Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Size: px
Start display at page:

Download "Time regularity of solutions to linear equations with Lévy noise in infinite dimensions"

Transcription

1 Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, adrss: apszat@cyf-kr.du.pl. J. Zabczyk Istitut of Mathmatics, Polish Acadmy of Scics, Śiadckich 8, -95 Warszawa, Polad, adrss: zabczykt@impa.pl. Abstract Th xistc of strog ad wak càdlàg vrsios of a solutio to a liar quatio i a ilbrt spac, driv by a Lévy procss takig valus i a ilbrt spac U is stablishd. Th so-calld cylidrical càdlàg proprty is ivstigatd as wll. A spcial mphasis is put o ifiit systms of liar quatios driv by idpdt Lévy procsss. Kywords: Càdlàg ad cylidrical càdlàg trajctoris; Path proprtis; Orsti Uhlbck procsss; Liar volutio quatios; Lévy ois. 1 Mathmatics Subjct Classificatio: Primary: 615; Scodary: 6G5. 1. Itroductio This papr is cocrd with th tim rgularity of a solutio to th followig liar volutio quatio dx = AXdt + dz, X) =, 1) whr A grats a C -smigroup S o a ilbrt spac ad Z is a Lévy procss takig valus i a ilbrt spac U. Prprit submittd to Elsvir Novmbr 13, 1

2 Not that 1) icluds liar parabolic ad hyprbolic quatios prturbd by a ifiit dimsioal stochastic procss. To work with th solutio havig Markov proprty o has to assum s [19], Chaptr 1) that Z is a Lévy procss. A good thory for liar quatios is cssary to study th oliar problms of th typ dx = AX + F X)) dt + dz, X) = x. Ths problms ar v mor importat from th applicatio poit of viw. It is ot difficult to formulat cssary ad sufficit coditios udr which th solutio to 1) xists i ad/or is ma squar cotiuous; s Propositio.6. owvr for a dpr study of th solutio it is cssary to fid out how rgular ar its trajctoris ad this is th mai purpos of th prst study. Sic th cas of Z big a Wir procss is rathr wll udrstood s [7, 8, 11, 3]) w assum that Z is without th Gaussia part. Morovr if th procss Z taks valus i th spac U, th, udr rathr mild assumptios o th smigroup S, th solutio has a càdlàg modificatio du to th classical Kotlz rsults s [14, 15], ad [1]). This is obviously th bst possibl tim rgularity rsult for a quatio driv by a jump ois. It is howvr importat to cosidr th cas wh Z livs i a biggr spac U ; s.g. [1]. For istac to stablish th strog Fllr proprty of th corrspodig trasitio smigroup th iclusio U is oft vry hlpful. W will limit our cosidratios to this cas oly. Obviously to hav th solutio takig valus i w will hav to assum that th smigroup S xhibits som rgularisig proprty. Namly w assum that for ach t >, St) has a uiqu) xtsio to a boudd liar oprator, dotd also by St), from th spac i which Z livs to. W assum that th solutio X taks valus i ad is giv i th so-calld mild form: Xt) = St s)dzs), t. Path proprtis of X dpd havily o th jump masur ν of Z. Namly if νu \) >, th rgardlss th grator A, v if X is squar itgrabl i, thr is a o mpty st of vctors z such that for ay T >, with o zro, or v i may cass with probability 1, th trajctoris of

3 th ral-valud procss Xt), z, t [, T ], ar uboudd; s [4] ad [19], Propositio 9.5. Thrfor w will assum that th Lévy masur ν of Z satisfis νu \ ) =. ) O obtais a itrstig class of quatios, icludig th prturbd hat quatio, assumig that A is a gativ dfiit oprator with igvctors ), formig a orthoormal ad complt basis i, ad with th corrspodig, positiv igvalus γ ). If i additio Z = Z, 3) whr Z ) ar idpdt ral-valud Lévy procsss ach with a Lévy masur µ, th quatios of this form will b calld of th diagoal typ. I fact th Xt) = X t), whr dx = γ X dt + dz, X ) =. O ca thus idtify X with th squc of procsss X ) ad th spac with l. Du to th idpdc of th procsss Z, th Lévy masur ν of Z is always portd o th st sum R ad obviously hypothsis ) is satisfid. Coditio ) imposd o th Lévy masur of th ois, dos ot guarat that X has càdlàg trajctoris i. I fact it was show rctly, for a larg class of quatios satisfyig ), icludig a subclass of diagoal os, that thir solutios liv i but do ot allow a càdlàg modificatio; s [], ad also Thorm.3, Propositios 4.1, 4.3, ad Corollary 4. of th prst papr. Morovr, it was show by Liu ad Zhai [17], s also Rmark 3.5, for th diagoal systms with Z big idpdt α-stabl procsss that if X is càdlàg i th cssarily th procss Z taks valus i. Ths rsults ar i sharp cotrast with what o could xpct from th rsults o th quatios with Gaussia ois. Th càdlàg proprty for th quatios with Lévy prturbatios is much lss frqut tha th cotiuity of th trajctoris i th Gaussia cas; s [7, 8, 11, 3]. This is o of th rasos that i th jump cas mor sophisticatd cocpts of rgularity might b usful. I fact w will dal with th followig proprtis. 3

4 Dfiitio 1.1. i) W say that a procss X has a càdlàg modificatio if thr is a modificatio X of X with càdlàg trajctoris; that is right cotiuous ad havig lft limit at ay poit. ii) W say that a -valud procss X has a wakly càdlàg modificatio if thr is a modificatio X of X such that for ay z, th ral-valud procss X ), z has càdlàg trajctoris. iii) A -valud procss X is cylidrical càdlàg if for ay z, th ralvalud procss X ), z has a càdlàg modificatio. iv) Lt V. A V -valud procss X is V -cylidrical càdlàg if for all v V th ral-valud procss v X ) has a càdlàg modificatio. W hav th followig obvious implicatios i) = ii) = iii) = iv) Th càdlàg proprty is fudamtal for stablishig th strog Markov proprty of th solutio ad for various localisatio procdurs. It allows to formulat ad study th xit tim τ D from a giv st D. Th xistc of a wakly càdlàg modificatio surs at last th local bouddss of trajctoris; s Thorm.3ii). For solutios which ar cylidrically càdlàg or V -cylidrically càdlàg, th xit tims ar maigful for a larg class of cylidrical sts of th form D = {x : Πx G} or D = {x V : Πx G} whr Π is a fiit projctio i or i V, rspctivly. W will dscrib ow th mai rsults of th papr. Rsults o th càdlàg proprty ar formulatd ad discussd i Sctio 3. Our mai rsult is Thorm 3.1. W rstrict our atttio to th cas wh th oprator A grats a aalytic smigroup ad thus to parabolic typ of quatios. Th cas of hyprbolic quatios lads to th group, rathr tha to smigroup S, ad thrfor rquirs th ois takig valus i th stat spac. W show that th class of quatios havig càdlàg solutios i but with th ois procss volvig outsid is o mpty ad of som itrst; s.g. Exampl 3.4. Thus, th phomo coutrd i th cas of α-stabl prturbatios by Liu ad Zhai [17], ad dscribd abov, is ot valid i gral. Our rsults rly o th classical Chtsov work [5] or [9] ad o formula for momts of itgrals with rspct to Poissoia radom masurs gathrd i th prlimiaris. As a byproduct w obtai also th stimats of th typ E Xt) p <. t T 4

5 W ot that th classical rsult of Kiy s [13] or [19], Thorm 3.3, o càdlàg vrsio of a Markov procss would rquir that t ) lim P St)x + St s)dzs) x > r =, r >. 4) t x Obviously 4) is satisfid if ad oly if A =. Assum 4). Th puttig x = w obtai t ) lim P St s)dzs) t > r =, r >. Thrfor St)x x has to covrg to uiformly i x from th whol spac. It is impossibl as x St)x x = if St) is ot th idtity. W do ot trat i this papr a itrstig qustio udr which coditios th solutio X has a càdlàg or wakly càdlàg modificatio i a biggr spac. For som aswrs to ths qustios w rfr th radr to [16]. Rsults o th thr rmaiig càdlàg proprtis ar cotaid i Sctios 4 6 ad ar stablishd oly for th diagoal systms. Thy ar rathr tchical ad ivolv log formula. Extsios to th gral cas howvr would b possibl if dd. Th mai rsult o wak càdlàg proprty is formulatd as Propositio 4.1 ad is of gativ charactr. It stats sufficit coditios for o-xistc of wakly càdlàg solutios i trms of th tails of th masurs µ. Its proof is basd o th gral if ad oly if coditios for wak càdlàg proprty, formulatd i trms of th orthogoal xpasios ad stablishd i th prlimiaris as Thorm.3. It turs out that also wak càdlàg proprty implis svr rstrictios o th paramtrs of th quatios. I particular th cas of idpdt ad idtically distributd coordiats of th ois procss cylidrical ois) is xcludd. At this momt w do ot hav ay xampl of liar systm 1) whos solutio has o càdlàg but oly a wakly càdlàg modificatio. Fortuatly th cylidrical càdlàg proprty taks plac udr much wakr assumptios ad i particular th coordiats of th ois ca b idtically distributd. Sufficit coditios for this proprty ar formulatd i Thorms 5.1 ad 5.. It is worth otig that to show th cylidrical càdlàg proprty of X o caot apply dirctly th Chtsov rsult s Rmark 8.1) but o ds a w way of circumvtig that obstacl. 5

6 Rsults o V -cylidrical càdlàg proprty ar prstd i Sctio 6. Th mai rsult, Thorm 5., provids sufficit coditios for that proprty. As a cosquc of Thorm 5. ad Propositio 4.3 w s that v if th mbddig V is compact, th V -cylidrical càdlàg proprty dos ot sur th xistc of a wakly càdlàg modificatio. Thrfor th implicatio ii) = iv) dos ot hold i gral. W complt this itroductio with som op qustios. Qustio 1 W hav coditios for th xistc of càdlàg modificatios ad coditios which xclud th xistc of a wakly càdlàg modificatio. Fid applicabl coditios ladig to wak but ot strog càdlàg proprty. I particular fid xampl of a liar quatio whos solutio admits a wakly càdlàg but ot càdlàg modificatio. Qustio I our ivstigatio w rly o th Chtsov critria with th xpot p = ; s Corollary.. Fid xtsios of our rsults for p or mor grally usig th fuctio g apparig i Thorm.1 ot of th powr typ. Qustio 3 Fid coditios for cylidrical càdlàg proprtis i th odiagoal cas. Qustio 4 Fid coditios for th càdlàg or cylidrical càdlàg proprty i cas of th ois with tails s Corollaris 3. ad 5.3). I particular i diagoal cas assum that Z = σ L whr L ar idpdt symmtric α-stabl procsss ad σ α <. γ Is it tru that th procss X is cylidrical càdlàg?. Prlimiary rsults.1. Càdlàg critria i mtric spacs W first rcall som basic facts o path rgularity of stochastic procsss i mtric spacs. Thy ca b attributd to N.N. Chtsov, but th xpositio is basd o th book of Gihma ad Skorohod [9]. 6

7 Lt ξ = ξt), t [, T ]) b a sparabl procss takig valus i a mtric spac U, ρ). W xtt ξ o R puttig ξt) = ξ) for t < ad ξt) = ξt ) for t T. Th followig rsult holds s [9], Lmma 3 ad Thorm 1 of Chaptr 3). Thorm.1. Assum that thr ar a icrasig fuctio g:, ), ) ad a fuctio q:, ), ), ) such that for all C, h >, P {[ρξt), ξt h)) > Cgh)] [ρξt), ξt + h)) > Cgh)]} qc, h), ad G := gt ) <, QC) := qc, T ) <. Th with probability 1, ξ has o discotiuitis of th scod kid, ad for ay N >, { } { P ρξt), ξs)) > N P ρξ), ξt )) > N } ) N + Q. t,s [,T ] G G Corollary.. Assum that thr ar p, r, K > such that for all t [, T ] ad h >, E [ρ ξt), ξt h)) ρ ξt), ξt + h))] p Kh 1+r. 5) Th with probability 1, ξ has o discotiuitis of th scod kid. Morovr, for ay 1 q < p, E t,s [,T ] ρξt), ξs))) q G) q E ρξt ), ξ))) q + R, 6) whr < r < r, G = T ) r /p) <, 7) ad R := 1 + q KG) p T 1+r r p q 1 r r. 7

8 Proof Lt < r < r. Th th assumptios of Thorm.1 hold with gh) := h r /p) ad qc, h) := K C p h1+r r. By Chbyshv s iquality P {[ρξt), ξt h)) > Cgh)] [ρξt), ξt + h)) > Cgh)]} P { ρξt), ξt h))ρξt), ξt + h)) > C g h) } Kh1+r C p g p h) = Kh1+r r C p. Not that i this cas G is giv by 7), ad ) N Q = KG)p T ) 1+r r = KG)p T 1+r r G N p N p = KG)p T 1+r r 1 r r N p. To show 6) tak q 1. Sic E t,s [,T ] Thorm.1 yilds E t,s [,T ] ρξt), ξs))) q = q P { ρξt), ξs)) N t,s [,T ] ρξt), ξs))) q G) q E ρξt ), ξ))) q +1+q ad cosqutly 6). 1 } r r ) N q 1 dn, ) N Q N q 1 dn, G.. Critria for càdlàg proprtis i ilbrt spacs Lt ow X ) b a squc of ral-valud càdlàg procsss dfid o a fiit tim itrval [, T ], ad lt ) b a orthoormal basis of a ilbrt spac. Assum that for ach t [, T ], Xt) = X t), whr th sris covrgs i probability or quivaltly P-a.s. Th first part of th thorm blow is tak from th papr by Liu ad Zhai [17]. It will ot b usd i th papr but it is icludd for a mor complt pictur. I th proofs w follow suggstios by A. Jakubowski [1]. 8

9 Thorm.3. i) Procss X has a càdlàg modificatio if ad oly if ) P lim Xt) = = 1. 8) N t [,T ] =N ii) Procss X has a wakly càdlàg modificatio if ad oly if ) P Xt) < = 1. 9) t [,T ] Proof Sic ach X is càdlàg, 8) implis that X has a càdlàg modificatio. Thrfor w d to show that 8) follows from th xistc of a càdlàg modificatio X of X. To s this ot that o a ds st Q [, T ], X = X, P-a.s. Cosqutly, sic ach X is càdlàg, Xt), = X t) = Xt),, t [, T ], P a.s. Thrfor thr is a Ω Ω such that PΩ ) = 1 ad for ay ω Ω, [, T ] t Xt; ω) is càdlàg ad Xt; ω), = X t; ω). By càdlàg proprty, for ay ω Ω, th st {Xt; ω): t [, T ]} is compact i. Thrfor th dsird coclusio follows from th followig critrio for a rlativ compactss of a boudd st K i ; lim N x K =N x, =. To s that 9) implis th wakly càdlàg proprty of X tak a z. O has to show that [, T ] t Xt), z R is càdlàg P-a.s. Lt Ω b th st of all ω Ω such that Th t [,T ] Xt; ω) <. Xt; ω) = X t; ω) 9

10 is a boudd -valud mappig of t [, T ]. Morovr, Xt; ω), k = X k t; ω), t [, T ], ar càdlàg fuctios. Lt t [, T ) ad lt t m t. Th z Xt m ; ω), z, m = 1,,..., is a squc of liar fuctioals, covrgig o a ds st. Sic thir orms ar boudd Xt m ; ω), z, m = 1,,..., covrgs for ay z. Sic lim m Xt m; ω), z = Xt; ω), z holds o a ds st of z it holds for ay z. Thrfor X ; ω) is wakly right cotiuous. Now lt t, T ] ad lt t m t. Th lim Xt m; ω), k = X k t ; ω), k N. m Bouddss of Xt m ; ω), m N, implis that th wak limit of Xt m ; ω) xists. Sic it holds for ay squc t m t, th wak lft limit Xt ; ω) xists. Assum ow that X is a wakly càdlàg modificatio of X. W will show 9). To do this obsrv that X t; ω) = Xt; ω),, t [, T ], = 1,,..., ar càdlàg fuctios. Morovr, for ay t [, T ], P ω Ω: X ) t; ω) = X t; ω) = 1. Sic both procsss X ad X ar càdlàg, thrfor thr is a st Ω Ω such that P Ω) = 1 ad X t; ω) = X t; ω), t [, T ],, ω Ω. Sic 9) holds. t [,T ] X t; ω) <, P a.s., 1

11 .3. Momts of stochastic itgral I th propositio blow π is a compsatd Poisso radom masur o a masurabl spac E with th itsity masur ν. Propositio.4. Assum that dtrmiistic ral-valud masurabl fuctios f 1,..., f 4 hav fiit forth momts with rspct to ν. Th w hav E f 1 x) πdx) f x) πdx) f 3 x) πdx) f 4 x) πdx) E E E E = f 1 x)f x)νdx) f 3 x)f 4 x)νdx) E + E f 1 x)f 3 x)νdx) f x)f 4 x)νdx) E + E f 1 x)f 4 x)νdx) f x)f 3 x)νdx) E E + f 1 x)f x)f 3 x)f 4 x)νdx). E A simpl proof of th propositio abov ca b obtaid by coscutiv diffrtiatio of th charactristic fuctio { 4 } F x 1, x, x 3, x 4 ) = E xp i x j f j x) πdx) = xp { E j=1 E i 4 j=1 x jf j x) i ) } 4 x j f j x) 1 νdx). I th papr w will also d th followig spcial cas of Propositio.4. Namly, lt L b a ral-valud purly jump Lévy procss with a Lévy masur µ. W assum that µ has fiit momts up to ordr 4. Writ m j := y j µdy), j = 1,..., 4. R Th Lt), t, ca b writt as th sum of a drift trm mt ad a pur jump Lévy martigal with th Lévy xpot Ψz) = ) 1 + izy izy µdy). 1) R For our purposs w ca assum that th drift trm vaishs ad cosqutly that th Lévy xpot of L is giv by 1). 11 j=1

12 Propositio.5. For ay T < ad cotiuous dtrmiistic fuctios f 1, f, T ) T ) E f 1 s)dls) f s)dls) T ) = m f 1 s)f s)ds + m T +m 4 f1 s)f s)ds..4. Critria for volutio of OU procsss i T T f1 s)ds f s)ds I th propositio blow w ar cocrd with X giv by 1). Lt π b th radom jump masur of Z, ad lt πds, dz) := πds, dz) νdz)ds b th compsatd radom masur. By th Lévy Khichi rprstatio formula s.g. [19], Thorm 6.8) th procss Z ca b writt as follows Zt) = mt+ { z U >1} zπds, dz)+ { z U 1} z πds, dz), t. 11) Propositio.6. Assum that Z is a Lévy procss i a ilbrt spac U with rprstatio 11). Assum that th Lévy masur ν of Z satisfis νu \ ) = ad that th drift trm m =. Th w hav th followig. i) Procss Z taks valus i if ad oly if z 1νdz) <, t. ii) Procss X taks valus i if ad oly if for ay t >, whr B := {x U: x U 1}. U Ss)z 1dsνdz) <, [χ B v) χ B Ss)v)] Ss)vνdv)ds, 1

13 iii) Assum that z { z U >1} Uνdz) < ad that Ss)a ds, t >, whr a = zνdz). { z U >1} Th X has fiit scod momt i if ad oly if Ss)z dsνdz) <, t. 1) Morovr, if 1) holds th X is ma squar cotiuous i. Proof Th first part follows dirctly from th Lévy Khichi thorm s.g. [19], Thorms 4.3 ad 6.8). I ordr to show th scod part ot that th radom variabl Xt) is ifiitly divisibl with th Lévy masur ad th drift m t = U ν t := Ss)ds ν [χ B v) χ B Ss)v)] Ss)vνdv)ds, for mor dtails s [6]. W hav to chck oly that m t, ad that z 1ν tdz) <. Sic z 1ν tdz) = th dsird coclusio holds. Lt Z t) = U Ss)z 1νdz), z πdz, ds), t. Clarly 1) is a if ad oly if coditio udr which th procss St s)dz s), t, 13

14 is squar itgrabl i. O th othr had Zt) = Z t) + at, whr a U ad St s)ads. Thrfor th dsird quivalc holds. To s th cotiuity i probability assum that t > s. Without ay loss of grality w ca assum that Zt) = z πds, dz), t. Th U It, s) := E Xt) Xs) s = E St r)dzr) Ss r)dzr) + E St r)dzr) s s = St r) Ss r)) z drνdz) + St r)z drνdz) s s s = St s) I) Sr)z drνdz) + Sr)z drνdz). By 1) ad th Lbsgu domiatd covrgc thorm It, s) providd t s ad s is i a boudd itrval. 3. Càdlàg proprty This sctio is cocrd with th xistc of a càdlàg modificatio of th solutio X to 1). For som tchical raso w will d to assum that th smigroup S is aalytic o. Without ay loss of grality w may assum that S is xpotially stabl. Th blogs to th rsolvt st of th grator A. Lt ρ, ρ >, b th domai of A) ρ quippd with th orm z ρ := A) ρ z. If ρ <, th ρ is th dual spac to ρ whr th duality is giv by th idtificatio =. Th proof of th thorm blow is postpod to Sctio 6. Thorm 3.1. Lt X b th solutio to 1), whr A is th grator of a xpotially stabl aalytic smigroup S o a ilbrt spac. Lt Z b a Lévy procss takig valus i a ilbrt spac U = ρ for a crtai 14

15 ρ < 1/ ad havig rprstatio 11). Assum that th Lévy masur ν of Z satisfis ν ρ \ ) = ad that ) z ρ + z 4 ε νdz) < for a crtai ε >. Th X has a càdlàg modificatio i ad E Xt) q <, T <, q [1, 4). 13) t T Usig th stadard localisatio procdur w obtai th followig. Corollary 3.. Assum that thr ar ρ < 1/ ad ε > such that Z taks valus i ρ, th Lévy masur ν of Z satisfis ν ρ \ ) =, ad z 4 ενdz) <, R >. { z ρ R} Th X has a càdlàg modificatio i Diagoal cas Lt us ow cosidr th diagoal cas of 1). Clarly w ca assum that = l, ν = µ whr ach µ is a Lévy masur of a o dimsioal Lévy procss Z, ) is th caoical basis of l, A = γ, ad γ >, N. W assum that ach Z has Lévy Khichi rprstatio Z t) = zπ ds, dz) + z π ds, dz), 14) { z >1} { z 1} whr π is a Poisso radom masur with itsity masur µ satisfyig R z 1µ dz) <. Corollary 3.3. I th diagoal cas assum that thr ar ρ < 1/ ad ε > such that ) z γ ρ + zγ 4 4ε µ dz ) <. R 15

16 Th X has a càdlàg modificatio i = l ad 13) holds. If ad R { z γ ρ R} th X has a càdlàg modificatio i l. ) z γ ρ 1µ dz ) < z 4 γ 4ε µ dz ) <, R >, 15) I th followig xampl w show that solutio of th liar quatio ca b càdlàg i although th ois procss dos ot liv i. Exampl 3.4. Lt Z = σ L, N, whr L ar idpdt ad idtically distributd Lévy procsss of typ 14), ad σ ) is a squc of strictly positiv umbrs. Assum that th Lévy masur µ of L has fiit momts up to ordr 4. Th th Lévy masur µ of Z = σl quals µ /σ ). Cosqutly, if thr is a ε > such that [ γ ε 1 σ + γ ε σ 4 ] <, th by Corollary 3.3, X has a càdlàg modificatio i l. I particular, if γ α, σ κ, th X has a càdlàg modificatio i l providd that α > 1 κ ad κ > 1/4. Assum ow that ach L is a Poisso procss with itsity 1. Th µ = δ 1 ad σ L has a Lévy masur µ = δ σ. Thrfor Z = σ L ) livs i l if ad oly if R x 1µ k dx ) = σ 1 <. c, if σ κ, th Z taks valus i l if ad oly if κ > 1/. Summig up, if 1/4 < κ < 1/ ad α > 1 κ th Z dos ot tak valus i l but th solutio X has a càdlàg modificatio i l. Rmark 3.5. It turs out that our rsult is ot applicabl to th cas of α-stabl ois cosidrd by Liu ad Zhai [17]; s discussio i Sctio 1. Namly, still i th diagoal cas, assum that Z = Z ) whr Z = σ L, 16

17 σ > ad L ar idpdt ral-valud symmtric α-stabl procsss for a fixd α, ). Not that th Lévy masur µ of σ L is giv by µ ) = µσ 1 ), whr µ is th Lévy masur of th symmtric α-stabl procss. c µ has th dsity Cσ/ x α 1+α. Thrfor th coditio 15) has th form γ ρ R σ α zγ 4 4ε dz z 1+α = R4 α σ α 4 α γ 4ε+4 α)ρ <, R >. Thrfor 15) ad th fact that γ + imply that σα <. Th last iquality is howvr if ad oly if coditio udr which Z taks valus i l ; s [1, ]. 4. Wakly càdlàg proprty i diagoal cas I th prst sctio w ar cocrd with th wakly càdlàg proprty dalig oly with th diagoal cas. Rsults hr ar maily of gativ typ. Assum that A is gativ dfiit slf-adjoit with a compact rsolvt, ) is th orthoormal basis of igvctors of A, γ ) is th corrspodig squc of igvalus, ad Z = Z, whr Z ) ar idpdt ral-valud Lévy procsss with th Lévy Khichi rprstatio 14). Th whr Xt) = X t), dx = γ X dt + dz, X ) =. Not that ach procss X is càdlàg. Takig ito accout Thorm.3 th followig rsult provids, i particular, a cssary coditio for th xistc of th wakly càdlàg modificatio of X. Th proof is i th spirit of [17]. Propositio 4.1. If for ach r >, µ dy) =, {r y } 17

18 th for vry T >, P t [,T ] ) Xt) < =. I particular th procss X dos ot hav a wakly càdlàg modificatio. Proof Not that for ach, c Xt ) Xt). t [,T ] t [,T ] Z t)) = X t)) 4 Xt), t [,T ] t [,T ] t [,T ] whr Z t) := Z t) Z t ). Takig ito accout th obvious stimat w obtai whr 4 t [,T ] X t) 4 Sic ζ ar idpdt, ) P Xt) < t [,T ] t [,T ] ζ 4 t [,T ] X t) Xt), t [,T ] ζ := Z t)), N. t [,T ] P ζ < r Z t)), ) = lim P ζ r ). Lt π b th Poisso radom masur corrspodig to Z. Th P ζ r ) = P π [, T ] {y: y > r}) = ) = xp { T µ {y: r < y }}. Thrfor th dsird coclusio follows from th stimat ) { } P Xt) < lim xp T µ {y: r < y }. 16) r t [,T ] As a dirct cosquc of 16) w obtai th followig rsult. 18

19 Corollary 4.. Lt Z t) = σ L b t), t, whr L ar idpdt idtically distributd Lévy procsss of typ 14), ad σ, b >. If th Lévy masur µ of L has a uboudd port, ad thr is a T > such that ) th σ or b. P t [,T ] Xt) < >, Th followig rsult shows that th assumptio σ is i gral ot sufficit for th xistc of a wakly càdlàg modificatio of X. Propositio 4.3. Lt L b idpdt idtically distributd Lévy procsss, of typ 14), ach with th Lévy masur µ. Assum that µ has a uboudd port. Th thr is a squc σ such that ) P Xt) < =, T >, t [,T ] rgardlss th squc γ ). Proof Takig ito accout 16) it is ough to fid a squc σ such that µ{y: σ 1 r < y } =, r >. Lt ψx) = µ{y: y > x}, x >. By th assumptio ψ is a dcrasig fuctio from, + ) to, + ). Thus th rsult follows from th lmma blow. Lmma 4.4. Assum that ψ:, + ), + ) is a dcrasig fuctio. Th thr is a squc a ) such that a ad ψra ) =, r >. Proof Lt N k b a squc such that N k+1 1 =N k ψk ) 1. 19

20 Lt a = k for [N k, N k+1 1]. Th for ay m N, ψma ) = k=1 k=m N k+1 1 =N k N k+1 1 ψmk) k=m N k+1 1 =N k =N k ψk ) =. ψ 5. Cylidrical càdlàg proprty i diagoal cas This sctio dals with diagoal cas. assum that = l ad X = X ) whr As i th prvious sctio w dx = γ X dt + dz, X ) =, = 1,,..., 17) γ, N, ar strictly positiv ral umbrs, ad Z, N, ar idpdt ral-valud Lévy procsss with th Lévy Khichi dcompositio 14). Giv a squc β ) of strictly positiv umbrs, st { } lβ := x ): x ) l := x β β <. Sic Z ) ar idpdt, it is kow, s [19], that Z is a Lévy procss i lβ if ad oly if = R β x 1µ dx ) [ β β 1,β 1 ) x µ dx ) + µ R \ β 1, β 1 ) )] <. Thrfor, th assumptio that ach µ has a fiit scod momt surs that Z is a Lévy procss i a suitably chos wightd l -spac. W assum that for ay, th Lévy masur µ of Z has fiit momts up to ordr 4. Writ m j ) := x j µ dx), j = 1,..., 4. 18) R

21 Not that sic th Lévy masurs µ hav fiit first momts, th procsss Z hav trajctoris with boudd variatio. Subtractig th drifts w may assum that Z t) = x π ds, dx), 19) R whr π is th Poisso jump masur of Z ad π is th compsatd masur. I this way ach Z is a squar itgrabl martigal. Obviously, ad X t) = EX t) = m ) I this sctio w assum that m ) γ γt s) dz s), ) γt s) ds m ) γ. + m ) 1) <, 1) γ which is mor that is dd to guarat that th procss X := X ) rstrictd to ay fiit tim itrval [, T ], is a squar itgrabl radom lmt i l satisfyig E Xt) l <. t T Takig modificatios w ca also assum that th ral-valud procsss X ar càdlàg. Not that X solvs th liar quatio 1) with a diagoal liar oprator Ax ) = γ x ), ad with Z = Z ). Th mai rsults of th prst sctio ar th thorms blow. Thir proofs ar howvr postpod to Sctios 8 ad 9, rspctivly. Th first rsult covrs th cas whr Z ) ar idtically distributd with th Lévy masur havig fiit momts up to ordr 4. This particular cas rquirs γ +. By [] th solutio X has o càdlàg modificatio ulss µ =, Morovr, if µ has a uboudd port, th by Propositio 4.3, X dos ot hav v a wakly càdlàg modificatio. 1

22 Thorm 5.1. Assum th stimat 1), ad that thr is a ε, 1) such that: m1 ) + m ) + m 4 ) + γ ε 1)/ m ) + γ ε 1 m 4 ) ) <. ) Th X is cylidrical càdlàg. Morovr, T <, q [1, 4), E Xt), z l q <. 3) z l : z l 1 t [,T ] I additio for ay z l, th sris X t)z = Xt), z l covrgs i L q uiformly i t o ach compact itrval. Th proofs of th difficult first parts of th thorm ar postpod to th followig sctios. r w sktch th proof of th fial o. Lt Pr,m z) k = z k if m k ad othrwis. For ay z l ad for ay δ > thr is a δ N such that t [,T ] k= Pr,m z l δ z l, m > δ. Morovr, if Pr,m z, th m q E X k t)z k = E Pr,m z q Xt), Pr,m z q Pr,m z t [,T ] Pr,m z q E Xt), v l q. v l : v l 1 t [,T ] Cosqutly, th stimat i 3) guarats that for ay z l, for all T > ad ε > thr is a ε,t such that for all ε,t m, m q E X k t)z k ε. t [,T ] k=

23 5.1. lβ -cylidrical càdlàg proprty Rcall that lβ is a wightd l -spac. Th lβ ) l1/β, whr 1/β = 1/β ). Our xt rsult is cocrd with lβ -cylidrical càdlàg proprty ad i particular it covrs th cas whr Z = σ L, N, whr L ar idtically distributd with th Lévy masur havig fiit momts up to ordr 4, ad σ. Thorm 5.. Assum that lim m1 ) m 4 ) + γ 1 ) =. 4) Lt morovr β ) b a squc of positiv umbrs tdig to + such that β m ) + β ) m 1 ) <, γ γ ad for a crtai ε >, β m 1 ) γ <, β m 1 )) ε +ε <, [ β [ β m )) ε 1+ε + γ 1 m 4 )) 1 γ 1 ) 1 ε ] <, ) 1 ε + γ 1 ) 1/ ) + m 4 )) 1/1 1 1+ε ] <. Th for ay z lβ ) = l1/β, th procss Xt), z l, t, is wll-dfid ad has a càdlàg modificatio. Morovr, T <, q [1, 4), E Xt), z l q <. z l1/β : z l 1 1/β t [,T ] 5.. Commts o localisatio It is of itrst to xtd th rsults to th cas wh th Lévy masurs do ot hav fiit momts, lik for α-stabl procsss. owvr th localisatio ida mployd i Sctio 3 i th study of th càdlàg proprty dos ot lad to ay itrstig applicatios. I fact: assum that Z livs i th wightd spac lβ, whr β tds to. Lt B β, R) b th ball i lβ of radius R, ad lt ν R b th rstrictio of th Lévy masur ν of Z to B β, R). Th ν R = µ,r, whr µ,r is th rstrictio of µ to [ R/β, R/β ]. Lt m j,r ) b th momt of ordr j of µ,r. Th from Thorm 5.1 w hav th followig. 3

24 Corollary 5.3. If for ach R >, m,r ) γ + m ) 1,R) <, γ ad thr is a ε, 1) such that: m1,r ) + m,r ) + m 4,R ) + γ ε 1)/ m,r ) + γ ε 1 m 4,R ) ) <. Th X is cylidrical càdlàg. Ufortuatly, if Z = σ L ad L ar idpdt α-stabl, th th rmum apparig i th formulatio of th corollary abov is fiit if ad oly if σα <, which holds if ad oly if Z taks valus i l ; s Rmark 3.5. Thrfor th last qustio formulatd at th d th itroductio is op. 6. Proof of Thorm 3.1 Sic U z ρνdz) < ad Z is giv 11), w s that Zt) = Z t) + a + m)t, whr Z t) = zνdz)ds, a := zνdz)ds ρ. ρ { z ρ >1} Sic [, + ) t St s)a + m)ds is cotiuous, w may assum that a + m =. Thus Xt) = St s)dzs) = St s)z πds, dz). W will us th followig fact < ρ 1 < ρ < +, Sic Sh) I) z h U C ρ1,ρ := t ρ ρ 1 St) Lρ1, ρ ) <. 5) <t ASs)z ds 4 h A) 1 ρ Ss) L,) ds z ρ,

25 as a cosquc of 5) w hav Sh) I) z C,ρ h ρ z ρ, ρ >, h <, z ρ. 6) For t h < t < t + h T w hav E Xt + h) Xt) Xt) Xt h) = E ξ 1 + ξ + ξ 3 η 1 + η, whr ξ 1 := ξ := ξ 3 := η 1 := η := h +h t h St + h s) St s)) dzs), St + h s) St s)) dzs), St + h s)dzs), St s) St h s)) dzs), St s)dzs). Thrfor, takig ito accout th iquality w obtai ξ 1, ξ η 1, η 1 ξ1 η 1 + ξ η ) E Xt + h) Xt) Xt) Xt h) 3E [ ξ 1 η 1 + ξ η ] + E ξ1 E η +E ξ E η 1 + E ξ 3 E η 1 + E ξ 3 E η. Assum that κ > is such that κ + ρ < 1/. By 5) ad 6), w hav h E ξ 1 = St + h s) St s)) z νdz)ds h = Sh) I) St s)z νdz)ds h = Sh) I) St s)z νdz)ds 5

26 h κ Similarly ad C,κh κ C κ,ρ h C,κC ρ,κ 1 κ + ρ) T 1 κ+ρ) z ρνdz) =: Cκ)h κ z ρνdz). E ξ Cκ)hκ t s) κ+ρ) ds z ρ νdz) z ρνdz) E η 1 = E St h s + h) St h s)) dzs) Cκ)h κ z ρνdz). Nxt +h h E ξ 3 = St + h s)z νdz)ds = Ss)z νdz)ds t h z ρνdz) Ss) L ρ,)ds C ρ, 1 ρ h1 ρ z ρνdz) =: Bρ)h 1 ρ z ρνdz), ad usig th sam argumts w obtai E η Bρ)h1 ρ z ρνdz). Summig up, for ay κ > such that κ + ρ) < 1 thr is a costat C idpdt of h such that 3 ) E ξ i + η i C h 1 ρ + h κ) z ρνdz). 7) i=1 i=1 W procd to th calculatio of th trms E ξ 1 η 1 ad E ξ η. To do this lt k ) b a orthoormal basis of. By Propositio.4, E ξ 1 η 1 = k,l E ξ 1, k η 1, l = J 1 + J + J 3, 6

27 whr J 1 = h St + h s) St s)) z, j dsνdz) j,k h St s) St h s)) z, k dsνdz) h = St + h s) St s)) z dsνdz) h St s) St h s)) z dsνdz) h = Sh) I) St s)z dsνdz) h Sh) I) St h s)z dsνdz) ) h 4κ C ρ,κ z ν dz) C1)h 4κ h t s) ρ+κ) ds z ν dz) ). h t h s) ρ+κ) ds I th stimat abov, κ > is such that κ + ρ < 1/ ad C1) dpds o T, κ ad ρ. Not that J quals [ h St + h s) St s)) z, St s) St h s)) z dsνdz) is lss tha or qual to [ h Sh) I) St s)z Sh) I) St h s)z dsνdz) ) C)h 4κ z ν dz). Fially J 3 quals h St + h s) St s)) z St s) St h s)) z dsνdz) 7 ] ]

28 is lss tha or qual to h h 4ζ z 4 ε νdz)c ε,ζ t s) ζ ε) t h s) ζ ε) ds C3)h 4ζ z 4 ε νdz), whr ζ > is such that ζ ε < 1/4. To stimat E ξ η w us similar calculatios. Namly whr I 1 = ad [ I = ad I 3 = E ξ η = I 1 + I + I 3, St + h s) St s)) z dsνdz) St s)z dsνdz) ) z ρ νdz) C ρ,κc ρ,h κ+1 ρ 1 t t s) ρ+κ) ds 1 ρ ) z ρ νdz) C ρ,κc ρ,h κ+1 ρ+1 ρ+κ) ρ 1 ρ + κ) ) C4) z ρ νdz) h 4ρ ] St + h s) St s)) z, St s)z dsνdz) ) ) z ρ νdz) C ρ,κc ρ, t s) ρ+κ) t s) ρ ds h κ ) z ρ νdz) C ρ,κc 1 ρ, 1 ρ κ) hκ+1 ρ κ) ) C5) z ρ νdz) h 4ρ St + h s) St s)) z St s)z dsνdz) 8

29 z 4 ε z 4 ε C6) νdz) Ss) L s T ε,)cε,δ t s) δ ε) dsh δ νdz) Ss) L s T ε,)cε,δ 1 1 δ ε) hδ+1 δ ε) z 4 ε νdz)h1+ε. Summig up thr ar costats B ad ε > such that E [ ξ i η i Bh 1+ ε z 4 ε νdz) + i=1 z ρ νdz) ) ] Usig th stimat abov ad 7) w ca fid costats δ > ad R such that E Xt + h) Xt) Xt) Xt h) Rh1+ δ, ad th dsird coclusio follows form Corollary., ad th Bichtlr Jacod typ stimats from [18]. 7. Auxiliary rsult for th proofs of Thorms 5.1 ad 5. I this sctio L t) := R x π ds, dx), = 1,,..., ad λ ) is a squc of strictly positiv ral umbrs. Latr λ = γ z) 1/ε, whr z ) is a fixd squc ad ε >. Obviously L ar idpdt Lévy procsss, ad m j ) = x j ν d), N, j = 1,, 3, 4, whr ν is th Lévy masur of L. Cosidr a squc z ) of ral umbrs. If R z m )λ 1 <, 8). 9

30 th th ral-valud procss Y t) := λt s) d L s)z, 9) is wll dfid, as th sris o th right had sid covrgs i L Ω, F, P), ad E Y t)) <, T <. t T Th followig lmma will play a crucial rol i th proof of Thorms 5.1 ad 5.. Lmma 7.1. Lt ε, 1). Assum that 8) holds ad that th quatity Az, λ, ε) quals ) zm )λ ε 1)/ + z 4 m ) λ ε 1 + m 4 )λ ε 1 + λ ε ) ) is fiit. Th for all t h t t + h <. Proof St Th whr E Y t + h) Y t)) Y t) Y t h)) 6Az, λ, ε)h 1+ε. at, h) := E Y t + h) Y t)) Y t) Y t h)). I 1 := I := I 3 := I 4 := I 5 := at, h) = E I 1 + I + I 3 ) I 4 + I 5 ), +h t h h λt+h s) d L s) z, λ k t+h s) λt s)) d L s) z, λ t+h s) λt s)) d L s) z, λt s) d L s) z, λ t s) λ s)) d L s) z. 3

31 W hav E I 1I 4 + I 5 ) = E I 1 E I 4 + I 5 ) = E I 1 ) E I 4 + E I5, ad E I 1 I + I 3 )I 4 + I 5 ) =, E I + I 3 ) I 4 + I 5 ) = E I I 4 +E I E I 5 +4 E I I 4 E I 3 I 5 +E I 3E I 4 +E I 3I 5. Thus at, h) = ) E I1 E I 4 + E I5 + E I I4 + E I E I5 +4 E I I 4 E I 3 I 5 + E I3E I4 + E I3I 5. Giv δ, 1] dfi Cδ, z) := z m )λ δ 1, Dδ, z) := z 4 m4 ) + m ) ) λ δ. 3) Blow th last iquality i ach stimat follows from th followig lmtary iqualitis ad x >, δ, 1], 1 x x δ, 31) u λ 1 λ x ) x δ for all u, λ >, x >, ad δ, 1]. W hav u λ δ 1, 3) E I 1 = = zm ) +h t λt+h s) ds z m ) λ 1 λ h ) Cδ, z)h δ, E I 4 = zm ) λkt s) ds = 31 z m ) λ 1 λ h ) Cδ, z)h δ,

32 ad E I = = Cδ, z)h δ, zm ) λ t+h s) λt s)) ds z m ) λ 1 λ h ) 1 λh) E I 3 = = zm ) h λ t+h s) λt s)) ds z m ) λ λ h λt) 1 λh) z m ) λ 1 λ h ) 1 Cδ, z)hδ, Clarly E I I 4 E I 5 = = zm ) h λ t s) λ s)) ds z m ) λ 1 λ ) ) 1 λh) z m ) λ k 1 λ h ) 1 Cδ, z)hδ. = z m ) λt s) λt+h s) λt s)) ds, ad E I 3 I 5.What is lft is to fid good stimats for th trms E II 4 ad E I3I 5. W hav E II 4 quals E z k λ k t+h s) ) λ kt s) d L k s)) z j λjt s) d L j s) k=1 E k,k,j,j = λ k t+h s) λ kt s) ) d L k s) 3 j=1 )

33 whr J 1 := k j ad J 3 := = J 1 + J + J 3, = k j λ k t+h s) λ k t s)) d L k s) λjt s) d L j s) λ j t s) d L j s)z k z k z j z j zkz j E λ k t+h s) ) ) λ kt s) d L k s)) λjt s) d L j s) ) E zkz j E λ k t+h s) ) λ kt s) d L k s) λjt s) d L j s)), J := zkz j E λ k t+h s) ) λ kt s) d L k s) λkt s) d L k s) k j λ j t+h s) ) λ jt s) Lj ds) λjt s) d L j s) = zkz j E λ k t+h s) ) λ kt s) d L k s) λkt s) d L k s) k j E W hav J 1 = k j = k j λ j t+h s) λ jt s) ) d L j s) λ jt s) d L j s), z 4 E λ t+h s) λt s)) d L s)) λt s) d L s)). z kz j m k)m j) λ k t+h s) λ kt s) ) ds z k z j m k)m j) 4λ k λ j 1 λ k h ) 1 λ k h ) 1 λ jh ) 1 Cδ, z) h δ, 33 λ jt s) ds

34 ad J = zkz j m k)m j) λ k t+h s) ) λ kt s) λkt s) ds k j λ j t+h s) ) λ jt s) λjt s) ds = zk z j m k)m j) ) 1 λ k h 1 ) λ jh 1 ) λ kh 1 ) λ jh 4λ k λ j k j Cδ, z) h δ. Fially, by Propositio.5, J 3 = J 3,1 + J 3, + J 3,3, whr J 3,1 = = zm 4 ) λ t+h s) λt s)) ) λt s) ds zm 4 ) ) 1 λ h ) 1 λ h 4λ Dδ, z)h δ, J 3, = = zm 4 4 ) λ t+h s) λt s)) λ t s) ds z 4 m 4 ) 4λ 1 λ h ) 1 λ h ), ad J 3,3 = = zm 4 ) λ t+h s) λt s)) ds zm 4 ) ) 1 λ h ) 1 λ h 4λ 1 Dδ, z)hδ. λt s) ds Trm J 3, will b stimatd latr. It is th most difficult trm to valuat as i th domiator w hav λ i th first powr. 34

35 whr W procd to th stimatio of E I 3I 5. W hav h E I3I 5 = E z k λ k t+h s) ) λ kt s) d L k s) k=1 ) h z j λ j t s) ) λ j s) d L j s) j=1 = U 1 + U + U 3, U 1 := k j E z kz j E h h λ k t+h s) ) ) λ kt s) d L k s) λ j t s) ) ) λ j s) d L j s), ) ad U := k j h h W hav U 3 := U 1 = k j z kz j E h λ k t+h s) λ kt s) ) d L k s) λ k t s) λ k s) ) d L k s)e λ j t s) λ j s) ) d L j s), zk 4 E k=1 h h h λ j t+h s) λ jt s) ) d L j s) λ k t+h s) ) ) λ kt s) d L k s) λ k t s) ) ) λ k s) d L k s). z k z j m k)m j) 4λ k λ j λ k t+h) λ kt ) λ k ) 1 ) λ jt λ j) ) λ j ) 1 ) 35

36 k j z k z j m k)m j) 4λ k λ j 1 λ k h ) 1 λ j h ) 1 4 Cδ, z) h δ, U = k j z k z j m k)m j) 4λ k λ j λ k t+h) λ kt ) λ kt λ k) ) λ jt+h) λ jt ) λ jt λ j) ) λ k) 1 ) λ j) 1 ) k j 1 Cδ, z) h δ. z k z j m k)m j) 4λ k λ j 1 λ k h ) 1 λ kh ) 1 λ jh ) 1 λ jh ) Fially, by Propositio.5, U 3 = U 3,1 + U 3, + U 3,3, whr U 3,1 quals h zkm 4 k) k=1 = λ k t+h s) ) λ kt s) λkt s) ) ) λ k s) ds zk 4m k) λ k t+h) ) λ kt λ k t ) λ k) λ k ) 1 ) k=1 4λ k 1 Dδ, z)hδ, U 3, = = zkm 4 4 k) k=1 k=1 k=1 h λ k t+h s) λ kt s) ) λ k t s) λ k s) ) ds z 4 k m 4k) 4λ k λ k t+h) λ kt ) λ k t λ k) ) 4λ k ) 1 ) z 4 k m 4k) 4λ k 1 λ k h ) 1 λ k h ), ad U 3,3 quals h zkm 4 k) λ k t+h s) ) λ kt s) ds k=1 36

37 = h λ k t s) λ k s) ) ds zk 4m k) λ k t+h) ) λ kt λ k t ) λ k) λ k ) 1 ) k=1 4λ k 1 4 Dδ, z)hδ. So far w hav ot stimatd th trms U 3, ad J 3,. owvr w ot that R := z 4 m 4 ) λ 1 λ h ) 1 4λh), domiats U 3, + J 3,. Summig up, w obtai th followig stimat δ, 1] ad t h t t + h T, E Y t + h) Y t)) Y t) Y t h)) ) 6 zm )λ δ 1 + z 4 m4 ) + m ) ) λ δ h δ + R. Put δ = ε + 1)/. I ordr to stimat R ot that z R = m 4 4 )λ δ 1 λh ) λ λ δ 1 ) z 4 m 4 )λ ε Sic for all x, y > ad λ >, w hav 1 4λh ) λ δ 1 λh ) 1 4λh ). λ> λ δ λ δ λ 1 ε 1 λx) 1 4λy) 4 1+ε)/ λ 1 ε λ 1+ε)/ xy) 1+ε)/ R = 1+ε xy) 1+ε)/ 1+ε)/ x + y 1+ε, zm 4 4 )λ ε h 1+ε, which givs th dsird stimat. 37

38 8. Proof of Thorm 5.1 Rmark 8.1. I th proof w caot apply dirctly Lmma 7.1 puttig λ = γ. Idd th quatity Az, γ, ε) apparig i th formulatio of Lmma 7.1 domiats zm 4 4 )γ. ε To apply th Chtsov critrio w d to fid a ε > such that Az, γ, ε) <. z l 1 Thus i particular w would d zm 4 4 )γ ε <. z l 1 This coditio is vr satisfid if th squcs {m 4 )} ad {m )} ar costat ad by cosquc lim γ =, which corrspods to th cas whr Z ) ar idtically distributd. Rcall that th procsss L k wr dfid at th bgiig of th prvious sctio. Lt z l. St Th z whr λ := γ z /ε, N. 33) γt s) dz s) z Y z)t) := rz)t) := z z z 1+/ε l λt s) d L s), λt s) m 1 )ds λt s) dl s) = Y z)t)+rz)t), z 1+/ε m 1 ) + z m 1 )γ 1 m 1 ) + z l 38 z m 1 )λ 1 ) m 1 ) γ ) 1/.

39 Thrfor, thaks to 1) ad ), z l : z l R t [,T ] rz)t) <, R <. 34) Obviously 8) holds. Lt us dot by M th rmum apparig i ). Th th quatity Az, λ, ε) apparig i Lmma 7.1, is domiatd by ) z l M + M z z 1 ε)/ε Thrfor +M + M ) z 4 + z 4 z + z 4 z ) 1 ε) ε. Az, λ, ε) <, R <. z l : z l R By Lmma 7.1, ad Corollary., for ay q [1, 4), ad R >, z l : z l R E t,s [,T ] Y z)t) Y z)s) q C 1 E Y z)t ) q + C, 35) whr C 1 ad C ar costat. By th Bichtlr Jacod iquality for Poisso itgrals i ifiit dimsios s [18]) it follows that thr is a costat C dpdig oly o T, such that Thrfor, E Y z)t ) 4 C m 4 )z 4 λ 1 + C m )z λ 1 ). 36) E Y z)t ) 4 <. 37) z l : z l R Combiig 34) 37) w obtai 3). Th càdlàg proprty follows from th càdlàg proprty of all procsss X k as th sris covrgs uiformly i t [, T ]; s th argumts blow th formulatio of th thorm. 9. Proof of Thorm 5. As i th prvious sctio, λ ) is giv by 33). Usig th argumts from th prvious sctio w s that th proof will b complt as soo as 39

40 w show that thr is a squc of strictly positiv umbrs β ), icrasig to +, such that for ay R >, Az, λ, ε) + ) m 4 )zλ m )zλ 1 < z l 1/β : z l 1/β R ad z l 1/β : z l 1/β R { z 1+/ε m 1 ) + z m 1 )γ 1 ) } + zm )λ 1 <. Lt us dot by MR, β) th scod rmum abov. For ay squc β ), w hav Nxt MR, β) R 1+ ε +R ad fially β m 1 ) γ Az, λ, ε) R 4 +R 4 1 ε 4+ +R ε β ε m 1 ) β m 4 )γ ε 1 β ) 1/ + R ε 1 m 4 )z 4 λ 1 + R 4 +R 4+ ε β m ) γ ε 1 β m )γ + R +ε 1 ε 4+ + R ε + β m ) γ ε 1 m ) + m 4 ) ), β m 4 )γ 1 β 1 ε + m )z λ 1 + R 4 ε 1 ε β 1+ε m ). β m ) ) + R β m ) ) β m ) γ m 4 ) + R 4+ 4 ε β + ε m ). By dirct calculatios ad assumptio 4) w arriv at th statmt of th thorm. 4

41 Ackowldgmts W thak th rviwr of our papr for istructiv suggstios which hlpd us to improv th prstatio. Th work has b portd by Polish Miistry of Scic ad ighr Educatio Grat Stochastic Equatios i Ifiit Dimsioal Spacs Nr N N [1] Applbaum, D., Ridl, M., Cylidrical Lévy procsss i Baach spacs, Proc. Lod. Math. Soc. 11 1), [] Brzziak, Z., Goldys, B., Imkllr, P., Pszat, S., Priola, E., ad Zabczyk, J., Tim irrgularity of gralizd Orsti Uhlbck procsss, C. R. Math. Acad. Sci. Paris 348 1), [3] Brzźiak, Z., Pszat, S., ad Zabczyk, J., Cotiuity of stochastic covolutios, Czchoslovak Math. J. 51 1), [4] Brzźiak, Z. ad Zabczyk, J., Rgularity of Orsti Uhlbck procsss driv by a Lévy whit ois, Pottial Aal. 3 1), [5] Chtsov, N. N., La covrgc faibl ds procssus stochastiqus à trajctoirs sas discotiuités d scod spèc t l approch dit huristiqu au tsts du typ d Kolmogorov-Smirov. Russia) Tor. Vroyat. Prim ), [6] Chojowska-Michalik, A., O procsss of Orsti Uhlbck typ i ilbrt spacs, Stochastics ), [7] Da Prato, G, Kwapiń, S, ad Zabczyk, J., Rgularity of solutios of liar stochastic quatios i ilbrt spacs,stochastics ), 1 3. [8] Da Prato, G. ad Zabczyk, J., Stochastic Equatios i Ifiit Dimsios, Ecyclopdia of Mathmatics ad its Applicatios, Cambridg Uivrsity Prss, 199. [9] Gihma, I.I., ad Skorohod, A.V., Th Thory of Stochastic Procsss I, Sprigr [1] ausblas, E. ad Sidlr, J., A ot o maximal iquality for stochastic covolutios, Czchoslovak Math. J. 51 1),

42 [11] Isco, I., Marcus, M.B., McDoald, D., Talagrad, M., ad Zi, J., Cotiuity of l -valud Orsti Uhlbck procsss, A. Probab ), [1] Jakubowski, A., privat commuicatio. [13] Kiy, J.., Cotiuity proprtis of sampl fuctios of Markov procsss, Tras. Amr. Math. Soc ), 8 3. [14] Kotlz, P., A maximal iquality for stochastic covolutio itgrals o ilbrt spac ad spac-tim rgularity of liar stochastic partial diffrtial quatios, Stochastics ), [15] Kotlz, P., Compariso mthods for a class of fuctio valud stochastic partial diffrtial quatios, Probab. Thory Rlatd Filds ), [16] Lscot, P. ad Röckr, M., Prturbatios of gralizd Mhlr smigroups ad applicatios to stochastic hat quatios with Lévy ois ad sigular drift, Pottial Aal. 4), [17] Liu, Y. ad Zhai, J., A ot o tim rgularity of gralizd Orsti Uhlbck procss with cylidrical stabl ois, C. R. Acad. Sci. Paris 35 1), [18] Marilli, C., Prévôt, C., ad Röckr, M., Rgular dpdc o iitial data for stochastic volutio quatios with multiplicativ Poisso ois, J. Fuct. Aal. 58 1), [19] Pszat, S. ad Zabczyk, J., Stochastic Partial Diffrtial Equatios with Lévy Nois: Evolutio Equatios Approach, Cambridg Uivrsity Prss, Cambridg, 7. [] Priola, E. ad Zabczyk, J., O liar volutio with cylidrical Lévy ois, i Stochastic Partial Diffrtial Equatios ad Applicatios VIII, ds. G. Da Prato, ad L. Tubaro, Procdigs of th Lvico 8 cofrc, Quadri di Matmatica, vol 5, 1, Dipartimto di Matmatica, Scoda Uivrsita di Napoli, pp [1] Priola, E. ad Zabczyk, J., Structural proprtis of smiliar SPDEs driv by cylidrical stabl procsss, Probab. Thory Rlatd Filds ),

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Supplement to Applications of Distance Correlation to Time Series

Supplement to Applications of Distance Correlation to Time Series arxiv: arxiv:606.0548 Supplmt to Applicatios of Distac Corrlatio to Tim Sris RICHARD A. DAVIS,* MUNEYA MATSUI,** THOMAS MIKOSCH 3, ad PHYLLIS WAN, Dpartmt of Statistics, Columbia Uivrsity, 55 Amstrdam

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS Elctroic Joural of Diffrtial Equatios, Vol. 26 (26), No. 282, pp. 24. ISSN: 72-669. URL: http://jd.math.txstat.du or http://jd.math.ut.du HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Instability of large solitary water waves

Instability of large solitary water waves Istability of larg solitary watr wavs Zhiwu Li Mathmatics Dpartmt Uivrsity of Missouri Columbia, MO 65 USA Abstract W cosir th liariz istability of D irrotatioal solitary watr wavs. Th maxima of rgy a

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x

In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x THREE PRIMES T Hardy Littlwood circl mtod is usd to prov Viogradov s torm: vry sufficitly larg odd itgr is t sum of tr prims Toy Forbs Nots for LSBU Matmatics Study Group Fbruary Backgroud W sall closly

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Supplemental Material for "Automated Estimation of Vector Error Correction Models"

Supplemental Material for Automated Estimation of Vector Error Correction Models Supplmtal Matrial for "Automatd Estimatio of Vctor Error Corrctio Modls" ipg Liao Ptr C. B. Pillips y Tis Vrsio: Sptmbr 23 Abstract Tis supplmt icluds two sctios. Sctio cotais t proofs of som auxiliary

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

7 Finite element methods for the Timoshenko beam problem

7 Finite element methods for the Timoshenko beam problem 7 Fiit lmt mtods for t Timosko bam problm Rak-54.3 Numrical Mtods i Structural Egirig Cotts. Modllig pricipls ad boudary valu problms i girig scics. Ergy mtods ad basic D fiit lmt mtods - bars/rods bams

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Variational statements on KST-metric structures

Variational statements on KST-metric structures A. Şt. Uiv. Ovidius Costaţa Vol. 17(1), 2009, 231 246 Variatioal statmts o KST-mtric structurs M. Turiici Abstract Structural rfimts of th variatioal rsult i Kada, Suzuki ad Takahashi [Math. Japoica, 44

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information