Variational statements on KST-metric structures

Size: px
Start display at page:

Download "Variational statements on KST-metric structures"

Transcription

1 A. Şt. Uiv. Ovidius Costaţa Vol. 17(1), 2009, Variatioal statmts o KST-mtric structurs M. Turiici Abstract Structural rfimts of th variatioal rsult i Kada, Suzuki ad Takahashi [Math. Japoica, 44 (1996), ] ar giv. Applicatios to quilibrium poits thory (ovr th cosidrd sttig) ar also providd. 1 Itroductio Lt (M, d) b a complt mtric spac; ad ϕ : M R { }, som fuctio with (1a) ϕ is if-propr (Dom(ϕ) ad ϕ := if[ϕ(m)] > ) d (1b) ϕ is d-lsc (limif ϕ(x ) ϕ(x), whvr x x). Th followig 1979 statmt i Eklad [12] (rfrrd to as Eklad s variatioal pricipl; i short: EVP) is wll kow. Thorm 1 Lt th prcis coditios hold. Th, a) for ach u Dom(ϕ) thr xists v = v(u) Dom(ϕ) with d(u,v) ϕ(u) ϕ(v) (hc ϕ(u) ϕ(v)) (1) Ky Words: Complt mtric spac; If-propr lsc fuctio; Variatioal pricipl; w- distac; Psudomtric; Cauchy/asymptotic squc; Trasitiv rlatio; (strog) KSTmtric; τ-distac/fuctio; quilibrium poit. Mathmatics Subjct Classificatio: Primary 49J53. Scodary 47J30. Rcivd: Dcmbr, 2008 Accptd: April, 2009 This rsarch was supportd by Grat PN II PCE ID 387, from th Natioal Authority for Scitific Rsarch, Romaia. 231

2 232 M. Turiici v is E-variatioal (modulo (d,ϕ)): d(v,x) > ϕ(v) ϕ(x), for all x M \ {v} (2) aa) if u Dom(ϕ), ρ > 0 fulfill ϕ(u) ϕ ρ, th (1) givs (ϕ(u) ϕ(v) ad) d(u,v) ρ. (3) This pricipl foud som basic applicatios to cotrol ad optimizatio, gralizd diffrtial calculus, critical poit thory ad global aalysis; w rfr to th quotd papr for dtails. So, it caot b surprisig that, soo aftr, may xtsios of EVP wr proposd. For xampl, th abstract (ordr) o starts from th fact that, with rspct to th (quasi-)ordr (a1) (x,y M) x y iff d(x,y) + ϕ(y) ϕ(x) th poit v M apparig i (2) is maximal; so that, EVP is othig but a variat of th Zor-Bourbaki maximality pricipl [7]. Th dimsioal way of xtsio rfrs to th support spac (R) of Codom(ϕ) big substitutd by a (topological or ot) vctor spac. A accout of th rsults i this ara is to b foud i th 2003 moograph by Gopfrt, Riahi, Tammr ad Zăliscu [13, Ch 3]; s also Rozovau [23] ad Turiici [28]. Fially, th mtrical o cosists i th coditios imposd to th ambit mtric ovr M big rlaxd. Th basic 1996 rsult i this dirctio obtaid by Kada, Suzuki ad Takahashi [16] may b statd as follows. By a psudomtric ovr M w shall ma ay map (x,y) (x,y) from M M to R + := [0, [. Suppos that w fixd such a objct; which i additio, is triagular [(x,z) (x,y)+(y,z), x,y,z M]. W say that it is a w-distac (modulo d) ovr M providd (b1) is strogly d-sufficit: for ach ε > 0, thr xists δ > 0 such that: (z,x),(z,y) δ = d(x,y) ε. (c1) y (x,y) is d-lsc o M (s abov), x M. Thorm 2 Lt th coditios i Thorm 1 b admittd; ad b som w-distac (modulo d) ovr M. Th b) For ach u Dom(ϕ), thr xists a E-variatioal (modulo (,ϕ)) v = v(u) Dom(ϕ) with ϕ(u) ϕ(v) bb) For ach ρ > 0 ad ach u Dom(ϕ) with (u,u) = 0, ϕ(u) ϕ + ρ thr xists a E-variatioal (modulo (,ϕ)) v = v(u,ρ) Dom(ϕ) with ϕ(u) ϕ(v) ad (u,v) ρ. I particular, wh = d, ths rgularity coditios hold; ad Thorm 2 icluds th local vrsio of Thorm 1 basd upo (3). Th rlativ form of th sam, basd upo (1) also holds, but idirctly; s Bao ad Khah [5]

3 Variatioal statmts 233 for dtails. Not that th (rathr ivolvd) authors argumt rlis o th ocovx miimizatio thorm i Takahashi [26]. It is our aim i th prst xpositio to show (i Sctio 3) that a simplificatio of this is possibl. Th basic tool of our ivstigatios is (cf. Sctio 2) a psudomtric variatioal pricipl (xtdig th o i Tataru [27]) dductibl, i fact, by th origial Eklad s argumt. Fially, i Sctio 4, a applicatio of th obtaid facts is giv to quilibrium poits thory ovr such structurs. 2 Psudomtric variatioal statmts Lt M b som ompty st. Rmmbr that, by a psudomtric ovr it w shall ma ay map : M M R +. Suppos that w fixd such a objct; which i additio, is triagular (cf. Sctio 1). Lt also ϕ : M R { } b som if-propr fuctio (cf. (1a)). For a asy rfrc, w shall formulat th basic rgularity coditios ivolvig our data. Call th squc (x ) i M, strogly -asymptotic wh th sris (x,x +1 ) covrgs (i R). Furthr, lt th -Cauchy proprty of this objct b th usual o: δ > 0, (δ), such that (δ) p < q = (x p,x q ) δ. By th triagular proprty of w hav (for ach squc): strogly -asymptotic = -Cauchy; but th covrs is ot i gral tru. Nvrthlss, i may coditios ivolvig all such objcts, this is rtaiabl. A cocrt xampl is to b costructd udr th lis blow. Lt us itroduc a -covrgc structur ovr M by: x x iff (x,x) 0 as. W cosidr th rgularity coditio (2a) (,ϕ) is wakly dscdig complt: for ach strogly -asymptotic squc (x ) i Dom(ϕ) with (ϕ(x )) dscdig thr xists x M with x x ad lim ϕ(x ) ϕ(x). By th rmark abov, it is implid by its (strogr) coutrpart (2b) (,ϕ) is dscdig complt: for ach -Cauchy squc (x ) i Dom(ϕ) with (ϕ(x )) dscdig thr xists x M with x x ad lim ϕ(x ) ϕ(x). A rmarkabl fact to b addd is that th rciprocal iclusio also holds: Lmma 1 W hav (2a) = (2b); hc (2a) (2b). Proof Assum that (2a) holds; ad lt (x ) b a -Cauchy squc i Dom(ϕ) with (ϕ(x )) dscdig. By th vry dfiitio of this proprty, thr must b a strogly -asymptotic subsquc (y = x i() ) of (x ) with (ϕ(y )) dscdig. This, alog with (2a), yilds a lmt y M fulfillig

4 234 M. Turiici y y ad lim ϕ(y ) ϕ(y). It is ow clar (by th choic of (x )) that th poit y has all dsird i (2b) proprtis. Now, lt = (,ϕ) stad for th rlatio (ovr M) (a2) (x,y M) x y iff (x,y) + ϕ(y) ϕ(x). This is clarly trasitiv (x y, y z = x z); but ot i gral rflxiv (x x may b fals for crtai x M). So, for u M, it is possibl that M(u, ) := {x M;u x} b mpty. If this dos ot hold (M(u, ) ), w say that u is -startig; i.., (b2) (u,x) + ϕ(x) ϕ(u), for at last o x M; also rfrrd to as: u is startig (modulo (,ϕ)). Fially, call v Dom(ϕ), BB-variatioal (modulo (,ϕ)) providd (c2) (v,x) ϕ(v) ϕ(x) = ϕ(v) = ϕ(x) [= (v,x) = 0]. (This trmiology is rlatd to th mthods itroducd by Brzis ad Browdr [8] ad dvlopd by Kag ad Park [17]; s also Altma [2], Aisiu [3] ad Szaz [25]). For a o-trivial cocpt, w must tak v as startig (modulo (,ϕ)) (cf. (b2)); for, othrwis, (c2) is vacuously fulfilld. Som basic proprtis of such poits ar giv i Lmma 2 Assum v Dom(ϕ) is BB-variatioal (modulo (, ϕ)). Th (v,x) ϕ(v) ϕ(x), for all x M (1) (v,x) > ϕ(v) ϕ(x), for ach x M with (v,x) > 0. (2) Proof Th lattr part is clar, by dfiitio; so, it rmais to stablish th formr o. Assum this would b fals: (v,x) < ϕ(v) ϕ(x), for som x M. This, alog with (c2), yilds ϕ(v) = ϕ(x); whrfrom 0 (v, x) < 0, cotradictio; hc th claim. W may ow stat a usful psudomtric variatioal pricipl. Thorm 3 Lt th gral coditios upo (,ϕ) b accptd; as wll as (2a)/(2b). Th, for ach startig (modulo (, ϕ)) u Dom(ϕ) thr xists a BB-variatioal (modulo (,ϕ)) v = v(u) Dom(ϕ) with th proprty (1) (modulo ). Proof Lt ( ) stad for th trasitiv rlatio (a2); ad u Dom(ϕ) b as i th statmt. By dfiitio, M(u, ) ; hc u u 0, for som u 0 Dom(ϕ). Put = 0. If th altrativ blow holds

5 Variatioal statmts 235 (2c) u is BB-variatioal (modulo (,ϕ)) [s abov] w ar do, with v = u. Othrwis, o has (for = 0) (2d) u is ot BB-variatioal (modulo (,ϕ)). I this cas, th rlatios blow hold (for = 0) S := M(u, ), if[ϕ(s )] < ϕ(u ); (3) whrfrom, by dfiitio (agai for = 0) u +1 S : ϕ(u +1 ) (1/2)(ϕ(u ) + if[ϕ(s )]) < ϕ(u ). (4) Now, lik bfor, th coupl (2c)+(2d) (with + 1 i plac of ) coms ito discussio, tc. Th oly poit to b clarifid is that of (2d) takig plac for all. Th, a squc (u ) i M(u, ) may b foud so as (cf. (4)) (u,u m ) ϕ(u ) ϕ(u m ), whvr < m. (5) Th squc (ϕ(u )) is (strictly) dscdig ad boudd blow i R; hc a Cauchy o. This, alog with (5), tlls us that (u ) is a -Cauchy squc i Dom(ϕ). Puttig ths togthr, it follows via (2b) that thr must b som v M with u v ad λ := lim ϕ(u ) ϕ(v). (6) Th scod half of this givs v Dom(ϕ); sic (u ) Dom(ϕ). O th othr had, fix som rak. By (5) (ad th triagular proprty of ) (u,v) (u,u m ) + (u m,v) ϕ(u ) ϕ(u m ) + (u m,v), m >. This, alog with (6), yilds by a limit procss (rlativ to m) (u,v) ϕ(u ) lim m ϕ(u m ) ϕ(u ) ϕ(v) (i..: u v). (7) Lt x M(v, ) b arbitrary fixd. By (7) (ad th dfiitio of ( )) ϕ(u ) ϕ(v) ϕ(x), ; hc λ ϕ(v) ϕ(x). O th othr had, (4) yilds ϕ(u +1 ) (1/2)[ϕ(u ) + ϕ(x)], ; hc λ ϕ(x) ϕ(v). This givs ϕ(v) = ϕ(x); which (by th arbitrariss of x) tlls us that v is BB-variatioal (modulo (,ϕ)). Th proof is complt. Now, th rgularity coditio (2a) holds udr

6 236 M. Turiici (2) (,ϕ) is wakly complt: for ach strogly -asymptotic squc (x ) i Dom(ϕ) thr xists x M with x x ad limif ϕ(x ) ϕ(x). For xampl, this is rtaiabl whvr (2f) is wakly complt: ach strogly -asymptotic squc is -covrgt (2g) ϕ is wakly -lsc: limif ϕ(x ) ϕ(x) whvr th strogly -asymptotic squc (x ) fulfills x x. I particular, wh is (i additio) rflxiv [(x,x) = 0, x M], Thorm 3 icluds th variatioal pricipl i Tataru [27]. Th qustio of th covrs iclusio big also tru rmais op; w cojctur that th aswr is positiv. Not fially that, by th proposd proof, Thorm 3 is logically rducibl to th Pricipl of Dpdt Choics (cf. Wolk [31]). I fact, a similar coclusio is tru for th Brzis-Browdr ordrig pricipl [8]; s, for istac Cârjă, Ncula ad Vrabi [9, Ch 2, Sct 2.1]. So, it is atural askig of Thorm 3 big dductibl from th quotd pricipl. A positiv aswr for this is availabl; w shall dvlop such facts lswhr. Furthr aspcts wr dliatd i Hyrs, Isac ad Rassias [15, Ch 5]; s also Ba, Cho ad Yom [4]. Lt us ow rtur to our iitial sttig. A itrstig compltio of Thorm 3 is th followig. Lt th cocpt of E-variatioal (modulo (, ϕ)) poit b that of (2) (with i plac of d). This is strogr tha th cocpt of BB-variatioal (modulo (, ϕ)) lmt itroducd via (c2). To gt a corrspodig form of Thorm 3 ivolvig such poits w hav to impos (i additio to (2a)/(2b)) (2h) is trasitivly sufficit ((z,x) = (z,y) = 0 = x = y). Thorm 4 Lt th prcis coditios b i forc. Th, for ach startig (modulo (, ϕ)) u Dom(ϕ) thr xists a E-variatioal (modulo (, ϕ)) w = w(u) Dom(ϕ) with th proprty (1) (modulo (, w)). Proof Lt u Dom(ϕ) b tak as i th statmt. By Thorm 3, w hav promisd a BB-variatioal (modulo (, ϕ)) v = v(u) Dom(ϕ) with th proprty (1) (modulo ). If v is E-variatioal (modulo (,ϕ)) w ar do (with w = v); so, it rmais th altrativ of v fulfillig th opposit proprty: v w (hc ϕ(v) = ϕ(w)), for som w M \ {v}. I this cas, w is our dsird lmt. Assum ot: w y, for som y M, y w. By th prcdig rlatio, v y (hc ϕ(v) = ϕ(y)). Summig up, v w, v y ad

7 Variatioal statmts 237 ϕ(v) = ϕ(w) = ϕ(y); whrfrom (by (2h) ad th dfiitio of ( )) w = y, cotradictio. This ds th argumt. As bfor, th rgularity coditio (2b) holds udr (2i) (,ϕ) is complt: for ach -Cauchy squc (x ) i Dom(ϕ) thr xists x M with x x ad limif ϕ(x ) ϕ(x). For xampl, this is rtaiabl whvr (2j) is complt: ach -Cauchy squc is -covrgt (2k) ϕ is Cauchy -lsc: limif ϕ(x ) ϕ(x), whvr th -Cauchy squc (x ) fulfills x x. O th othr had, (2h) holds whvr is sufficit [(x,y) = 0 = x = y]. Not that, i such a cas, Thorm 4 bcoms th variatioal pricipl i Turiici [29]; s also Cosrva ad Rizzo [10]. I particular, wh is (i additio) rflxiv ad symmtric [(x,y) = (y,x), x,y M] (hc, a (stadard) mtric o M) Thorm 4 is othig but Eklad s variatioal pricipl (EVP). Furthr aspcts wr dliatd i Dacs, Hgdus ad Mdvgyv [11]; s also Haml [14, Ch 4]. 3 Extdd KST pricipls W ar ow i positio to gt a appropriat aswr to th qustios i Sctio 1. Lt M b a ompty st; ad d : M M R + b a psudomtric ovr it; supposd to b triagular (cf. Sctio 1) ad rflxiv sufficit (d(x, y) = 0 x = y). This map has all proprtis of a mtric, xcpt symmtry; w shall trm it, a almost mtric o M. Giv such a objct, th d-cauchy ad d-covrgc proprtis for a squc i M ar thos i Sctio 2. Lt us cosidr th coditio (a3) d is complt: ach d-cauchy squc is d-covrgt. Not that, by th lack of symmtry, a d-covrgt squc d ot b d-cauchy; hc, this cocpt has a tchical motivatio oly. Lt : M M R + b a triagular psudomtric ovr M. W shall say that this objct is a KST-mtric (modulo d) providd (b3) is Cauchy subordiatd to d: ach -Cauchy squc is d-cauchy (hc d-covrgt) (c3) is Cauchy d-lsc i th scod variabl: (y ) is -Cauchy ad y d y imply limif (x,y ) (x,y), x M.

8 238 M. Turiici Furthr, lt ϕ : M R { } b som if-propr, d-lsc fuctio (cf. (1a)+(1b)). Th followig auxiliary fact will b usful for us. Lmma 3 Assum that is som KST-mtric (modulo d) ovr M. Th, (, ϕ) is complt (i th ss of (2i)); hc (a fortiori), dscdig complt (i th ss of (2b)). Proof Lt (x ) b som -Cauchy squc i Dom(ϕ). From (b3), (x ) is d d-cauchy; so, by compltss, x y as, for som y M. W claim that this is our dsird poit for (2i). I fact, lt γ > 0 b arbitrary fixd. By th choic of (x ), thr xists k = k(γ) so that (x p,x m ) γ, for ach p k ad ach m > p. Passig to limit upo m o gts (via (c3)) (x p,y) γ, for ach p k; ad sic γ > 0 was arbitrarily chos, x y. This, alog with (1b), yilds th dd coclusio. Now, combiig ths with Thorm 3 (ad Lmma 2), w driv Thorm 5 Lt b som KST-mtric (modulo d) ad ϕ b if-propr, d-lsc. Th, for ach startig (modulo (,ϕ)) u Dom(ϕ) thr xists v = v(u) Dom(ϕ) with th proprtis (1) (modulo ) ad (1)-(2). A itrstig problm to b posd is that of gttig a corrspodig form of this rsult ivolvig E-variatioal (modulo (,ϕ)) poits. Th appropriat aswr to this is obtaiabl via Thorm 4. Call th triagular psudomtric : M M R +, a strog KST-mtric (modulo d) wh it is a KST-mtric (modulo d) ad fulfills (2h). Thorm 6 Assum that is som strog KST-mtric (modulo d) ad ϕ is if-propr, d-lsc. Th, for ach startig (modulo (, ϕ)) u Dom(ϕ) thr xists w = w(u) Dom(ϕ) fulfillig (1)+(2) (with (, w) i plac of (d, v)). I th followig, w shall giv som particular cass of our statmts. I) Lt d b a mtric (i..: symmtric almost mtric) o M; supposd to b complt (cf. (a3)). Furthr, lt : M M R + b som w-distac (modulo d). By (c1), o gts at oc (c3) (s abov). O th othr had, (b1) yilds (b3) as wll as th xtra coditio (2h); bcaus (as d=mtric) (z,x) = (z,y) = 0 = [d(x,y) ε, ε > 0] = x = y. Summig up, ay w-distac is a strog KST-mtric (modulo d). Hc th variatioal statmt i Kada, Suzuki ad Takahashi [16] (subsumd to Thorm 2) is a particular cas of Thorm 6. But, as xplicitly statd by ths authors, thir cotributio xtds th o du to T. H. Kim, E. S. Kim ad S. S. Shi [18]; hc so dos our statmt. This also shows that ay rcursio to th ocovx miimizatio thorm i Takahashi [26] is avoidabl i such

9 Variatioal statmts 239 approachs. Som rlatd facts may b foud i Um [30]; s also Zhu, Zhog ad Wag [33]. II) Lt (M,d) b a complt mtric spac; ad : M M R + b a triagular psudomtric ovr M. Accordig to Suzuki [24], w say that this objct is a τ-distac (modulo d) ovr M wh thr xists a fuctio η = η() from M R + to R + with th proprtis (3a) t η(x, t) is icrasig ad lim t 0 η(x,t) = 0 = η(x,0), x M (3b) lim [sup{η(z,(z,y m ));m }] = 0 ad y lim if (x,y ) (x,y), for ach x M d y imply (3c) lim [sup{(x,y m );m }] = 0 ad lim η(x,t ) = 0 imply lim η(y,t ) = 0 (3d) lim η(z,(z,x )) = 0 ad lim η(z,(z,y )) = 0 imply lim d(x,y ) = 0. Clarly, ay w-distac is a τ-distac too; just tak η(x,t) = t, x M, t R +. O th othr had (as w alrady rmarkd), ay w-distac is a strog KST-mtric. So, it is atural askig of what ca b said about th rlatioships btw ths largmts of our iitial cocpt. Th aswr to this is giv i Lmma 4 Lt th prcis covtios b i us. Th, ach τ-distac (modulo d) is cssarily a strog KST-mtric (modulo d); so that, w-distac = τ-distac = strog KST-mtric (modulo d). (1) Proof Lt : M M R + b a τ-distac; ad η = η() stad for som associatd map fulfillig (3a)-(3d). i) Lt x,y,z M b such that (z,x) = (z,y) = 0. By (3a), w hav η(z,(z,x)) = η(z,(z,y)) = 0; ad this, addd to (3d), givs d(x,y) = 0 (hc x = y); whrfrom (2h) holds. ii) Call th squc (x ) i M, (η,)-cauchy providd (d3) lim [sup{η(z,(z,x m ));m }] = 0, for som (z ) M. By [24, Lmma 3], th gric iclusio holds [for ach squc] -Cauchy = (η,)-cauchy. (2) O th othr had, ot that (3b) may b writt as

10 240 M. Turiici (3) (y ) is (η,)-cauchy ad y y imply lim if (x,y ) (x,y), for ach x M. Combiig ths givs (c3). iii) Fially, ot that by [24, Lmma 1] d [for ach squc] (η,)-cauchy = d-cauchy; (3) This, via (2), yilds (b3). Th proof is thrby complt. Now, by simply addig this to Thorm 6, o gts Thorm 7 Assum that is som τ-distac (modulo d), ad ϕ is ifpropr, d-lsc. Th, for ach startig (modulo (, ϕ)) u Dom(ϕ) thr xists a E-variatioal (modulo (,ϕ)) w = w(u) Dom(ϕ) with th proprty (1) (modulo ). Th origial proof of this rsult was providd i Suzuki [24]; but, it is rathr ivolvd. Th proposd rasoig (basd o th dvlopmts i Sctio 2) may b viwd as a rfimt of this o; howvr, it still dpds o Suzuki s argumts cocrig th iclusios (2)+(3). It would b itrstig to hav altrat proofs of ths, so as to avoid Lmma 4 abov. Furthr structural aspcts may b foud i G. M. L, B. S. L, J. S. Jug ad S. S. Chag [19]; s also Zhag, Ch ad Guo [32]. III) Lt agai d b a mtric ovr M; supposd to b complt (cf. (a3)); ad : M M R + b a triagular psudomtric. Accordig to Li ad Du [20] w say that it is a τ-fuctio (modulo d) providd (2h) holds ad (3f) x M, y y ad (x,y ) M, (for som M = M(x) > 0) imply (x,y) M (3g) lim [sup{(x,x m );m > }] = 0 ad lim (x,y ) = 0 imply lim d(x,y ) = 0. By [20, Rmark 1] ach w-distac (modulo d) is a τ-fuctio (modulo d). So, it is atural askig of th rlatioships btw this last cocpt ad that of strog KST-mtric (modulo d). Th aswr is cotaid i Lmma 5 Lt th prcis covtios hold. Th, ach τ-fuctio (modulo d) is a strog KST-mtric (modulo d); so (combiig with th abov) w-distac = τ-fuctio = strog KST-mtric (modulo d). (4)

11 Variatioal statmts 241 Proof Lt : M M R + b som τ-fuctio (modulo d). By dfiitio, it fulfills (2h); so, it rmais to prov that (b3)+(c3) hold. Th lattr of ths is just (3f). To vrify th formr, call th squc (x ), almost -Cauchy wh lim [sup{(x,x m );m > }] = 0. By dfiitio, [for ach squc] -Cauchy = almost -Cauchy. O th othr had, [20, Lmma 2.1] tlls us that [for ach squc] almost -Cauchy = d-cauchy. (5) Combiig with th abov givs (b3); ad th claim follows. As a cosquc of this, th variatioal statmt (ivolvig τ-fuctios (modulo d)) obtaid by th quotd authors is dductibl from Thorm 6 abov. Not that (as bfor) th proposd proofs ar still dpdig o Li- Du s rasoig ivolvig th rlatio (5); so, it would b itrstig to hav altrat proofs of it. Furthr aspcts may b foud i Li ad Du [21]. IV) Lt (M,d) b a complt almost mtric spac (s abov); ad : M M R + b a triagular psudomtric ovr M. Accordig to Al-Homida Asari ad Yao [1], w say that it is a Q-fuctio (modulo d) providd (b1) ad (3f) hold. Clarly, th lattr coditio is just (c1); ad from this, (c3) is fulfilld. O th othr had, (b1) yilds (b3) ad (2h). [Th argumt is similar to th mtrical o i I)]. W thrfor provd Q-fuctio = strog KST-mtric (modulo d). As a dirct cosquc, th variatioal statmt (ivolvig Q-fuctios (modulo d)) obtaid by th quotd authors [1, Thorm 3.1] is dductibl from Thorm 6. Th covrs qustio is still op; w cojctur that a positiv aswr is ultimatly availabl. A itrstig particular cas rfrs to d big (i additio) symmtric; hc, a mtric o M. By th prvious rmark ivolvig (c1), it follows that j) ach τ-fuctio is a Q-fuctio (modulo d) (cf. [1, Rmark 2.1]) jj) th cocpts of Q-fuctio ad w-distac ar idtical. This, alog with Lmma 5, givs us th iclusios w-distac = τ-fuctio = w-distac (modulo d); i.., th cocpts of w-distac ad τ-fuctio ar idtical (withi th mtric framwork). This, howvr, sms to b i cotradictio with [1, Exampl 2.1]; furthr aspcts will b dliatd lswhr.

12 242 M. Turiici 4 Applicatio (quilibrium poits) Roughly spakig, th xtsio of Thorm 2 giv i Sctio 3 cosists i takig : M M R + as a strog KST-mtric (modulo d) i plac of a w-distac (modulo d) at th lvl of th comparativ rlatio (1) ad th variatioal proprty (2). It is thrfor atural to ask whthr th right mmbr of ths could b also xtdd i som way. A appropriat aswr to this may b giv alog th followig lis. Lt M b som ompty st. Tak a psudomtric : M M R + ; which i additio, is triagular (cf. Sctio 1) ad trasitivly sufficit (cf. (2h)). By a rlativ psudomtric ovr M w shall ma ay map (x,y) F(x,y) from M M to R = R {, }. Fix such a objct; supposd to b triagular [F(x,z) F(x,y) + F(y,z), whvr th right mmbr xists] ad rflxiv [F(x,x) = 0, x M]. Lt µ = µ F stad for th associatd fuctio µ(x) = sup{ F(x,y);y M}, x M. By rflxivity, µ(x) 0, for ach x M; hc its valus ar i R + { } = [0, ]. Not that th altrativ µ(m) = { } caot b xcludd; so, to avoid this, w must assum (4a) µ is propr (Dom(µ) := {x M;µ(x) < } = ); rfrrd to as: F is smi-propr. For th arbitrary fixd u Dom(µ) put F u := F(u,.). W hav by dfiitio F u (u) = 0; F u (x) if{f(u,x);x M} = µ(u) > ; (1) whrfrom, F u is if-propr (cf. (1a)) for all such u; w shall rfr to such a proprty as: F is smi if-propr. I this cotxt, u is startig (modulo (,F u )) whvr (a4) (u,x) F u (x) = F(u,x), for som x M; this will b trmd as: u is startig (modulo (,F)). [I particular, (a4) holds whvr (u,u) = 0, if o taks th rflxiv proprty of F ito accout; othrwis, it may b fals]. Fially, lt us say that F is -complt if (b4) (,F u ) is complt (cf. (2i)), for all u Dom(µ). Th followig variatioal statmt is availabl. Thorm 8 Lt th triagular trasitivly sufficit psudomtric ad th triagular rflxiv rlativ psudomtric F b such that (4a)+(b4) hold. Th,

13 Variatioal statmts 243 for ach startig (modulo (,F)) u Dom(µ) thr xists v = v(u) Dom(F u ) with (u,v) F(u,v) µ(u)(< ) (2) (v,x) > F(v,x), for all x M \ {v}. (3) Proof Lt u b tak as bfor. By th imposd coditios, Thorm 4 is applicabl to (,F u ); morovr (s abov) u Dom(F u ) ad (by its vry choic) u is startig (modulo (,F u )). It th follows that, thr must b som v = v(u) Dom(F u ) with th proprtis (u,v) F u (u) F u (v)(= F(u,u) F(u,v)) (4) (v,x) > F u (v) F u (x)(= F(u,v) F(u,x)), x M \ {v}. (5) Th formr of ths is just (2), by th rflxivity of F. Ad th lattr o givs (3); bcaus (from th triagular proprty of F ad (2)) F(u,v) F(u,x) F(u,v) (F(u,v) + F(v,x)) = F(v,x). A basic particular cas of this is th o prcis by th costructios i Sctio 3. Prcisly, lt (M,d) b a complt almost mtric spac; ad : M M R + b a strog KST-mtric (modulo d) ovr it. Furthr, lt F : M M R b a triagular ad rflxiv rlativ psudomtric ovr M, fulfillig (4a). Rmmbr that F is th smi if-propr, i th ss: F u is if-propr, for ach u Dom(µ). Suppos i additio that (4b) F is smi d-lsc: F u is d-lsc, for ach u Dom(µ). Not that, as a cosquc of this, (b4) holds, if o taks Lmma 3 ito accout. By Thorm 8, w th hav Thorm 9 Lt th coupl (d,) b tak as bfor; ad th (triagular rflxiv) rlativ psudomtric F b such that (4a)+(4b) hold. Th, for ach startig (modulo (,F)) u Dom(µ) thr xists v = v(u) Dom(F u ) with th proprtis (2)+(3). Som rmarks ar i ordr. Lt ϕ : M R { } b som if-propr fuctio. Th rlativ psudomtric (c4) F(x,y) = ϕ(y) ϕ(x), x,y M (whr = 0) is triagular ad rflxiv, as it ca b dirctly s. I additio, (4a) holds, bcaus µ(x) = ϕ(x) ϕ,x M (hc Dom(µ) = Dom(ϕ)). This, alog with F u (.) = ϕ(.) ϕ(u), u Dom(µ), tlls us that i) F is -complt iff (,ϕ) is complt (cf. (2i))

14 244 M. Turiici ii) F is smi d-lsc iff ϕ is d-lsc (accordig to (1b)). As a cosquc, th rsults abov xtd th corrspodig os i Sctios 2 ad 3. Th rciprocal iclusios ar also tru, by th vry argumt abov; so that Thorm 4 Thorm 8 ad Thorm 6 Thorm 9. I particular, wh = d, this last statmt icluds dirctly th o i Ottli ad Thra [22]. Som usful applicatios of ths to quilibrium problms may b foud i Biachi, Kassay ad Pii [6]. Rfrcs [1] S. Al-Homida, Q. H. Asari ad J.-C. Yao, Som gralizatios of Eklad-typ variatioal pricipl with applicatios to quilibrium problms ad fixd poit thory, Noli. Aal., 69(2008), [2] M. Altma, A gralizatio of th Brzis-Browdr pricipl o ordrd sts, Noliar Aalysis, 6(1981), [3] M. C. Aisiu, O maximality pricipls rlatd to Eklad s thorm, Smiar Fuct. Aalysis Numr. Mth. (Faculty of Math. Rsarch Smiars), Prprit No. 1 (8 pp), Babş-Bolyai Uiv., Cluj-Napoca (Româia), [4] J. S. Ba, E. W. Cho ad S. H. Yom, A gralizatio of th Caristi-Kirk fixd poit thorm ad its applicatios to mappig thorms, J. Kora Math. Soc., 31 (1994), [5] T. Q. Bao ad P. Q. Khah, Ar svral rct gralizatios of Eklad s variatioal pricipl mor gral tha th origial pricipl?, Acta Math. Vitamica, 28 (2003), [6] M. Biachi, G. Kassay ad R. Pii, Existc of quilibria via Eklad s pricipl, J. Math. Aalysis Appl., 305 (2005), [7] N. Bourbaki, Sur l thorm d Zor, Archiv Math., 2 (1949/1950), [8] H. Brzis ad F. E. Browdr, A gral pricipl o ordrd sts i oliar fuctioal aalysis, Advacs Math., 21 (1976), [9] O. Cârjă, M. Ncula ad I. I. Vrabi, Viability, Ivariac ad Applicatios, North Hollad Mathmatics Studis vol. 207, Elsvir B. V., Amstrdam, [10] V. Cosrva ad S. Rizzo, Maximal lmts i a class of ordr complt mtric subspacs, Math. Japoica, 37 (1992), [11] S. Dacs, M. Hgdus ad P. Mdvgyv, A gral ordrig ad fixd-poit pricipl i complt mtric spac, Acta Sci. Math. (Szgd), 46 (1983), [12] I. Eklad, Nocovx miimizatio problms, Bull. Amr. Math. Soc. (Nw Sris), 1 (1979), [13] A. Gopfrt, H. Riahi, C. Tammr ad C. Zăliscu, Variatioal Mthods i Partially Ordrd Spacs, Caad. Math. Soc. Books i Math. vol. 17, Sprigr, Nw York, 2003.

15 Variatioal statmts 245 [14] A. Haml, Variatioal Pricipls o Mtric ad Uiform Spacs, (Habilitatio Thsis), Marti-Luthr Uivrsity, Hall-Wittbrg (Grmay), [15] D. H. Hyrs, G. Isac ad T. M. Rassias, Topics i Noliar Aalysis ad Applicatios, World Sci. Publ., Sigapor, [16] O. Kada, T. Suzuki ad W. Takahashi, Nocovx miimizatio thorms ad fixd poit thorms i complt mtric spacs, Math. Japoica, 44 (1996), [17] B. G. Kag ad S. Park, O gralizd ordrig pricipls i oliar aalysis, Noliar Aalysis, 14 (1990), [18] T. H. Kim, E. S. Kim ad S. S. Shi, Miimizatio thorms rlatig to fixd poit thorms o complt mtric spacs, Math. Japoica, 45 (1997), [19] G. M. L, B. S. L, G. S. Jug ad S. S. Chag, Miimizatio thorms ad fixd poit thorms i gratig spacs of quasi-mtric family, Fuzzy Sts Syst., 101 (1999), [20] L. J. Li ad W. S. Du, Eklad s variatioal pricipl, miimax thorms ad xistc of ocovx quilibria i complt mtric spacs, J. Math. Aalysis Appl., 323 (2006), [21] L. J. Li ad W. S. Du, O maximal lmt thorms, variats of Eklad s variatioal pricipl ad thir applicatios, Noli. Aal., 68 (2008), [22] W. Ottli ad M. Thra, Equivalts of Eklad s pricipl, Bull. Austral. Math. Soc., 48 (1993), [23] P. Rozovau, Eklad s variatioal pricipl for vctor valud fuctios, Math. Rports [St. Crc. Mat.], 2(52) (2000), [24] T. Suzuki, Gralizd distac ad xistc thorms i complt mtric spacs, J. Math. Aalysis Appl., 253 (2001), [25] A. Szaz, A improvd Altma typ gralizatio of th Brzis Browdr ordrig pricipl, Math. Commuicatios, 12 (2007), [26] W. Takahashi, Existc thorms gralizig fixd poit thorms for multivalud mappigs, i Fixd Poit Thory ad Applicatios (J. B. Baillo, d.), pp , Pitma Rs. Nots Math. vol. 252, Logma Sci. Tch., Harlow, [27] D. Tataru, Viscosity solutios of Hamilto-Jacobi quatios with uboudd oliar trms, J. Math. Aalysis Appl., 163 (1992), [28] M. Turiici, Miimal poits i product spacs, A. St. Uiv. Ovidius Costaţa (Sr. Math.), 10 (2002), [29] M. Turiici, Psudomtric vrsios of th Caristi-Kirk fixd poit thorm, Fixd Poit Thory (Cluj-Napoca), 5 (2004), [30] J. S. Um, Variatioal pricipls, miimizatio thorms ad fixd-poit thorms o gralizd mtric spacs, J. Optim. Th. Appl., 118 (2003), [31] E. S. Wolk, O th pricipl of dpdt choics ad som forms of Zor s lmma, Caad. Math. Bull., 26 (1983),

16 246 M. Turiici [32] S. Zhag, Y. Ch ad J. Guo, Eklad s variatioal pricipl ad Caristi s fixd poit thorm i probabilistic mtric spacs, Acta Math. Appl. Siica, 7 (1991), [33] J. Zhu, C. K. Zhog ad G. P. Wag, A xtsio of Eklad s variatioal pricipl i fuzzy mtric spac ad its applicatios, Fuzzy Sts Syst., 108 (1999), A. Myllr Mathmatical Smiar, A. I. Cuza Uivrsity 11, Copou Boulvard, Iaşi, Romaia -mail: mturi@uaic.ro

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

PSEUDOMETRIC ZHONG PRINCIPLES AND EQUILIBRIUM POINTS. 1. Introduction. Let (M, d) be a complete metric space; and ϕ : M R { } be some function with

PSEUDOMETRIC ZHONG PRINCIPLES AND EQUILIBRIUM POINTS. 1. Introduction. Let (M, d) be a complete metric space; and ϕ : M R { } be some function with ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIV, 2008, f.2 PSEUDOMETRIC ZHONG PRINCIPLES AND EQUILIBRIUM POINTS BY MIHAI TURINICI Abstract. A pseudometric refinement

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)! MATH 681 Nots Combiatorics ad Graph Thory I 1 Catala umbrs Prviously, w usd gratig fuctios to discovr th closd form C = ( 1/ +1) ( 4). This will actually tur out to b marvlously simplifiabl: ( ) 1/ C =

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS Elctroic Joural of Diffrtial Equatios, Vol. 26 (26), No. 282, pp. 24. ISSN: 72-669. URL: http://jd.math.txstat.du or http://jd.math.ut.du HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

COMMON FIXED POINT THEOREMS VIA w-distance

COMMON FIXED POINT THEOREMS VIA w-distance Bulleti of Mathematical Aalysis ad Applicatios ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 3 Issue 3, Pages 182-189 COMMON FIXED POINT THEOREMS VIA w-distance (COMMUNICATED BY DENNY H. LEUNG) SUSHANTA

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information