Supplemental Material for "Automated Estimation of Vector Error Correction Models"

Size: px
Start display at page:

Download "Supplemental Material for "Automated Estimation of Vector Error Correction Models""

Transcription

1 Supplmtal Matrial for "Automatd Estimatio of Vctor Error Corrctio Modls" ipg Liao Ptr C. B. Pillips y Tis Vrsio: Sptmbr 23 Abstract Tis supplmt icluds two sctios. Sctio cotais t proofs of som auxiliary lmmas usd i t mai txt. Sctio 2 provids som mor simulatio rsults wic ar ot rportd i t mai txt. Proofs of Auxiliary Lmmas I tis sctio, w provid t proofs of som lmmas wic ar usd i t mai txt to driv t asymptotic proprtis of t LS srikag stimator. For as of xpositio, w put t lmmas ad tir proofs of di rt sctios i t papr i di rt subsctios.. proofs of som lmmas i sctio 3 Assumptio. (WN) fu t g t is a m-dimsioal iid procss wit zro ma ad osigular covariac matrix u. Assumptio.2 (RR) (i) T dtrmiatal quatio ji (I + o )j as roots o or outsid t uit circl; (ii) t matrix o as rak r o, wit r o m; (iii) if r o >, t t matrix R I ro + o o as igvalus witi t uit circl. Dpartmt of Ecoomics, UC Los Agls, 8379 Buc Hall, Mail Stop: 4773, Los Agls, CA zipg.liao@co.ucla.du y Yal Uivrsity, Uivrsity of Aucklad, Uivrsity of Soutampto ad Sigapor Maagmt Uivrsity. Support from t NSF udr Grat No SES is gratfully ackowldgd. ptr.pillips@yal.du

2 T urstrictd LS stimator b st of o is b st arg mi 2R mm ky t Y t k 2 Y t Y t Y t Y t : (.) T asymptotic proprtis of b st ad its igvalus ar dscribd i t followig rsult. Lmma. Udr Assumptios. ad.2, w av: (a) rcall D diag( 2 I ro ; I m bst wr B m; ad B m;2 ar d d i Torm 3.5; ro ), t b st satis s o Q D d (B m; ; B m;2 ) (.2) (b) t igvalus of b st satisfy k ( b st ) p k ( o ) for k ; :::; m; (c) t last m r o igvalus of b st satisfy ( b st ); :::; m ro ( b st ) o; d ; :::; o;m ro ; (.3) wr t o;j (j ; :::; m I m r r o ) ar solutios of t followig dtrmiatal quatio db w2 Bw 2 B w2 Bw 2 : (.4) Proof of Lmma.. (a) From (.) bst o Q D u t Y t Q u t t D QY t Y t Q D D t t D : (.5) Rsult (a) follows dirctly from Lmma.. (b) Tis rsult follows dirctly by (a) ad t cotiuous mappig torm (CMT). (c) Lt k k( b st ) (k r o + ; :::; m), so tat k is by d itio a solutio of t quatio os () o o? S () i S () o o S () o o S () o? ; (.6) 2

3 wr S () I m b st. For ay compact subst K R, w ca ivok t rsults i (a) to sow os () o o o o bst uiformly ovr K. From Assumptio.2.(iii), w av o o o o o o o o o o o 6 : o o + o o o p o o o ; (.7) Tus, t ormalizd m r o smallst igvalus k (k r o + ; :::; m) of b st ar asymptotically t solutios of t followig dtrmiatal quatio, o? S () i S () o o S () o o S () o? ; (.8) wr os () o? bst o o o? ; (.9) o? S () o? I m r o bst o? o o? ; (.) o? S () o o? b st o p o? o o o : (.) Usig t rsults i (.7) ad (.9)-(.), w gt o? S () I m r o o? i S () o o S () o o S () o? I m o i o o o + o p () bst o o? : (.2) Not tat bst o o? bst i o Q D D Q o? u t t D t t D D u t 2;t 2 2;t 2;t d B w2 db u o;? o;? o;? o;? B w2 B w 2 o;? o;?: (.3) 3

4 Usig t rsults i (.2), (.3) ad t quality o ( o o ) o + o;? ( o;? o;?) o;? I m; (.4) w dduc tat o? I m o i o o o + o p () bst d ( o;? o;?) B w2 dbw 2 o o? B w2 B w 2 o;? o;? (.5) T, from (.8)-(.5), w obtai o? S () d I m ro o S () o o S () o o S () o? B w2 dbw 2 B w2 Bw 2 ; (.6) uiformly ovr K. T rsult i (c) follows from (.6) ad by cotiuous mappig..2 proofs of som lmmas i sctio 4 Assumptio.3 (LP) Lt D(L) P j D jl j, wr D I m ad D() as full rak. Lt u t av t Wold rprstatio X u t D(L)" t D j " t j j, wit X j 2 jjdj jj < ; (.7) j wr " t is iid (; "" ) wit "" positiv d it ad it fourt momts. T followig lmma is usful i stablisig t asymptotic proprtis of t srikag stimator wit wakly dpdt iovatios. Lmma.2 Udr Assumptio.2 ad.3, (a), (b) ad (c) of Lmma. ar ucagd, wil Lmma..(d) bcoms 2 ut ;t uz () d N(; V uz ); (.8) 4

5 wr uz () P j uu(j) o R j < ad V uz is t log ru variac matrix of u t ;t ; ad Lmma..() bcoms u t 2;t d B w2 db u + ( uu uu ) o? : (.9) Proof of Lmma.2. Gragr rprstatio, Rcall tat Assumptio.2 lads to t followig partial sum Y t C tx u s + o ( o o ) R(L) ou t + CY ; (.2) s wr C o;? ( o;? o;?) o;?. From t partial sum xprssio i (.2), w gt ;t oy t R(L) ou t, wic implis tat f oy t g t is a statioary procss. Not tat E u t ;t X E u t u t j j o R j X uu (j) o R j < : Usig a CLT for liar procss tim sris (.g. t multivariat vrsio of torm 8 ad Rmark 3.9 of Pillips ad Solo, 992), w dduc tat j 2 ut ;t uz () d N(; V uz ); wic stabliss (.8). T rsults of (a)-(c) ad () ca b provd usig similar argumts to tos of Lmma.. Lt P (P ; P 2 ) b t ortoormalizd rigt igvctor matrix of ad b a r r diagoal matrix of ozro igvalus of, wr P is a m r matrix (of igvctors of ozro igvalus) ad P 2 is a m (m r ) matrix (of igvctors of zro igvalus). By t igvalu dcompositio, (P ; P 2 ) m r Q Q 2 P Q (.2) 5

6 wr Q (Q ; Q 2 ) ad Q P. By d itio Q Q 2 (P ; P 2 ) Q P Q P 2 Q 2 P Q 2 P 2 I m (.22) wic implis tat Q P I r. From (.2), witout loss of grality, w ca d P ad Q. By (.22), w dduc tat Q P ad P Q wic imply tat ad ar osigular r r matrix. Witout loss of grality, w lt? P 2 ad? Q 2, t?? I m r ad udr (.22),? Q 2 P wic implis tat? as? (? ; o? ). Lt [ ( b st ); :::; m ( b st )] ad [ ( ); :::; m ( )] b t ordrd igvalus of b st ad rspctivly. For t as of otatio, w d N N(; V uz ) + uz () z z N(; V z z ) z z o wr N(; V uz ) is a radom matrix d d i (.8) ad N(; V z z ) dots t matrix limit distributio of p bs z z. W also d N 2 db u Bu + ( uu uu ) o? B w2 B w 2 o? : T xt lmma provids asymptotic proprtis of t OLS stimat ad its igvalus w t data is wakly dpdt. Lmma.3 Udr Assumptio.2 ad.3, w av t followig rsults: (a) t OLS stimator b st satis s bst Q D O p () (.23) wr Q H o Q + o ; (b) t igvalus of b st satisfy k ( b st ) p k ( ) for k ; :::; m; 6

7 (c) t last m r o ordrd igvalus of b st satisfy [ ro+( b st ); :::; m ( b st )] d [ r o+; :::; m] (.24) wr j (j r o + ; :::; m) ar t ordrd solutios of ui m r o o? N 2 + N??N??N 2 o? ; (.25) (d) b st as r o r igvalus satisfyig p [r +( b st ); :::; ro ( b st )] d [ r +; :::; r o ] (.26) wr j (j r + ; :::; r o ) ar t ordrd solutios of ui ro r?n? : (.27) Proof of Lmma.3. (a). By d itio, bst Q u t t u t t t t Q H o t t uz () z z ; m(m ro) " u t t # uz (); m(m ro) + uz (); m(m ro) 2 4 t t t t z z 3 5 : (.28) 7

8 By Lmma.2, w av " 2 O p (): u t t # uz (); m(m ro) t t D u t ;t uz () ; u t 2;t D t t D (.29) Similarly, w av 2 uz (); m(m ro) 4 uz (); m(m ro) uz () O p (): 2 t t 2 S b 2 S2 b 4D 2 S2 b S22 b ( S b S2 b S b b i 22 S 2 ) z z z z 3 5 D D z z bs S b bs 22 2 bs 2 b S b S D (.3) Form t rsults i i (.28), (.29) ad (.3), wic iss t proof. bst (b). Tis rsult follows dirctly from (a) ad t CMT. Q D O p () (.3) (c). If w dot u ;k k( b st ), t by d itio, u ;k (k 2 fr o + ; :::; mg) is t solutio of t followig dtrmiatal quatio S (u)? S (u) S (u) S (u) i S (u)? ; (.32) wr S (u) u I m b st. From t rsults i (a), w av S (u) u b st p ; (.33) 8

9 wr is a r r osigular matrix. Hc u ;k is t solutio of t followig dtrmiatal quatio asymptotically? S (u) S (u) S (u) i S (u)? : (.34) Dot T (u) S (u) S (u) S (u) i S (u), t (.34) ca b quivaltly writt as?t (u)? o? T (u) T (u)??t (u) i??t (u) o? : (.35) By?,? ad t rsult i (a), w av 2?S (u)? 2? bst? + o p (); (.36) 2?S (u) 2? bst O p (); (.37) 2 S (u)? 2 bst? O p (): (.38) From (.33), (.36), (.37) ad (.38), w gt 2?T (u)? 2?S (u)??s (u) S (u) i 2 S (u) i? i bst? Q D 2 D Q? + o p (): (.39) Usig t xprssios i (.28), w gt bst bst " " 2 2 i Q D 2 D Q i Q D o (m ro)m + o p () u t ;t b S 2 uz () z z # o + o p () ut ;t uz () # S b + uz () 2 bs z z o + o p (); (.4) 9

10 wr ad 2 ut ;t uz () b S o d N(; V uz ) z z o N ; (.4) uz () 2 uz () b S bs bs 2 z z o z z i z z o d uz () z z N(; V z z ) z z o N ;2 : (.42) From (.39)-(.42), w ca dduc tat wr N N ; + N ;2. ad ad Udr (.33) ad t rsult i (a), p?t (u)? d?n? 6 ; a:: (.43) o? T (u) o? o? S (u) o? o? S (u) S (u) i S (u) o? ui m ro b o? st o? b o? st S (u) i b st o? i ui m ro o? bst o? + o p () (.44)?T (u) o??s (u) o??s (u) S (u) i S (u) o? b? st o? b? st S (u) i b st o? i? bst o? + o p () (.45) 2 o? T (u)? 2 o? S (u)? 2 o? S (u) S (u) i S (u)? i o? 2 bst? + o p (): (.46)

11 By (.43), (.44), (.45) ad (.46), w av o? T (u) T (u)??t (u) i??t (u) o? o? T p (u) o? o? T (u) p??t (u) i??t (u) o? i ui m ro o? bst o? + o p () bst o???t (u) i i?? bst o? : (.47) Usig t xprssios i (.28), w ca dduc tat bst o? bst u t t Q i o? o? t t o? o? u t 2;t S22 b o? o? + o p () d N 2 o? ; (.48) wr N 2 R db u B u + ( uu uu ) o? R Bw2 B w 2 o?. From (.47) ad (.48), w dduc tat o? d ui m ro o? T (u) T (u)? Now, t rsults i (c) follow from (.49) ad t CMT.?T (u) i??t (u) o? N 2 + N??N??N 2 o? : (.49) (d) If w dot u ;k p k ( b st ), t by d itio, u ;k (k 2 fr + ; :::; r o g) is t solutio of t followig dtrmiatal quatio S (u)? S (u) S (u) S (u) i S (u)? ; (.5) wr S (u) u p I m b st.

12 Not tat?s (u)? 2 u??? b st? ; (.5)?S (u)? b st ad S (u)? b st? : (.52) Usig xprssios i (.5), (.52) ad t rsult i (a), w av 2? S (u) S (u) S (u) i S (u)? u?? 2? b st? 2? b st S (u) i b st? ui m r 2? bst? + o p (): (.53) From (a), w gt p bst o;? o p (): (.54) As a rsult, p bst? p bst? ; o? p bst? ; p bst o? i p bst? ; m(m ro)i + o p () (.55) ad 2? p? bst? p o;? bst? m ro A + o p (): (.56) Usig (.53) ad (.56), w av 2? S (u) S (u) S (u) i S (u)? u o;? o;? ui ro r 2 bst?? + op (): (.57) 2

13 Usig t xprssios i (.28), w ca dduc tat 2 bst 2 " u t t 2 t t Q 2 uz ()z z o u t ;t b S 2 uz () z z # o + o p () d N ; + N ;2 N ; (.58) wr N ; ad N ;2 ar d d i (.4) ad (.42) rspctivly. From (.57) ad (.58), w ca dduc tat p? S (u) S (u) S (u) i S (u)? d jui m r j ui ro r?n? : (.59) Not tat t dtrmiatal quatio jui m r j ui ro r?n? (.6) as m r zro igvalus, wic corrspod to t probability limit of p k ( b st ) (k 2 fr + ; :::; r o g), as illustratd i (c). Equatio (.6) also as r o r o-trivial igvalus as solutios of t stocastic dtrmiatal quatio wic iss t proof. ui ro r?n? ;.3 proofs of som lmmas i sctio 5 Assumptio.4 (GRR) (i) T dtrmiatal quatio jc()j as roots o or outsid t uit circl; (ii) t matrix o as rak r o, wit r o m; (iii) t (m r o ) (m r o ) matrix is osigular. m px j B o;j A o;? (.6) 3

14 W rst stablis t asymptotic proprtis of t OLS stimator ( b st ; b B st ) of ( o ; B o ) ad t asymptotic proprtis of t igvalus of b st. T stimat ( b st ; b B st ) as t followig closd-form solutio wr bst ; B b st bsy y b Sy x b Sy y b Sy x bs x y b Sx x ; (.62) bs y y Y t Yt ; Sy b x Y t Xt ; bs y y Y t Yt ; Sy b x Y t Xt ; bs x y S b y x ad S b x x X t Xt. (.63) Dot Y (Y ; :::; Y ) m, Y (Y ; :::; Y ) m ad wr X (X ; :::; X rprstatio b st cm I X b S x x X, ) mp, t b st as t xplicit partitiod rgrssio Y M c Y Y M c Y o + UM c Y Y M c Y ; (.64) wr U (u ; :::; u ) m. Rcall tat [ ( b st ); :::; m ( b st )] ad [ ( o ); :::; m ( o )] ar t ordrd igvalus of b st ad o rspctivly, wr j ( o ) (j r o + ; :::; m). Lt Q b t ormalizd lft igvctor matrix of b st. Lmma.4 Suppos Assumptio. ad Assumptio.4 old. (a) Rcall D ;B diag( 2 I ro+mp; I m ro ), t ( b st ; B b i st ) ( o ; B o ) Q B D ;B as t followig partitiod limit distributio N(; u z 3 z 3 ); R dbu B w 2 ( R B w2 B w 2 ) i ; (.65) (b) T igvalus of b st satisfy k ( b st ) p k ( o ) for 8k ; :::; m; 4

15 (c) For 8k r o + ; :::; m, t igvalus k ( b st ) of b st satisfy Lmma..(c). Lmma.4 is usful, bcaus t rst stp stimator ( b st ; b B st ) ad t igvalus of b st ar usd i t costructio of t palty fuctio. Proof of Lmma.4. (a). W start by d ig b S uy P u t Xt. From t xprssio i (.63), w gt ( b st ; B b i st ) ( o ; B o ) Q B D ;B " bsuy Sux b Q Sy b y BD ;B D ;B Q Sy b x B bs x b y Sx x P u t Y t ad b S ux Q BD ;B # : (.66) Not tat " bsuy Sux b Q BD ;B U Q B Y X # D ;B 2 U 3 U 2 (.67) ad D ;B Q B b Sy y b Sy x bs x y b Sx x Q BD ;B 3 2 P 3;t 3;t P 3 2 3;t 2;t P 2;t 3;t 2 P 2;t 2;t C A ; (.68) wr 3 ( 3; ; :::; 3; ) ad 2 ( 2; ; :::; 2; ). Now t rsult i (.65) follows by applyig Lmma.5. (b). Tis rsult follows dirctly by t cosistcy of b st ad CMT. (c). D S () I m st b, t js ()j o S () o o o? S () S () o o S () o o S () o? : (.69) Lt k k( b st ) (k r o + ; :::; m), usig similar argumts i t proof of Lmma..(c), w dduc tat k is a solutio of t quatio o o? S () S () o o S () o o S () o? ; (.7) 5

16 wr S () I m o? b st. Usig t rsults i (a), w ca sow tat S () I m r o o? o S () o o S () o o S () I m o i o o o + o p () bst o? o o? : (.7) Usig t d itios of H ad H 2 i t proof of Lmma..(c), w ca dduc tat H Q bst o Q H2 H QUM c Y Q D D QY M c Y Q D H 2 (.72) wr udr Lmma.5, D QY M c Y Q D D D D X S b x x X D z z z x xx xz d R Bw2 Bw 2 (.73) ad UM c Y Q D U D UX S b x x X D d B u;z B u;x xx R xz Bw2 dbu : (.74) Usig t rsults i (.73) ad (.74), w obtai H Q bst o Q H2 d ( o;? o;?) T, from (.7)-(.75), w obtai o? S () d I m ro B w2 db w 2 B w2 B w 2 ( o;? o;?): (.75) o S () o o S () o o S () o? B w2 dbw 2 B w2 Bw 2 ; (.76) uiformly ovr K. T rsult i (c) follows from (.76) ad by cotiuous mappig torm. 6

17 .4 proofs of som lmmas i sctio 6 Lmma.5 Suppos tat t coditios of Corollary 5.3 ar satis d, t F ; (k) Q (k)t ;o db u BuT 2;o + o p () (.77) for k ; :::; m, wr T ;o u u o ( o u o ) o u ad T 2;o o;? ( o;? o;?) o;? ; furtr, for j ; :::; p, F b; (j) d 2 u B mm () 2 yj jz 3S (.78) wr B m;m N(; I m I m ), yj jz 3S E (Y t j j 3S ) Y t j 3S ad Yt j j 3S Y t j yj z 3S z 3S z 3S 3S;t : Proof of Lmma.5. As t ordr of t tuig paramtr surs oracl proprtis of t LS srikag stimat, usig similar argumts i t proof of Torm 5.2, w rwrit F ; (k) as F ; (k) Q (k)u " u t Y t ( b S; S;o )Q S S;t Y t # + o p () (.79) wr udr Lmma.5 P u t t D ;S P S;t t mro ; db u B u o;? + o p (), ad (.8) (mpo+ro)r o R o;? Bu Bu + o p (): (.8) o;? Usig t xprssio i t proof of Torm 5.2, w obtai ( b S; S;o )Q S D ;S 2 b U 2; o ( o o ) + U;; U3;; b U 2; o;? ( o;? o;?) i (.82) 7

18 wr U; p (b o ), U 2; ro ; U2;, wr U 2; bo p bbsb B o;sb. From (.8) ad (.82), w dduc tat O o ad U 3; ( b S; S;o )Q S S;t t mro ; b U 2; o;? ( o;? o;?) B w2 B w 2 (.83) wr from t proof of Torm 5.2, w kow tat U2; ( ou o ) ou db u B w 2 Now, rsults i (.8), (.83) ad (.84) implis tat F ; (k) Q (k) b u; Q (k) u " B w2 B w 2 ( o;? o;?) 2;o;? + o p(). (.84) u t t ( b S; S;o )Q S mro ; I m o ( o # S;t t Q u o ) ou db u Bu o;? Q Q (k) u u o ( ou o ) ou db u Bu o;? ( o;? o;?) o;? wic sows t rsult i (.77). W xt sow t scod claim. W ca rwrit F b; (j) as F b; (j) b u; p " u t Y t j bs; S;o Q S S;t Y t j # : (.85) 8

19 Usig t argumts i t proof of Torm 5.2, 2 " u t Y t u t Yt 2 2 d N " u t Y t j j j bs; u t 3S;t S;o Q S S;t Y t j # 3S;t 3S;t 3S;t Yt u t 3S;t z 3S z 3S z3s y j # + o p () u t Y t j 3S;t z 3S z 3S z3s y j + op () j o p () ; u yj jz 3S : (.86) From t rsults i (.85) ad (.86), w dduc tat F b; (j) d u N wic iss t proof. d ; u yj jz 3S 2 u B mm () 2 yj jz 3S 2 Mor Simulatio Rsults I tis sctio, w coduct simulatio xprimt to ivstigat t it sampl prformacs of iformatio critria o joit slctio of laggd di rcs ad coitgratio rak i VECM. W us t tird modl i Sctio 7 of t mai txt to grat t simulatd data: Y ;t Y 2;t o Y ;t Y 2;t wr u t iid N(; u ) wit u ;o 2;o 2;o 22;o + B ;o Y ;t Y 2;t, :5 :5 :75 :5 :5 + B 3;o Y ;t 3 Y 2;t 3, o is spci d as follows ad :5 : :2 :4 + u t ; (2.) ; (2.2) 9

20 B ;o ad B 3;o ar tak to b diag(:4; :4) suc tat Assumptio 5. is satis d. T iitial valus (Y t ; " t ) (t 3; :::; ) ar st to b zro. T mpirical modl taks t followig form Y t o Y t + 3X B o;j Y t j + u t (2.3) j wic is stimatd by LS srikag stimatio i Sctio 7 of t mai txt. I t abov tr cass (i.., tr di rt spci catios of o ), w iclud 5 additioal obsrvatios to t simulatd sampl wit sampl siz to limiat start-up cts from t iitializatio. Bfor d ig t iformatio critrio, w itroduc som otatios. Lt i, i 2 ad i 3 b dummy variabls (wic oly tak valus or ). W us [r; (i ; i 2 ; i 3 )] to dot a spci c mpirical submodl wit coitgratio rak r (r ; ; 2) ad trasit dyamic structur (i ; i 2 ; i 3 ), wr i k (k ; 2; 3) idicats tat t k-t laggd di rc is icludd, ad i k mas t k-t laggd di rc is xcludd. W us b u; [r; (i ; i 2 ; i 3 )] to dot t stimator of u basd o t rducd rak rgrssio stimator of ( o ; B o ) i t mpirical modl idicatd by [r; (i ; i 2 ; i 3 )]. T iformatio critrio w cosidr taks t followig form i IC [r; (i ; i 2 ; i 3 )] l dt bu; [r; (i ; i 2 ; i 3 )] + c m 2 (i + i 2 + i 3 ) + r(m r) + mr wr c is a squc wic gos to zro wit gos to i ity. W c 2, l() or l(l()), t iformatio critrio bcoms AIC, BIC or HQ rspctivly(s,.g., Pillips ad McFarlad, 997 ad Cao ad Pillips, 999). T modl slctd by t iformatio critrio is idicatd by i br ; (bi ; ;bi 2; ;bi 3; ) arg mi IC [r; (i ; i 2 ; i 3 )] : (2.4) [r;(i ;i 2 ;i 3 )] Tabl 2. prsts t it sampl modl slctio probabilitis of di rt iformatio critria i di rt modl spci catios. It is clar tat BIC outprforms AIC ad HQ i all scarios cosidrd i tis simulatio dsig. Bot AIC ad HQ ar vry cosrvativ, particularly w t coitgratio matrix o dos ot av full rak ad t sampl siz is small. W t sampl siz icrass to 4, t probabilitis of AIC ad HQ slctig t tru modls ar improvd. O t otr ad, BIC dos rmarkably wll i slctig 2

21 t tru modls v w t sampl siz is small (i.. ). If w compar t simulatio rsults displayd i Tabl.2 of t mai txt wit ts i Tabl 2., w ca s tat LS srikag stimatio prforms as wll as BIC, ad works muc bttr ta AIC ad HQ, i trms of slctig t tru modls. Tabl 2. Modl Slctio wit Iformatio Critria AIC Subst Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bm 2 T bm 2 C bm 2 I BIC Subst Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bm 2 T bm 2 C bm 2 I HQ Subst Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bm 2 T bm 2 C bm 2 I Tabl 2.: Rplicatios5. r o dots t rak of t tru matrix o ad o rprsts t igvalus of o. "T" dots t slctio of t tru modl, "C" dots t slctio of a cosistt modl (i.., t modl wic sts t tru modl), ad "I" dots t slctio of a icosistt modl (i.. t modl wic producs icosistt stimatio). T modl slctio procdur displayd i (2.4) is somtims calld as optimal subst slctio, bcaus it ivstigats all possibl submodls std by t largst mpirical modl (2.3) ad slcts t bst o (wic miimizs t iformatio critrio). I mpirical applicatios, t squtial slctio procdur is popular bcaus it is computatioally muc asir ta t optimal subst slctio. Spci cally, t squtial slctio procdur oly cosidr tr possibl valus for (i ; i 2 ; i 3 ), i.., (; ; ), (; ; ) ad (; ; ). By d itio, t squtial slctio procdur will always miss t tru modl, bcaus O t otr ad, t optimal subst slctio cosidrs all igt possibl valus for (i ; i 2; i 3). 2

22 t tru modl as t trasit dyamic structur (; ; ) wic is ot cosidrd by t squtial slctio. 2 T simulatio rsults of t iformatio critria combid wit t squtial slctio procdur ar prstd i Tabl 2.2 ad 2.3. Tabl 2.2 Modl Slctio wit Iformatio Critria AIC Squtial Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bm 2 F bm 2 C bm 2 I BIC Squtial Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bm 2 F bm 2 C bm 2 I HQ Squtial Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bm 2 F bm 2 C bm 2 I Tabl 2.2: Rplicatios5. r o dots t rak of t tru matrix o ad o rprsts t igvalus of o. "F" dots t slctio of t full modl, i.. t modl wit tru coitgratio rak ad all tr laggd di rcs. "C" dots t slctio of a cosistt modl (i.., t modl wic sts t tru modl), ad "I" dots t slctio of a icosistt modl (i.. t modl wic producs icosistt stimatio). From Tabl 2.2, w s tat AIC ad HQ slct all tr laggd di rcs wit probabilitis clos to, wic is also co rmd i Tabl 2.3. Morovr, AIC ad HQ ar vry cosrvativ, bcaus ty td to slct igr coitgratio raks i it sampls, wic is similar to t simulatio rsults wit optimal subst slctio displayd i Tabl 2.. W compard wit AIC ad HQ, BIC is mor accurat i slctig t tru coitgratio rak, but it also slcts all laggd di rcs wit probabilitis clos to. 2 Not tat t LS srikag stimatio dos ot su r from suc a problm bcaus its stimator is ivariat to t prmutatio of t laggd di rcs. 22

23 Tabl 2.3 Laggd Ordr Slctio wit Iformatio Critria AIC Squtial Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bp bp bp BIC Squtial Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bp bp bp HQ Squtial Slctio r o, o ( ) r o, o ( -.5) r o 2, o ( ) bp bp bp Tabl 2.3: Rplicatios5. r o dots t rak of t tru matrix o ad o rprsts t igvalus of o. bp dots t slctd ordr of t laggd di rcs. Rfrcs [] Cao, J. ad P.C.B. Pillips, "Modl slctio i partially ostatioary vctor autorgrssiv procsss wit rducd rak structur", Joural of Ecoomtrics, vol. 9, o. 2, pp , 999. [2] Pillips, P.C.B. ad J.W. McFarlad, "Forward xcag markt ubiasdss: T cas of t Australia dollar sic 984", Joural of Itratioal Moy ad Fiac, vol. 6 pp , 997. [3] Pillips, P. C. B. ad V. Solo, "Asymptotics for liar procsss", Aals of Statistics, vol. 2, o. 2, pp. 97-,

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

Lecture 7 Testing Nonlinear Inequality Restrictions 1

Lecture 7 Testing Nonlinear Inequality Restrictions 1 Eco 75 Lecture 7 Testig Noliear Iequality Restrictios I Lecture 6, we discussed te testig problems were te ull ypotesis is de ed by oliear equality restrictios: H : ( ) = versus H : ( ) 6= : () We sowed

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES oural of atatical Scics: Advacs ad Alicatios Volu 6 Nubr 00 Pas -6 DOPHANNE APPROAON WH FOUR SQUARES AND ONE -H POWER OF PRES Dartt of atatics ad foratio Scic Ha Uivrsit of Ecooics ad Law Zzou 000 P. R.

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

AUTOMATED ESTIMATION OF VECTOR ERROR CORRECTION MODELS. Zhipeng Liao and Peter C.B. Phillips. September 2012

AUTOMATED ESTIMATION OF VECTOR ERROR CORRECTION MODELS. Zhipeng Liao and Peter C.B. Phillips. September 2012 AUTOMATED ESTIMATION OF VECTOR ERROR CORRECTION MODELS By Zipeg Liao ad Peter C.B. Pillips September 22 COWLES FOUNDATION DISCUSSION PAPER NO. 873 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Statistical Inference Based on Extremum Estimators

Statistical Inference Based on Extremum Estimators T. Rotheberg Fall, 2007 Statistical Iferece Based o Extremum Estimators Itroductio Suppose 0, the true value of a p-dimesioal parameter, is kow to lie i some subset S R p : Ofte we choose to estimate 0

More information

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units Dpartmt of Agricultural ad Rsourc Ecoomics Uivrsity of Califoria, Davis Estimatio of Cosumr Dmad Fuctios Wh th Obsrvd Prics Ar th Sam for All Sampl Uits by Quirio Paris Workig Papr No. 03-004 Sptmbr 2003

More information

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION Jauary 3 07 LECTURE LEAST SQUARES CROSS-VALIDATION FOR ERNEL DENSITY ESTIMATION Noparametric kerel estimatio is extremely sesitive to te coice of badwidt as larger values of result i averagig over more

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Supplement to Applications of Distance Correlation to Time Series

Supplement to Applications of Distance Correlation to Time Series arxiv: arxiv:606.0548 Supplmt to Applicatios of Distac Corrlatio to Tim Sris RICHARD A. DAVIS,* MUNEYA MATSUI,** THOMAS MIKOSCH 3, ad PHYLLIS WAN, Dpartmt of Statistics, Columbia Uivrsity, 55 Amstrdam

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Solution of Assignment #2

Solution of Assignment #2 olution of Assignmnt #2 Instructor: Alirza imchi Qustion #: For simplicity, assum that th distribution function of T is continuous. Th distribution function of R is: F R ( r = P( R r = P( log ( T r = P(log

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

CPS 616 W2017 MIDTERM SOLUTIONS 1

CPS 616 W2017 MIDTERM SOLUTIONS 1 CPS 616 W2017 MIDTERM SOLUTIONS 1 PART 1 20 MARKS - MULTIPLE CHOICE Instructions Plas ntr your answrs on t bubbl st wit your nam unlss you ar writin tis xam at t Tst Cntr, in wic cas you sould just circl

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach Amrica Joural of Mathmatics ad Statistics 27, 7(3): 93-98 DOI:.5923/j.ajms.2773. Prformac Ratig of th Typ Half Logistic Gomprtz Distributio: A Aalytical Approach Ogud A. A. *, Osghal O. I., Audu A. T.

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

KISS: A Bit Too Simple. Greg Rose

KISS: A Bit Too Simple. Greg Rose KI: A Bit Too impl Grg Ros ggr@qualcomm.com Outli KI radom umbr grator ubgrators Efficit attack N KI ad attack oclusio PAGE 2 O approach to PRNG scurity "A radom umbr grator is lik sx: Wh it's good, its

More information

ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS 1

ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS 1 Teory of Stocastic Processes Vol2 28, o3-4, 2006, pp*-* SILVELYN ZWANZIG ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS Local liear metods are applied to a oparametric regressio

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA Itratioal Joural of Computr Scic, Egirig ad Applicatios (IJCSEA Vol., No.4, August DETECTION OF RELIABLE SOFTWARE USING SRT ON TIME DOMAIN DATA G.Krisha Moha ad Dr. Satya rasad Ravi Radr, Dpt. of Computr

More information

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand Onlin Supplmnt Avanc Slling in a Supply Cain unr Uncrtain Supply an Dman. Proos o Analytical sults Proo o Lmma. Using a = minl 0 ; x g; w can rwrit () as ollows (x ; w ; x ; w ) = a +(m0 w )a +( +" x w

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final! # SCORES 50 40 30 0 10 MTE 3 Rsults P08 Exam 3 0 30 40 50 60 70 80 90 100 SCORE Avrag 79.75/100 std 1.30/100 A 19.9% AB 0.8% B 6.3% BC 17.4% C 13.1% D.1% F 0.4% Final Mon. Ma 1, 1:5-:5, Ingraam B10 Gt

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Stochastic Structural Dynamics. Lecture-28. Monte Carlo simulation approach-4

Stochastic Structural Dynamics. Lecture-28. Monte Carlo simulation approach-4 Stochastic Structural Dyamics Lecture-8 Mote Carlo simulatio approach-4 Dr C S Maohar Departmet of Civil Egieerig Professor of Structural Egieerig Idia Istitute of Sciece Bagalore 56 Idia maohar@civil.iisc.eret.i

More information

LECTURE 11 LINEAR PROCESSES III: ASYMPTOTIC RESULTS

LECTURE 11 LINEAR PROCESSES III: ASYMPTOTIC RESULTS PRIL 7, 9 where LECTURE LINER PROCESSES III: SYMPTOTIC RESULTS (Phillips ad Solo (99) ad Phillips Lecture Notes o Statioary ad Nostatioary Time Series) I this lecture, we discuss the LLN ad CLT for a liear

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information