: In the real world, data is imperfect. x v u But due to measurement error, the measured x is not

More information

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 Name Circle the name of your instructor below: Fathi Jankowski Kordek Strenner Yan Please read all instructions carefully before beginning Each problem is worth

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

Announcements: Nov 10

Announcements: Nov 10 Announcements: Nov 10 WebWork 5.3, 5.5 due Wednesday Midterm 3 on Friday Nov 17 Upcoming Office Hours Me: Monday 1-2 and Wednesday 3-4, Skiles 234 Bharat: Tuesday 1:45-2:45, Skiles 230 Qianli: Wednesday

More information

Math 54 Second Midterm Exam, Prof. Srivastava October 31, 2016, 4:10pm 5:00pm, 155 Dwinelle Hall.

Math 54 Second Midterm Exam, Prof. Srivastava October 31, 2016, 4:10pm 5:00pm, 155 Dwinelle Hall. Math 54 Second Midterm Exam, Prof. Srivastava October 31, 2016, 4:10pm 5:00pm, 155 Dwinelle Hall. Name: SID: Instructions: Write all answers in the provided space. This exam includes one page of scratch

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Announcements Wednesday, September 20

Announcements Wednesday, September 20 Announcements Wednesday, September 20 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5.

More information

Math 20F Final Exam(ver. c)

Math 20F Final Exam(ver. c) Name: Solutions Student ID No.: Discussion Section: Math F Final Exam(ver. c) Winter 6 Problem Score /48 /6 /7 4 /4 5 /4 6 /4 7 /7 otal / . (48 Points.) he following are rue/false questions. For this problem

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

Announcements Wednesday, September 27

Announcements Wednesday, September 27 Announcements Wednesday, September 27 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Announcements Monday, September 17

Announcements Monday, September 17 Announcements Monday, September 17 WeBWorK 3.3, 3.4 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 21. Midterms happen during recitation. The exam covers through 3.4. About

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

6.1. Inner Product, Length and Orthogonality

6.1. Inner Product, Length and Orthogonality These are brief notes for the lecture on Friday November 13, and Monday November 1, 2009: they are not complete, but they are a guide to what I want to say on those days. They are guaranteed to be incorrect..1.

More information

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5 Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,

More information

Announcements Monday, September 25

Announcements Monday, September 25 Announcements Monday, September 25 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due Friday

More information

MAT188H1S LINEAR ALGEBRA: Course Information as of February 2, Calendar Description:

MAT188H1S LINEAR ALGEBRA: Course Information as of February 2, Calendar Description: MAT188H1S LINEAR ALGEBRA: Course Information as of February 2, 2019 2018-2019 Calendar Description: This course covers systems of linear equations and Gaussian elimination, applications; vectors in R n,

More information

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

For each problem, place the letter choice of your answer in the spaces provided on this page.

For each problem, place the letter choice of your answer in the spaces provided on this page. Math 6 Final Exam Spring 6 Your name Directions: For each problem, place the letter choice of our answer in the spaces provided on this page...... 6. 7. 8. 9....... 6. 7. 8. 9....... B signing here, I

More information

MATH. 20F SAMPLE FINAL (WINTER 2010)

MATH. 20F SAMPLE FINAL (WINTER 2010) MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Math 261 Lecture Notes: Sections 6.1, 6.2, 6.3 and 6.4 Orthogonal Sets and Projections

Math 261 Lecture Notes: Sections 6.1, 6.2, 6.3 and 6.4 Orthogonal Sets and Projections Math 6 Lecture Notes: Sections 6., 6., 6. and 6. Orthogonal Sets and Projections We will not cover general inner product spaces. We will, however, focus on a particular inner product space the inner product

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Then x 1,..., x n is a basis as desired. Indeed, it suffices to verify that it spans V, since n = dim(v ). We may write any v V as r

Then x 1,..., x n is a basis as desired. Indeed, it suffices to verify that it spans V, since n = dim(v ). We may write any v V as r Practice final solutions. I did not include definitions which you can find in Axler or in the course notes. These solutions are on the terse side, but would be acceptable in the final. However, if you

More information

Section 6.4. The Gram Schmidt Process

Section 6.4. The Gram Schmidt Process Section 6.4 The Gram Schmidt Process Motivation The procedures in 6 start with an orthogonal basis {u, u,..., u m}. Find the B-coordinates of a vector x using dot products: x = m i= x u i u i u i u i Find

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Section Instructors: by now you should be scheduled into one of the following Sections:

Section Instructors: by now you should be scheduled into one of the following Sections: MAT188H1F LINEAR ALGEBRA: Syllabus for Fall 2018 as of October 26, 2018 2018-2019 Calendar Description: This course covers systems of linear equations and Gaussian elimination, applications; vectors in

More information

Linear Algebra Final Exam Solutions, December 13, 2008

Linear Algebra Final Exam Solutions, December 13, 2008 Linear Algebra Final Exam Solutions, December 13, 2008 Write clearly, with complete sentences, explaining your work. You will be graded on clarity, style, and brevity. If you add false statements to a

More information

Final Exam - Take Home Portion Math 211, Summer 2017

Final Exam - Take Home Portion Math 211, Summer 2017 Final Exam - Take Home Portion Math 2, Summer 207 Name: Directions: Complete a total of 5 problems. Problem must be completed. The remaining problems are categorized in four groups. Select one problem

More information

0 2 0, it is diagonal, hence diagonalizable)

0 2 0, it is diagonal, hence diagonalizable) MATH 54 TRUE/FALSE QUESTIONS FOR MIDTERM 2 SOLUTIONS PEYAM RYAN TABRIZIAN 1. (a) TRUE If A is diagonalizable, then A 3 is diagonalizable. (A = P DP 1, so A 3 = P D 3 P = P D P 1, where P = P and D = D

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

M340L Final Exam Solutions May 13, 1995

M340L Final Exam Solutions May 13, 1995 M340L Final Exam Solutions May 13, 1995 Name: Problem 1: Find all solutions (if any) to the system of equations. Express your answer in vector parametric form. The matrix in other words, x 1 + 2x 3 + 3x

More information

33A Linear Algebra and Applications: Practice Final Exam - Solutions

33A Linear Algebra and Applications: Practice Final Exam - Solutions 33A Linear Algebra and Applications: Practice Final Eam - Solutions Question Consider a plane V in R 3 with a basis given by v = and v =. Suppose, y are both in V. (a) [3 points] If [ ] B =, find. (b)

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Announcements Tuesday, April 17

Announcements Tuesday, April 17 Announcements Tuesday, April 17 Please fill out the CIOS form online. It is important for me to get responses from most of the class: I use these for preparing future iterations of this course. If we get

More information

Announcements Monday, October 02

Announcements Monday, October 02 Announcements Monday, October 02 Please fill out the mid-semester survey under Quizzes on Canvas WeBWorK 18, 19 are due Wednesday at 11:59pm The quiz on Friday covers 17, 18, and 19 My office is Skiles

More information

Answer Keys For Math 225 Final Review Problem

Answer Keys For Math 225 Final Review Problem Answer Keys For Math Final Review Problem () For each of the following maps T, Determine whether T is a linear transformation. If T is a linear transformation, determine whether T is -, onto and/or bijective.

More information

Matrices related to linear transformations

Matrices related to linear transformations Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas

More information

Spring 2014 Math 272 Final Exam Review Sheet

Spring 2014 Math 272 Final Exam Review Sheet Spring 2014 Math 272 Final Exam Review Sheet You will not be allowed use of a calculator or any other device other than your pencil or pen and some scratch paper. Notes are also not allowed. In kindness

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Linear Algebra 2 Spectral Notes

Linear Algebra 2 Spectral Notes Linear Algebra 2 Spectral Notes In what follows, V is an inner product vector space over F, where F = R or C. We will use results seen so far; in particular that every linear operator T L(V ) has a complex

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

Designing Information Devices and Systems II

Designing Information Devices and Systems II EECS 16B Fall 2016 Designing Information Devices and Systems II Linear Algebra Notes Introduction In this set of notes, we will derive the linear least squares equation, study the properties symmetric

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH FINAL EXAM DECEMBER 8, 7 FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number pencil on your answer

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information