Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Size: px
Start display at page:

Download "Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation"

Transcription

1 Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld locatios is a critical problm i gostatistics. I th cotxt of catgorical variabls, th probabilitis of ach catgory could b calculatd by idicator rigig or multipl poit statistics - two matur coditioal probability stimatio approachs. Ths tchiqus ar compard with th wly dvlopd Dirct Multivariat Probability Estimatio tchiqu. Th compariso is basd o th iformatio providd by th diffrt tchiqus. Th iformativ strgth fuctio is usd as a quatitativ ucrtaity assssmt to th stimatio rsults. Th iformativ strgth fuctio masurs how our ucrtaity is rducd ad how th usampld locatio gais iformatio from rlatd ighbourig locatios. Itroductio Catgorical variabls such as facis or roc typs usually rflct th origi of a roc uit. Although, th tru facis for a spcific usampld locatio is uiqu, it is usually viwd as a radom variabl wh th tru facis o som locatio is iaccssibl. Th paradigm of gostatistics is to charactriz ay facis or roc typs for usampld locatio as a catgorical radom variabls which ar dfid as th st of possibl valus or stats that ca ta ovr th study ara or at ay particular locatio. Usually, th radom variabls ar locatio dpdt ad doatd as Z ( u ), th uppr-cas lttr such as Z ( u) will rfr to a radom variabl at locatio u. Th st of possibl outcoms of th radom variabl is dotd as{, = 1, 2,..., }. Th, th probability of o catgory to xist at locatio uis xprssd as a probability: p( u; ) = prob{ Z( u ) = } (1) Th aim is to giv a mor accuracy ad prcis stimatio for p( u ; ). For xampl, giv catgory umbr with o othr prior iformatio, w ca us th uiform distributio (last iformatio probability) as th stimatio, which will b: p( u ; ) = 1. Mor practically, w hav som global ad dotd as: iformatio for th probability of th catgory to prvail at locatio u, will b p( u; ) p( u ; s ) = p( ). If mor iformatio ar giv, such as th outcoms of th rlatd surroudig ighborig locatios, dotd as { Z( u ) = z, = 1,..., } or {( )} α α α, th probability distributio fuctio as xprssd i (1) will b updatd to a postrior probability, which is calld coditioal probability ad ca b writt as: p( u u, u,... u ) = prob{ Z( u ) = z Z( u ) = z, = 1,..., } (2) 1 2 α α α { z, z,..., z } ar th outcoms of th radom variabls I quatio(2), th lowr cas 1 { Z( u ) = z, =,1,..., }, which ar z [1,2,... ], = 1,...,. α α α α Basd o th coditioal probability dfiitio, th probability P( u u1, u2,..., u) ca b calculatd from th multivariat probability as: P( u, u1, u2,..., u ) P( u u1, u2,..., u ) = (3) P( u1,..., u ) I gostatistics, charactrizatio of ucrtaity about a spatially distributd phomo o th usampld locatio is do through coditioal simulatio o th uivariat cumulativ distributio fuctio as i quatio(2). Mor ovr from th viw of iformatio gaiig, w ar mor itrstd i stimatig th coditioal probability basd o th ighborig data as xprssd i quatio (2) bcaus it will provid mor iformativ stimatio for spcific locatio aftr obtaiig som surroudig α 17-1

2 Papr 17, CCG Aual Rport 11, 29 ( 29) locatios iformatio. Thus, th ifrc of this coditioal probability distributio is th ctral problm of gostatistics. Thr ar svral stablishd ad w dvlopmt approachs to ifr th coditioal probability dirctly or idirctly, such as idicator rigig or multipl poit gostatistics. I idicator rigig approach (Goovarts, 1994; Jourl, 1983), th coditioal probability multivariat probability is calculatd as a liar combiatio of idicator data: P( u = z u = z,..., u = z ) = λ P( u = z u = z ) (4) 1 1 i i i i= 1 Th wights charactriz th dpdc btw th sampld locatios uiad th iformatio from sampld locatios to usampld locatio. Th wights λi ar stimatd by idicator rigig (I) basd o th idicator covariac. Thortically, th coditioal probability ca b calculatd from quatio(3), th umrator is a +1 variats multivariat probability, whil th domiator is th -variats margial probability of this -variats multivariat probability. I th multipoit statistics approach, th rquird +1 variat multivariat probability is costructd from a traiig imag. Th, th rquird coditioal probability i xprssio (3) ca b calculatd by just coutig th rlativly stats umbr occurrd i th traiig imag: Cout( u = z, u1 = z1,..., u = z ) P( u = z u1 = z1,..., u = z} = (5) Cout( u = z,..., u = z ) 1 1 Th w dvlopd DMPE approach stimat th coditioal probability by stimat th multivariat probability, which is th umrator i quatio(3), from th bivariat margial. I this approach, i this algorithm, th bivariat margial probabilitis ar imposd to a iitial multivariat probability as th costraits ad satisfid by itrativly modifyig th multivariat probability. Ad also i DMPE, th lowr margial probabilitis ar usd as a tool to charactriz th iformatio ad th rdudacy btw th sampld locatios ad th usampld locatio. Th thory of all ths thr mthods is ot th mai poit of this papr. Th dtails of idicator rigig approach wr writt i dtails i papr (Dutsch, 26; Goovarts, 1994; Jourl, 1983). Th multipl-poit approach ca b foud i(liu, 26; Ortiz ad Dutsch, 24; Strbll, 22; Wag, 1996). Th dtails of th w dvlopd DMPE approach was giv i th papr i this rport. I this papr, th stimatio rsults wr compard from th iformativ poit btw thos two matur approachs ad th wly dvlopd approach DMPE (Dirct Multivariat Probability Estimatio). Spatial statistics for thos thr mthods I this rsarch, th mai poit is giv a objctiv compariso with th aim of algorithm improvmt. To ma a vry good stimatio, thr ar may practical dtails for ayo of thm. I ordr to xclud th practical issu such as variogram modl costructio, all th spatial statistics ar ifrrd from th sam multivariat probability that is obtaid by scaig th traiig imag with crtai data cofiguratio. Multivariat probability from traiig imag Giv catgorical radom variabls, ad assumig ach of thm may hav catgoris { = 1, 2,..., } outcoms, ths radom variabls will form a multivariat probability P ( u, u,..., u ) which is dfid as: mv 1 2 P ( u,..., u ) = prob( Z( u ),..., Z( u )); α = 1,..., (6) mv 1 1 Latr, th otatio of Pmv ( u1, u2,..., u ) will rfr to th multivariat probability mass fuctio, whil p ( z, z,..., z ) will rfr to o probability stat, which rprsts th probability of a spcific mv 1 2 cofiguratio of catgory zα = with ( = 1,...,, α = 1,..., ) xistig at locatios u1, u2,..., u. Totally, th probability stats umbr will b. I this rsarch, th origial multivariat probability is obtaid 17-2

3 Papr 17, CCG Aual Rport 11, 29 ( 29) from scaig a traiig imag with crtai data cofiguratio. Th traiig imag ca b ay ids of catgorical variabls distributio map which ca rprst th htrogitis charactrs i th spatial spac that th gologist xpct to s i th rsarch ara. It is usd most oft i multipl poit statistics. From this traiig imag, udr th statioary assumptio, th poit statistics will b rtrivd by scaig th data vt from th traiig imag. Cout( u1 = z1, u2 = z2,..., u = z ) P( u1 = z1, u 2 = z2,..., u = z } = (7) Cout( u1, u 2,..., u ) Th xprssio(7) charactrizs th joit ucrtaity about th actual valus z 1,... z. It should satisfy th costrait of: pmv ( z1, z2 Trasitio Probability from multivariat probability owig th multivariat probability, th rlatd ay lowr ordr margial probability ca b calculatd through th multivariat probability margializatio. For xampl, dot th variat multivariat probability as P( u l = z l, l = 1,...., ), th scod ordr margial or bivariat margial probability P( u, u ; z, z ), i, j = 1, 2,...,, i j ca b calculatd from th multivariat probability as: P( u, u ; z, z ) = P( = z ; l = 1,...,, z = 1,..., ) i j i j,..., z ) [,1] ad i j i j Alll with ui = zi & u j = z j ; i j pmv z1 z2 z = 1 u l l (,,..., ) 1 Th bivariat margial probability satisfy P( ui, u j; zi, z j ) 1ad P( ui, u j; zi, z j ) = 1. For ay two radom variabls (uu i, u j; i, j = 1,...,, i j), this bivariat probability will b a matrix which is also calld trasitio probability matrix. For xampl, if thr ar 3 locatios with possibl 3 catgoris i all th locatios, thr will b 27 possibl multivariat stats 3 trasitio probability matrics as show i Figur 1.. l zi = 1 z j = 1., ) (8) Figur 1 Diagram of multivariat probability ad th rlatd bivariat margial probability (All th multivariat probability stats ar show as a gr poit i th spac. Th bivariat probabilitis btw radom variabl u2 ad u3 ar show as a rd ad thos btw u1 ad u3 ar show as blu circl, th bivariat btw u1 ad u2 is ot show i this figur). P ( u, u,..., u ), thr ar totally For th multivariat probability distributio MV 1 2 possibl valus. 1 Assumig thr facis ca b xit at 1 grid locatios, th probability spatial spac will b 3, which is a hug umbr. Thus, it is a big challg to sav ad rtriv it i th stimatio procss. Whil, th lowr ordr margial distributio has a lowr statioary rquirmt ad ca b asily obtaid. I DMPE 17-3

4 Papr 17, CCG Aual Rport 11, 29 ( 29) approach, th trasitio probability is usd to rcostruct th origial multivariat probability. Thus, th coditioal probability ca b calculatd dirctly from quatio(3). Covariac from Trasitio probability I idicator rigig approach, idicator covariac, which is a bivariat statistics, is usd to charactriz th spatial rlatioship. Whil i DMPE, th trasitio probability is usd. I this part, it will show that th covariac ca b ifrrd from th trasitio probability with som simplicity assumptio. This poit will sur that th diffrcs of coditioal probability stimatio for usampld locatio oly com from th algorithm itslf. I idicator rigig approach, a catgorical radom variabl is always trasformd to a biary idicator variabl. For a catgorical variabl Z(u), th idicator variabl for catgory is dfid as: 1, if xist at locatio u I ( u ; ) = = 1,..., (9), othrwis Th idicator covariac modl is usually giv by idicator variogram modl, which is a masur of th spatial corrlatio btw vry two locatios. I statioary assumptio, th idicator variogram I ( ; ) γ h for a idicator variabl at two locatios with dpartur distac of h is dfid as: { 2 } ( ) [ ] 2 γ I h; = E I( u; ) I( u + h ; ), = 1,..., (1) From idicator variogram calculatio as i quatio(1), th idicator variogram of catgory will oly cout thos catgorical trasitios that catgory chags to othr catgoris from th o locatio to th othr locatio. From prvious sssio, th bivariat trasitio probability btw ay two catgoris is dfid as: p h ;, ' ;, ' = 1,..., ( ) Thus, for ach idicator variogram, it summarizs ths 2(-1) diffrt bivariat trasitio probabilitis (Dutsch, 25). ( ) = p ( ) + p ( ) 2 γ h ; h ;, ' h ; ', (11) ' = 1 ' = 1 ' ' For xampl, for thr catgoris ( = 1, 2,3), th idicator variogram ad th trasitio probability hav th rlatioship as: 2 γ ( h;1) = p( h;1, 2) + p( h;1,3) + p( h;2,1) + p( h;3,1) 2 γ ( h;2) = p( h;2,1) + p( h;2,3) + p( h;1, 2) + p( h;3, 2) (12) 2 γ ( h;3) = p( h;3,1) + p( h;3, 2) + p( h;1,3) + p( h;2,3) With th asymmtric assumptio ( p( h;1, 2) = p( h ;2,1) ad p( h;1,3) = p( h ;3,1) ) ad th quality of trasitio probability matrix ( p( h;1,1) + p( h;1,2) + p( h ;1,3) = p1 ): γ ( h;1) = p( h;1,2) + p( h;1,3) = p(1) p( h;1,1) γ ( h;2) = p( h;2,1) + p( h;2,3) = p(2) p( h;2,2) (13) γ ( h;3) = p( h;1,3) + p( h;2,3) = p(3) p( h;3,3) Whr p1 is th uivariat probability for catgory o. Basd o th rlatioship of C1 ( h) = C1 () γ1( h ), from quatio(12) ad(13), th idicator covariac for catgory 1 ca b calculatd from th trasitio probability as: C1 ( h) = C1() p1 + p11 ( h) = p (1 p ) p + p ( h) (14) = p11 ( h) p1i p1 It is th sam for catgory two ad thr. Th idicator covariac ca b calculatd from quatio(14) giv a trasitio probability matrix, ad usd i th simpl idicator rigig dirctly. 17-4

5 Papr 17, CCG Aual Rport 11, 29 ( 29) Th compariso critria Th coditioal probability p( u u1, u2,... u) for a giv data vt ca b calculatd from full multivariat probability, DMPE or from idicator rigig. For compariso purposs, it is hlpful to hav a quatitativ masurmt to say how iformativ of a stimatio is giv th coditioig data. I othr words, it is cssary to quatitativly valuat how much ucrtaity has b rducd rgardig of this stimatio for th usampld locatio? Th iformatio cott is rlatd to th coditioal probability p( u; u1, u2,... u ). Say, if p( ;,,... ) = 1 u u1 u2 u, it is crtai that at locatio surroudig locatios 1 2 u is catgory giv th catgoris at th ( u, u,... u ), thrfor this stimatio is vry iformativ o usampld locatio. Similarly for th cas wh 1 2 p( u ; u, u,... u ) =. it is crtai that is ot goig to happ giv th situatio at th surroudig locatios, hc 1 2 stimatio o usampld locatio. Covrsly, if 1 2 p( u ; u, u,... u ) = is also vry iformativ p( u ; u, u,... u ) 1 = it is ot crtai which catgory is goig to happ o usampld locatio, hc th iformatio cott of this stimatio rachs th miimum. I mor practical cas, w hav som prior iformatio about catgory, say, its global proportio p( u; s ) = p( ) p( u ; u, u,... u ) = p( ) (1). ω [,1] ad ω wh p 1 2 th th lowst iformativ stimatio should b shiftd th poit whr 1 2 Basd o this udrstadig, w ca ma a gralizd dfiitio of iformativ strgth fuctio ω for th stimatio satisfyig th followig coditios(liu, 25): ω is a fuctio of stimatioω = f { p( u; u1, u2,... u )}; ( u ; u, u,... u) is most iformativ ( p( u; u1, u2,... u ) 1or ); ω wh B is ot iformativ ( p( u 1 ; u1, u2,... u ) or p( ) ); ω dcras withi [, 1 ] or [ p( )] ad icras withi[ 1,1] or [ p( ),1] (2). 1 (3). (4). moroically; Liar iformativ strgth dfiitio Giv sampld aroud locatios, th postrior probability (th stimatd coditioal probability distributio for usampld locatio) will b p( u; u1, u2,... u ), which will brig mor iformatio rgardig to th prior probability p( )(Global proportio). Th iformativ strgth ω ca b dfid as a liar fuctio (Liu, 25): p( u; u1, u2,... u) p( ) if p( u; u1, u2,... u) p( ) 1 p( ) ω( u; u1, u2,... u) = (15) p( ) p( u; u1, u2,... u d) if p( u; u1, u2,... u) < p( ) p( ) Figur 2 is a xampl of iformativ strgth fuctio giv diffrt prior probabilitis. 17-5

6 Papr 17, CCG Aual Rport 11, 29 ( 29) Figur 2 liar iformativ strgth fuctio giv thr diffrt uivariat margial probabilitis o-liar iformativ strgth dfiitio I th iformatio thory(covr ad Thomas, 26), th ucrtaity of owldg is masurd by tropy H ( X ). Th tropy of a radom variabl X with a probability mass fuctio p( x ) is dfid as: H ( X ) = p( x) log( p( x)) (16) x Th mor uprdictabl, th highr it s tropy. Th tropy rachs its maximum valu wh X is uiformly distributd, corrspodig to miimum iformativ stimatio. It rachs th miimum valu wh thr is o ucrtaity about X, i.. X happs with probability 1 or. Cosidr th catgorical radom variabl uis dfid o a spatial domai such that all possibl outcoms of ( ; = 1,..., ) is th qual probability p( u 1 ; u1, u2,... u ) =. Th tropy H ( ) u will b: 1 1 H( u) = l( ) = 1 1 = l( ) (17) = l With ths uiform probabilitis, H ( u) is th uppr boud for th avrag tropy with lowst p( u ; u, u,... u ) o th usampld locatio. Thus, th uiform probability iformativ stimatio 1 2 is calld last iformativ probability. Practically, o mor iformatio rsourc is th global proportio of ach catgory p( ), = 1,...,. Basd o this th avrag tropy would b: H ( u) p( ) i l p( ) (18) = Aftr som coditioig data ar obtaid, th stimatio for usampld locatio is updatd from th global proportio to a postrior probability distributio dotd as 1 2 coditioal probability distributio for o usampld locatio, th local tropy would b: = 1 p( u; u, u,... u ), for th H ( u u, u,... u ) p( u; u, u,... u ) i l( p( u; u, u,... u ) (19) = = 1 This w tropy H( u u1, u2,... u ) will always b lss tha H( u ), says that owig mor iformativ ca oly rduc th ucrtaity. That is: Iformatio ca t hurt (Covr ad Thomas, 26). But it is still d to say how much of ucrtaity is rducd aftr gaiig th w iformatio rsourc. I Baysia statistics th L divrgc is usd as a masur of th iformatio gai i movig from a prior distributio to a postrior distributio. L divrgc also calld rlativ tropy or ullbac-liblr distac (L distac). For a radom variabl X, with th probability mass fuctios p( x) ad q( x ), L distac is dfid as: 17-6

7 Papr 17, CCG Aual Rport 11, 29 ( 29) p( x) D( p q) = p( x)l (2) x q ( x ) I th abov dfiitio, i l( ) =, il( ) = ad p( x ) i l( p( x) ) =. q( x) It is show that D( p q) is always ogativ ad is zro if ad oly if p( x) = q( x). I iformatio thory, L distac is usd to say how may xpctd umbr of bits would hav addd to th mssag lgth by usig th origial cod basd o q( x ) istad of usig a w cods basd o th p( x )(Covr ad Thomas, 26). If th p( x) i quatio(2) is th coditioal probability p( u; u1, u2,... u) ad q( x) is th prior probability p( ), this thrfor rprsts th amout of usful iformatio, or iformatio gaiig, about locatio u aftr upgradig th stimatio from th global proportio to coditioig probability. Th L distac will b: p( u ; u,..., u ) 1 ( ( u; u1,..., u ) (1 )) = ( u; u1,..., u)l{ } = 1 (1 ) D p p = { p( u; u1,..., u )l{ p( u; u1,..., u )} p( u; u1,..., u )l(1 )} (21) = p( u ; u,..., u )l( ) + { p( u ; u,..., u )l( p( u ; u,..., u ))} = l( ) + { p( u ; u,..., u )l( p( u ; u,..., u ))} = H ( u) H ( u u,..., u ) Th largr th distac is, th bttr th iformativ, th gratr our ucrtaity rducd o th usampld locatio. So th L distac D ca b usd as a masur to show how th iformativ th stimatio is aftr upgradig from a prior probability to postrior probability. Th lowr boud will b, wh usig th last iformativ probability as th stimatio. Th maximum will b 1 wh thr is o ucrtaity for ach catgory. It is itrstig to show that th distac to th last iformativ probability distributios for biary radom variabl. At this cas, lt th logarithms to bas 2, th quatio(21) will b: D( p( u ; u... u ) (1 )) = log (2) H ( u u,..., u ) = 1 + p( u; u1,..., u)log 2( p( u; u1,..., u)) (22) + (1 p( u; u1,..., u))log 2(1 p( u; u1,..., u)) Th abov distac satisfis th prvious iformativ strgth fuctioω rquirmts. Wh th probability distributio p( u; u1,..., u ) approachs to th uiform distributio, th iformativ strgth is dcrasig, ad it icrass wh p( u; u1,..., u) is farthr away from th uiform distributio. O both sids, th iformativ strgth ω mootoically icrass or dcrass. For biary variabl, wh th prior global probability p( ), = 1,..., is giv, th lowst poit i th iformativ strgth fuctio should b p( ), = 1,...,, th quatio (22) will b modifid as: D( p '( u; u1,..., u ) p( )) = 1 + p '( u; u1,..., u )log 2( p '( u; u1,..., u)) (23) + (1 p '( u ; u,..., u ))log (1 p '( u ; u,..., u )) With p( u; u1,..., u) if p '( u; u1,..., u ) ( ) 2 ( ) p p p '( u; u1,..., u) = ( p( u; u1,..., u) 2 p( ) + 1) if p( u; u1,..., u ) ( ) 2(1 ( )) > p p Figur 3 ar som o-liar iformativ strgth fuctio curvs. 17-7

8 Papr 17, CCG Aual Rport 11, 29 ( 29) Figur 3 o-liar iformativ strgth curvs giv diffrt global margial probabilitis (Lft: th biary variabl without owig th uivariat probability; Right: aftr obtaiig th uivariat probability, th lowst iformativ strgth should shift to th uivariat margial) Thr ar also som othr stablishd approach approachs to compar modls, such as cross validatio ad jacif. I cross validatio, data ar lft out o at a tim ad r-stimatd from th surroudig data. I th jacif, a sparat st of validatio data ar hld bac from th vry bgiig ad oly usd at th d for chcig. Mor dtails ca b foud i (Dutsch, 1999; Goovarts, 1997). Compariso mthods ad compariso rsults Bcaus th data cofiguratio will hav a svr ffct o th stimatio rsults, all fforts should b ta to ma sur our compariso is rprstativ. Basd o th prvious sssio th followig compariso worflow as show i Figur 4 is adoptd. Multivariat probability distributio Trasitio probability Matrix Idicator covariac Traiig imag Estimatd Multivariat probability(dmpe) Idicator rigig Estimatd Coditioal probability p ( MV u... ) u1 u5 Estimatd Coditioal probability p ( DMPE u... ) u1 u5 Estimatd Coditioal probability p ( I u... ) u1 u5 Data cofiguratio Figur 4 thr algorithm compariso worflow Th data cofiguratio as show i Figur 4 is composd by 6 locatios. Sampld data locatios ar u, 1 u, 2 u 3, u4adu 5. Th locatio u is usampld ad movig i th data cofiguratio widow (1 by 1 grids). Totally, thr will b 95 data cofiguratios compariso. Th first stp is multivariat probability costructio which is basd o quatio(7). Alog th rd arrow, th trasitio probability is calculatd accordig quatio(8). For idicator rigig approach, th idicator covariac is comig from trasitio probability basd o(11). Th first compariso could b usig th traditioal cross validat approach. Usig 5 locatios i th traiig imag as th crosschc locatio, th accuracy plots with thos thr approachs ar plottd i Figur 5. It shows that th DMPE stimatio is bttr tha S approach for dpictig th htrogity of this traiig imag. 17-8

9 Papr 17, CCG Aual Rport 11, 29 ( 29) Figur 5 th accplt with diffrt stimatio approach From th viw of ucrtaity, this improvmt ca b quatitivly masurd. Th liar fuctio of th iformativ strgthω for ach catgory, = 1,2 ad 3is plottd i Figur 6. As show i Figur 6, th iformativ strgth ordr for catgory 1 ad 3 is ω ( MV ) > ω ( DMPE) > ω ( I) ; for catgory 2 is ω ( MV ) > ω ( I) > ω ( DMPE). Figur 6 Li Iformativ Strgth comparisos for thr catgoris with diffrt stimatio approachs Th iformativ strgth masurd by th o-liar approach is show i Figur 7. Figur 7 th o-liar ucrtaity dcrasig usig diffrt stimatio approachs (Lft: tropy; Right: L distac) From th L distac, w ca calculat how th stimatio is improvd from th viw of ucrtaity rductio. Th maximum improvmt of iformativ strgth ω ( DMPE) ω ( I) is 1.6%, th 17-9

10 Papr 17, CCG Aual Rport 11, 29 ( 29) miimum of ω ( DMPE) ω ( I) is 4.5%; o avrag, it is 6.4%. From th iformativ strgth critria, th stimatio improvmt o th ucrtaity rductio from DMPE is largr tha I, which will courag a widly applicatio of this w algorithm i th futur. Discussio Although th multipl poit approach has th bst iformativ strgth, it is difficult to gt ough rplicatios for stabl highr ordr multivariat probabilitis bcaus of th hug stat spac. Th statioary assumptio i multipl poit gostatistics may also caus som difficulty. For I approach, th liar probability combiatio approach may ot rsult i modls that show th appropriat lvl of spatial dtail as th rsults show i this rsarch. It has th miimum iformativ strgth to th usampld locatio. Th advatag is its computatioal spd. Whil for DMPE, th lowr margial probabilitis i DMPE will hav miimal statioary rquirmt ad th oliar combiatio will b mor appropriat i may cass. It will giv bttr iformativ stimatio tha I approach. Th spatial statistics tool i DMPE is th trasitio probability which could b obtaid from a traiig imag or vrtical profil. Ifrc of thr dimsioal trasitio probabilitis is problmatic ad CPU rquirmts ar larg. Rfrc Covr, T.M., ad Thomas, J.A., 26, Elmt of Iformatio Thory, Joh Wily & Sos, Ic. Dutsch, C.V., 1999, A short ot o Cross VAlidatio of Facis Simulatio Mthods, i Dutsch, C.V., d., Ctr of Computatioal Gostatistics Aual Rport, Volum 1: Edmoto, Albrta., 26, A squtial idicator simulatio program for catgorical variabls with poit ad bloc data: BlocSIS: Computrs & Goscics, v. 32, p Goovarts, P., 1994, Comparativ prformac of idicator algorithms for modlig coditioal probability distributio fuctios: Mathmatical Gology, v. 26, p , 1997, Gostatistics for atural Rsourcs Evaluatio, Oxford Uivrsity Prss. Jourl, A., 1983, oparamtric stimatio of spatial distributios: Mathmatical Gology, v. 15, p Liu, Y., 25, A Iformatio Cott Masur Usig Multipl-poit Statistics, Gostatistics Baff 24, p , 26, Usig th Ssim program for multipl-poit statistical simulatio: Computrs & Goscics, v. 32, p Ortiz, J., ad Dutsch, C., 24, Idicator simulatio accoutig for multipl-poit statistics: Mathmatical Gology, v. 36, p Strbll, S., 22, Coditioal Simulatio of Complx Gological Structurs Usig Multipl-Poit Statistics: Mathmatical Gology, v. 34, p Wag, L., 1996, Modlig complx rsrvoir gomtris with multipl-poit statistics: Mathmatical Gology, v. 28, p

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010 Pag for-aftr Cotrol-Impact (ACI) Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Richard A. Hirichs Sptmbr 4, Cavat: This primtal dsig tool is a idalizd powr aalysis built upo svral simplifyig assumptios

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A.

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A. Pag BACI Bfor-Aftr-Cotrol-Impact Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Octobr, 3 Richard A. Hirichs Cavat: This study dsig tool is for a idalizd powr aalysis built upo svral simplifyig assumptios

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function Mathmatics ttrs 08; 4(): 0-4 http://www.scicpublishiggroup.com/j/ml doi: 0.648/j.ml.08040.5 ISSN: 575-503X (Prit); ISSN: 575-5056 (Oli) aysia Tst for iftim Prformac Idx of Expotial Distributio udr Symmtric

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Availabl oli at www.scicdirct.com Ergy Procdia 4 (01 170 177 Ergy Procdia 00 (010) 000 000 Ergy Procdia www.lsvir.com/locat/procdia www.lsvir.com/locat/xxx GHGT-10 Exprimtal Studis of CO ad CH 4 Diffusio

More information

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17) MCB37: Physical Biology of th Cll Spring 207 Homwork 6: Ligand binding and th MWC modl of allostry (Du 3/23/7) Hrnan G. Garcia March 2, 207 Simpl rprssion In class, w drivd a mathmatical modl of how simpl

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

A Novel Approach to Recovering Depth from Defocus

A Novel Approach to Recovering Depth from Defocus Ssors & Trasducrs 03 by IFSA http://www.ssorsportal.com A Novl Approach to Rcovrig Dpth from Dfocus H Zhipa Liu Zhzhog Wu Qiufg ad Fu Lifag Collg of Egirig Northast Agricultural Uivrsity 50030 Harbi Chia

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Sara Godoy del Olmo Calculation of contaminated soil volumes : Geostatistics applied to a hydrocarbons spill Lac Megantic Case

Sara Godoy del Olmo Calculation of contaminated soil volumes : Geostatistics applied to a hydrocarbons spill Lac Megantic Case wwwnvisol-canadaca Sara Godoy dl Olmo Calculation of contaminatd soil volums : Gostatistics applid to a hydrocarbons spill Lac Mgantic Cas Gostatistics: study of a PH contamination CONTEXT OF THE STUDY

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

THREE-WAY ROC ANALYSIS USING SAS SOFTWARE

THREE-WAY ROC ANALYSIS USING SAS SOFTWARE ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volum LXI 54 Numbr 7, 03 http://d.doi.org/0.8/actau0360769 THREE-WAY ROC ANALYSIS USING SAS SOFTWARE Juraj Kapasý, Marti Řzáč Rcivd:

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

INFLUENCE OF GROUND SUBSIDENCE IN THE DAMAGE TO MEXICO CITY S PRIMARY WATER SYSTEM DUE TO THE 1985 EARTHQUAKE

INFLUENCE OF GROUND SUBSIDENCE IN THE DAMAGE TO MEXICO CITY S PRIMARY WATER SYSTEM DUE TO THE 1985 EARTHQUAKE 13 th World Confrnc on Earthquak Enginring Vancouvr, B.C., Canada August 1-6, 2004 Papr No. 2165 INFLUENCE OF GROUND SUBSIDENCE IN THE DAMAGE TO MEXICO CITY S PRIMARY WATER SYSTEM DUE TO THE 1985 EARTHQUAKE

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

4. Money cannot be neutral in the short-run the neutrality of money is exclusively a medium run phenomenon.

4. Money cannot be neutral in the short-run the neutrality of money is exclusively a medium run phenomenon. PART I TRUE/FALSE/UNCERTAIN (5 points ach) 1. Lik xpansionary montary policy, xpansionary fiscal policy rturns output in th mdium run to its natural lvl, and incrass prics. Thrfor, fiscal policy is also

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

4.2 Design of Sections for Flexure

4.2 Design of Sections for Flexure 4. Dsign of Sctions for Flxur This sction covrs th following topics Prliminary Dsign Final Dsign for Typ 1 Mmbrs Spcial Cas Calculation of Momnt Dmand For simply supportd prstrssd bams, th maximum momnt

More information

New Binary Complementary Codes Compressing a Pulse to a Width of Several Sub-pulses

New Binary Complementary Codes Compressing a Pulse to a Width of Several Sub-pulses Nw Biary Complmtary Cods Comprssig a Puls to a Width of Svral Sub-pulss Hiroshi TAKASE ad Masaori SHINRIKI Dpartmt of Computr ad Iformatio Egirig, Nippo Istitut of Tchology 4- Gakudai, Miyashiro, Saitama-k,

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design)

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design) Extrm valu statistics Problms of xtrapolatig to valus w hav o data about uusually larg or small t i ~00 yars (data h( t i { h( }? max t i wids v( t i ~500 yars (dsig Qustio: Ca this b do at all? How log

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco EMPLOYMENT AND THE DISTRIBUTION OF INCOME Adrés Vlasco Ju 2011 Motivatio My xpric as Fiac Miistr Chil: hatd discussios o iquality. But... Focus oly o th wag distributio Discussios o th shap of th wag distributio

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark Answr omwork 5 PA527 Fall 999 Jff Stark A patint is bing tratd with Drug X in a clinical stting. Upon admiion, an IV bolus dos of 000mg was givn which yildd an initial concntration of 5.56 µg/ml. A fw

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Chapter 2 Quality-Yield Measure for Very Low Fraction Defective

Chapter 2 Quality-Yield Measure for Very Low Fraction Defective haptr Quality-Yild Masur for Vry ow Fractio Dfctiv I this chaptr, w first rwrit th quality yild as rprstatio of procss yild ad xpctd rlativ loss, focusig o productio procsss with vry low fractio of dfctivs.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD rocdigs of NIT 00 opyright 00 by ABM 3 th Brazilia ogrss of Thrmal Scics ad girig Dcmbr 05-0, 00, brladia, MG, Brazil T O -NORMS ON TH ARAY ORDR O NMRIAL SOLTION RRORS IN D arlos Hriqu Marchi, marchi@ufpr.br

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units Dpartmt of Agricultural ad Rsourc Ecoomics Uivrsity of Califoria, Davis Estimatio of Cosumr Dmad Fuctios Wh th Obsrvd Prics Ar th Sam for All Sampl Uits by Quirio Paris Workig Papr No. 03-004 Sptmbr 2003

More information