Default priors and model parametrization

Size: px
Start display at page:

Download "Default priors and model parametrization"

Transcription

1 1 / 16 Default priors and model parametrization Nancy Reid O-Bayes09, June 6, 2009 Don Fraser, Elisabeta Marras, Grace Yun-Yi

2 2 / 16 Well-calibrated priors model f (y; θ), F(y; θ); log-likelihood l(θ) = log f (y; θ) can we find priors that are guaranteed to be well-calibrated, at least approximately what structure do such priors need to have can we do this for all component parameters simultaneously Welch & Peers, 1963: π(θ)dθ i 1/2 (θ)dθ expected Fisher information (matrix) i(θ) = E{ l (θ)} Peers, 1965; Tibshirani, 1989 parameter of interest θ = (ψ, λ): π(θ)dθ i 1/2 ψψ (θ)g(λ)dθ matching priors using Edgeworth expansion

3 3 / 16 Well-calibrated priors model f (y; θ), F(y; θ); log-likelihood l(θ) = log f (y; θ) can we find priors that are guaranteed to be well-calibrated, at least approximately what structure do such priors need to have can we do this for all component parameters simultaneously Welch & Peers, 1963: π(θ)dθ i 1/2 (θ)dθ expected Fisher information (matrix) i(θ) = E{ l (θ)} Peers, 1965; Tibshirani, 1989 parameter of interest θ = (ψ, λ): π(θ)dθ i 1/2 ψψ (θ)g(λ)dθ matching priors using Edgeworth expansion

4 4 / 16 Approximate location models Location model: Y f (y θ) = π(θ)dθ dθ Location model: θ θ + dθ, y y + dθ F(y; θ) unchanged, i.e. df(y; θ) = 0 scalar Y, θ General model: require df (y 0 ; θ) = 0 y 0 sample point F y (y 0 ; θ)dy + F ;θ (y 0 ; θ)dθ = 0 sample y 1,..., y n : dy = F ;θ(y 0 ; θ) F y (y 0 dθ = V (θ)dθ ; θ) dy i = V i (θ)dθ scalar Y, vector θ i.i.d Y i, vector θ

5 Default prior dy = V (θ)dθ; V (θ) = V 1 (θ). V n (θ) possible default prior π(θ)dθ V (θ)v (θ) 1/2 dθ convert to maximum likelihood coordinates l θ (ˆθ; y) = 0 = l θθ (ˆθ; y)d ˆθ + l θ;y (ˆθ; y)dy = 0 n p matrix d ˆθ = ĵ 1 Hdy = ĵ 1 HV (θ)dθ proposed default prior ĵ = j(ˆθ 0 ): observed Fisher information π(θ)dθ ĵ 1 HV (θ) dθ 5 / 16

6 6 / 16 V (θ) links dy to dθ ĵ 1 H links dy to d ˆθ... default prior π(θ)dθ ĵ 1 HV (θ) dθ gives right invariant prior for transformation parameter in transformation models provides extension of right invariant prior to general (continuous) models V (θ) = dy dθ = F θ(y; θ) y=y 0 f (y; θ) y=y 0 H = H(y 0 ; ˆθ 0 ) = 2 l(θ; y) θ y ĵ = j(ˆθ 0 ) = l θθ (ˆθ 0 ) ˆθ 0,y 0

7 7 / 16 Example: regression model y 1 = X 1 β + σɛ 1,..., y n = X n β + σɛ n V (θ) = dy dθ = {X, (y 0 Xβ)/(2σ)} y 0 ( X /ˆσ 2 ) H = ẑ 0 /ˆσ 3 ĵ = diag{x X/ˆσ 2, n/(2ˆσ 4 )} W (θ) = = { { I (X X) 1 X z 0 (θ)/(2σ) 2ẑ 0 ˆσX/n ẑ 0 z 0 (θ)ˆσ/(nσ) I ( β ˆ } 0 β)/2σ 2 0 ˆσ 2 /σ 2. }

8 8 / regression y N(Xβ, σ 2 ), θ = (β, σ 2 ) V (θ) = ( X y 0 ) Xβ σ y = Xβ + σɛ design residuals d ˆβ = dβ + ( ˆβ 0 β)dσ 2 /2σ 2 d ˆσ 2 = ˆσ 2 dσ 2 /σ 2. π(θ)dθ dβdσ 2 /σ 2 dβdσ/σ nonlinear regression, y N(x(β), σ 2 ), leads to d βdσ/σ β coordinates for tangent plane ẋ( ˆβ 0 )(β ˆβ 0 )

9 Scalar parameter default prior is data dependent, changes with y 0 based on approximate local location model Jeffreys prior π J (θ)dθ i 1/2 (θ)dθ gives frequentist matching to second order depends on model, not data unconditional prior Flat priors for Gamma shape default Jeffreys θ 9 / 16

10 Targetted priors If parameter of interest is curved, then prior needs to be targetted on the parameter of interest marginalization paradox (Dawid, Stone and Zidek) Example: Normal circle y i N(µ i, 1/n), i = 1,..., k; ψ = (µ 2 i )1/2 Stein Default prior π(µ)dµ dµ Posterior χ 2 k (n y 2 ) Exact χ 2 k (n ψ 2 ) Normal Circle, k=2, 5, 10 pvalue posterior p-value ψ 10 / 16

11 Normal Circle, k=2, 5, 10 pvalue posterior p-value actual coverage ψ nominal probability Bayes - frequentist Φ { } (k 1) ψ n not fixed by hierarchy of priors

12 12 / 16 Targetted priors: strong matching use Laplace approximations to posterior and to frequentist p-value structure of approximations makes comparison easy s(ψ). = Φ(r + 1 r log q B r ): Bayesian survivor value p(ψ). = Φ(r + 1 r log q F r ): Frequentist p-value r = r(ψ) = ± 2{l(ˆθ) l(ψ, ˆλ ψ )} q B contains the prior; q F various information functions and sample space derivatives q B = q F π(ˆθ) π(ˆθ ψ ) =... default prior along the curve θ = ˆθ ψ F&R, 2002 need to extend to full parameter space

13 13 / 16 q B = l ψ (ˆθ ψ ) j λλ(ˆθ ψ ) 1/2 j(ˆθ) 1/2... details π(ˆθ) π(ˆθ ψ ) q F = l ;V (ˆθ) l ;V (ˆθ ψ ) l λ;v (ˆθ ψ ) l θ;v (ˆθ) j(ˆθ) 1/2 j λλ (ˆθ ψ ) 1/2 π(ˆθ ψ ) π(ˆθ) l ψ (ˆθ ψ ) l θ;v (ˆθ) j λλ (ˆθ ψ ) l ;V (ˆθ) l ;V (ˆθ ψ ) l λ;v (ˆθ ψ ) j(ˆθ) along the profile curve C ψ = {θ : θ = (ψ, ˆλ ψ )} based on exponential family approximation at y 0 use observed information off the curve to extend prior to parameter space to get a version that when integrated via Laplace, brings us back to rf approximation π(θ) j (θθ) (ˆθ ψ ) 1/2 j (λλ) (θ) 1/2

14 14 / details any continuous model can be approximated to O(n 1 ) by an exponential family model (at y 0 ) canonical parameter ϕ(θ) = l ;V (θ; y 0 ) = l yi (θ; y 0 )V i (ˆθ 0 ) V (θ) the same matrix as in the default prior connection through location model approximation ancillarity flat prior

15 15 / 16 Conclusions calibrated priors are data dependent focus motivated by asymptotic theory for likelihood inference reference priors also targetted on parameter of interest marginalization to curved parameters using flat priors may lead to poorly calibrated inferences hierarchical Poisson models: E(y ij ) = c 0 x ij exp(µ + α i + β j + γ ij ) non-informative uniform priors on µ, α, σ β, σ γ difficulties and opportunities with new large data sets checking sensitivity to prior specification can be done simply using asymptotic approximation Φ(r B ) connections to Empirical Bayes?

16 16 / 16 Some references Fraser, D.A.S., Marras, E., Reid, N. and Yi, G. (2009). Default priors for Bayesian and frequentist inference. Fraser, D.A.S. and Reid, N. (2002). Strong matching of frequentist and Bayesian inference. J. Statist. Plan. Infer. 103, Berger, J.O., Bernardo, J. and Sun, D. (2009).The formal definition of reference priors. Ann. Statist. 37, Datta, G.S. and Ghosh, M. (1995). Some remarks on noninformative priors. J. Amer. Statist. Assoc. 90, Dawid, A.P., Stone, M., and Zidek, J.V. (1973). Marginalization paradoxes in Bayesian and structural inference. J. Roy. Statist. Soc. B 35, Bernardo, J.M. (1979). Reference posterior distributions for Bayesian inference. J. Roy. Statist. Soc. B 41, (with discussion).

Default priors for Bayesian and frequentist inference

Default priors for Bayesian and frequentist inference Default priors for Bayesian and frequentist inference D.A.S. Fraser and N. Reid University of Toronto, Canada E. Marras Centre for Advanced Studies and Development, Sardinia University of Rome La Sapienza,

More information

Bayesian and frequentist inference

Bayesian and frequentist inference Bayesian and frequentist inference Nancy Reid March 26, 2007 Don Fraser, Ana-Maria Staicu Overview Methods of inference Asymptotic theory Approximate posteriors matching priors Examples Logistic regression

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6.

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6. Approximating models Nancy Reid, University of Toronto Oxford, February 6 www.utstat.utoronto.reid/research 1 1. Context Likelihood based inference model f(y; θ), log likelihood function l(θ; y) y = (y

More information

Nancy Reid SS 6002A Office Hours by appointment

Nancy Reid SS 6002A Office Hours by appointment Nancy Reid SS 6002A reid@utstat.utoronto.ca Office Hours by appointment Light touch assessment One or two problems assigned weekly graded during Reading Week http://www.utstat.toronto.edu/reid/4508s14.html

More information

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36 Last week Nuisance parameters f (y; ψ, λ), l(ψ, λ) posterior marginal density π m (ψ) =. c (2π) q el P(ψ) l P ( ˆψ) j P ( ˆψ) 1/2 π(ψ, ˆλ ψ ) j λλ ( ˆψ, ˆλ) 1/2 π( ˆψ, ˆλ) j λλ (ψ, ˆλ ψ ) 1/2 l p (ψ) =

More information

Measuring nuisance parameter effects in Bayesian inference

Measuring nuisance parameter effects in Bayesian inference Measuring nuisance parameter effects in Bayesian inference Alastair Young Imperial College London WHOA-PSI-2017 1 / 31 Acknowledgements: Tom DiCiccio, Cornell University; Daniel Garcia Rasines, Imperial

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters Likelihood Inference in the Presence of Nuance Parameters N Reid, DAS Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe some recent approaches to likelihood based

More information

ASYMPTOTICS AND THE THEORY OF INFERENCE

ASYMPTOTICS AND THE THEORY OF INFERENCE ASYMPTOTICS AND THE THEORY OF INFERENCE N. Reid University of Toronto Abstract Asymptotic analysis has always been very useful for deriving distributions in statistics in cases where the exact distribution

More information

Nancy Reid SS 6002A Office Hours by appointment

Nancy Reid SS 6002A Office Hours by appointment Nancy Reid SS 6002A reid@utstat.utoronto.ca Office Hours by appointment Problems assigned weekly, due the following week http://www.utstat.toronto.edu/reid/4508s16.html Various types of likelihood 1. likelihood,

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid February 26, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Nancy Reid Accurate directional inference for vector parameters York University

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters PHYSTAT2003, SLAC, September 8-11, 2003 1 Likelihood Inference in the Presence of Nuance Parameters N. Reid, D.A.S. Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe

More information

DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY

DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY Journal of Statistical Research 200x, Vol. xx, No. xx, pp. xx-xx ISSN 0256-422 X DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY D. A. S. FRASER Department of Statistical Sciences,

More information

BFF Four: Are we Converging?

BFF Four: Are we Converging? BFF Four: Are we Converging? Nancy Reid May 2, 2017 Classical Approaches: A Look Way Back Nature of Probability BFF one to three: a look back Comparisons Are we getting there? BFF Four Harvard, May 2017

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid October 28, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Parametric models and likelihood model f (y; θ), θ R p data y = (y 1,...,

More information

Some Curiosities Arising in Objective Bayesian Analysis

Some Curiosities Arising in Objective Bayesian Analysis . Some Curiosities Arising in Objective Bayesian Analysis Jim Berger Duke University Statistical and Applied Mathematical Institute Yale University May 15, 2009 1 Three vignettes related to John s work

More information

ASSESSING A VECTOR PARAMETER

ASSESSING A VECTOR PARAMETER SUMMARY ASSESSING A VECTOR PARAMETER By D.A.S. Fraser and N. Reid Department of Statistics, University of Toronto St. George Street, Toronto, Canada M5S 3G3 dfraser@utstat.toronto.edu Some key words. Ancillary;

More information

PARAMETER CURVATURE REVISITED AND THE BAYES-FREQUENTIST DIVERGENCE.

PARAMETER CURVATURE REVISITED AND THE BAYES-FREQUENTIST DIVERGENCE. Journal of Statistical Research 200x, Vol. xx, No. xx, pp. xx-xx Bangladesh ISSN 0256-422 X PARAMETER CURVATURE REVISITED AND THE BAYES-FREQUENTIST DIVERGENCE. A.M. FRASER Department of Mathematics, University

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Applied Asymptotics Case studies in higher order inference

Applied Asymptotics Case studies in higher order inference Applied Asymptotics Case studies in higher order inference Nancy Reid May 18, 2006 A.C. Davison, A. R. Brazzale, A. M. Staicu Introduction likelihood-based inference in parametric models higher order approximations

More information

Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors.

Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors. Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document University

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Bayesian Asymptotics

Bayesian Asymptotics BS2 Statistical Inference, Lecture 8, Hilary Term 2008 May 7, 2008 The univariate case The multivariate case For large λ we have the approximation I = b a e λg(y) h(y) dy = e λg(y ) h(y ) 2π λg (y ) {

More information

COMBINING p-values: A DEFINITIVE PROCESS. Galley

COMBINING p-values: A DEFINITIVE PROCESS. Galley 0 Journal of Statistical Research ISSN 0 - X 00, Vol., No., pp. - Bangladesh COMBINING p-values: A DEFINITIVE PROCESS D.A.S. Fraser Department of Statistics, University of Toronto, Toronto, Canada MS G

More information

ANCILLARY STATISTICS: A REVIEW

ANCILLARY STATISTICS: A REVIEW Statistica Sinica 20 (2010), 1309-1332 ANCILLARY STATISTICS: A REVIEW M. Ghosh 1, N. Reid 2 and D. A. S. Fraser 2 1 University of Florida and 2 University of Toronto Abstract: In a parametric statistical

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions Communications for Statistical Applications and Methods 03, Vol. 0, No. 5, 387 394 DOI: http://dx.doi.org/0.535/csam.03.0.5.387 Noninformative Priors for the Ratio of the Scale Parameters in the Inverted

More information

ANCILLARY STATISTICS: A REVIEW

ANCILLARY STATISTICS: A REVIEW 1 ANCILLARY STATISTICS: A REVIEW M. Ghosh, N. Reid and D.A.S. Fraser University of Florida and University of Toronto Abstract: In a parametric statistical model, a function of the data is said to be ancillary

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

Invariant HPD credible sets and MAP estimators

Invariant HPD credible sets and MAP estimators Bayesian Analysis (007), Number 4, pp. 681 69 Invariant HPD credible sets and MAP estimators Pierre Druilhet and Jean-Michel Marin Abstract. MAP estimators and HPD credible sets are often criticized in

More information

Bayesian Inference and the Parametric Bootstrap. Bradley Efron Stanford University

Bayesian Inference and the Parametric Bootstrap. Bradley Efron Stanford University Bayesian Inference and the Parametric Bootstrap Bradley Efron Stanford University Importance Sampling for Bayes Posterior Distribution Newton and Raftery (1994 JRSS-B) Nonparametric Bootstrap: good choice

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

Likelihood and Asymptotic Theory for Statistical Inference

Likelihood and Asymptotic Theory for Statistical Inference Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 reid@utstat.utoronto.ca n.reid@ucl.ac.uk http://www.utstat.toronto.edu/reid/ltccf12.html LTCC Likelihood Theory Week

More information

Third-order inference for autocorrelation in nonlinear regression models

Third-order inference for autocorrelation in nonlinear regression models Third-order inference for autocorrelation in nonlinear regression models P. E. Nguimkeu M. Rekkas Abstract We propose third-order likelihood-based methods to derive highly accurate p-value approximations

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 2017 1 / 10 Lecture 7: Prior Types Subjective

More information

1 Hypothesis Testing and Model Selection

1 Hypothesis Testing and Model Selection A Short Course on Bayesian Inference (based on An Introduction to Bayesian Analysis: Theory and Methods by Ghosh, Delampady and Samanta) Module 6: From Chapter 6 of GDS 1 Hypothesis Testing and Model Selection

More information

Modern likelihood inference for the parameter of skewness: An application to monozygotic

Modern likelihood inference for the parameter of skewness: An application to monozygotic Working Paper Series, N. 10, December 2013 Modern likelihood inference for the parameter of skewness: An application to monozygotic twin studies Mameli Valentina Department of Mathematics and Computer

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Likelihood and Asymptotic Theory for Statistical Inference

Likelihood and Asymptotic Theory for Statistical Inference Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 reid@utstat.utoronto.ca n.reid@ucl.ac.uk http://www.utstat.toronto.edu/reid/ltccf12.html LTCC Likelihood Theory Week

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

Bayesian Model Comparison

Bayesian Model Comparison BS2 Statistical Inference, Lecture 11, Hilary Term 2009 February 26, 2009 Basic result An accurate approximation Asymptotic posterior distribution An integral of form I = b a e λg(y) h(y) dy where h(y)

More information

Approximate Inference for the Multinomial Logit Model

Approximate Inference for the Multinomial Logit Model Approximate Inference for the Multinomial Logit Model M.Rekkas Abstract Higher order asymptotic theory is used to derive p-values that achieve superior accuracy compared to the p-values obtained from traditional

More information

Integrated Objective Bayesian Estimation and Hypothesis Testing

Integrated Objective Bayesian Estimation and Hypothesis Testing Integrated Objective Bayesian Estimation and Hypothesis Testing José M. Bernardo Universitat de València, Spain jose.m.bernardo@uv.es 9th Valencia International Meeting on Bayesian Statistics Benidorm

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Stats 579 Intermediate Bayesian Modeling. Assignment # 2 Solutions

Stats 579 Intermediate Bayesian Modeling. Assignment # 2 Solutions Stats 579 Intermediate Bayesian Modeling Assignment # 2 Solutions 1. Let w Gy) with y a vector having density fy θ) and G having a differentiable inverse function. Find the density of w in general and

More information

Improved Inference for First Order Autocorrelation using Likelihood Analysis

Improved Inference for First Order Autocorrelation using Likelihood Analysis Improved Inference for First Order Autocorrelation using Likelihood Analysis M. Rekkas Y. Sun A. Wong Abstract Testing for first-order autocorrelation in small samples using the standard asymptotic test

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Exponential Models: Approximations for Probabilities

Exponential Models: Approximations for Probabilities JIRSS (2011) Vol. 10, No. 2, pp 95-107 Exponential Models: Approximations for Probabilities D. A. S. Fraser 1,2,A.Naderi 3, Kexin Ji 1,WeiLin 1, Jie Su 1 1 Department of Statistics, University of Toronto,

More information

A simple analysis of the exact probability matching prior in the location-scale model

A simple analysis of the exact probability matching prior in the location-scale model A simple analysis of the exact probability matching prior in the location-scale model Thomas J. DiCiccio Department of Social Statistics, Cornell University Todd A. Kuffner Department of Mathematics, Washington

More information

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* 3 Conditionals and marginals For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate

More information

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain A BAYESIAN MATHEMATICAL STATISTICS PRIMER José M. Bernardo Universitat de València, Spain jose.m.bernardo@uv.es Bayesian Statistics is typically taught, if at all, after a prior exposure to frequentist

More information

Bootstrap and Parametric Inference: Successes and Challenges

Bootstrap and Parametric Inference: Successes and Challenges Bootstrap and Parametric Inference: Successes and Challenges G. Alastair Young Department of Mathematics Imperial College London Newton Institute, January 2008 Overview Overview Review key aspects of frequentist

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Improper mixtures and Bayes s theorem

Improper mixtures and Bayes s theorem and Bayes s theorem and Han Han Department of Statistics University of Chicago DASF-III conference Toronto, March 2010 Outline Bayes s theorem 1 Bayes s theorem 2 Bayes s theorem Non-Bayesian model: Domain

More information

BAYESIAN ANALYSIS OF BIVARIATE COMPETING RISKS MODELS

BAYESIAN ANALYSIS OF BIVARIATE COMPETING RISKS MODELS Sankhyā : The Indian Journal of Statistics 2000, Volume 62, Series B, Pt. 3, pp. 388 401 BAYESIAN ANALYSIS OF BIVARIATE COMPETING RISKS MODELS By CHEN-PIN WANG University of South Florida, Tampa, U.S.A.

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

An Extended BIC for Model Selection

An Extended BIC for Model Selection An Extended BIC for Model Selection at the JSM meeting 2007 - Salt Lake City Surajit Ray Boston University (Dept of Mathematics and Statistics) Joint work with James Berger, Duke University; Susie Bayarri,

More information

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona Likelihood based Statistical Inference Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona L. Pace, A. Salvan, N. Sartori Udine, April 2008 Likelihood: observed quantities,

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

An Improved Specification Test for AR(1) versus MA(1) Disturbances in Linear Regression Models

An Improved Specification Test for AR(1) versus MA(1) Disturbances in Linear Regression Models An Improved Specification Test for AR(1) versus MA(1) Disturbances in Linear Regression Models Pierre Nguimkeu Georgia State University Abstract This paper proposes an improved likelihood-based method

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors James O. Berger Duke University, USA Jose M. Bernardo Universitat de València, Spain and Dongchu Sun University of Missouri-Columbia, USA Abstract In multi-parameter models, reference

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Marginal Posterior Simulation via Higher-order Tail Area Approximations

Marginal Posterior Simulation via Higher-order Tail Area Approximations Bayesian Analysis (2014) 9, Number 1, pp. 129 146 Marginal Posterior Simulation via Higher-order Tail Area Approximations Erlis Ruli, Nicola Sartori and Laura Ventura Abstract. A new method for posterior

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

Bayesian inference for factor scores

Bayesian inference for factor scores Bayesian inference for factor scores Murray Aitkin and Irit Aitkin School of Mathematics and Statistics University of Newcastle UK October, 3 Abstract Bayesian inference for the parameters of the factor

More information

Fiducial Inference and Generalizations

Fiducial Inference and Generalizations Fiducial Inference and Generalizations Jan Hannig Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Hari Iyer Department of Statistics, Colorado State University

More information

Improved Inference for Moving Average Disturbances in Nonlinear Regression Models

Improved Inference for Moving Average Disturbances in Nonlinear Regression Models Improved Inference for Moving Average Disturbances in Nonlinear Regression Models Pierre Nguimkeu Georgia State University November 22, 2013 Abstract This paper proposes an improved likelihood-based method

More information

Predictive Distributions

Predictive Distributions Predictive Distributions October 6, 2010 Hoff Chapter 4 5 October 5, 2010 Prior Predictive Distribution Before we observe the data, what do we expect the distribution of observations to be? p(y i ) = p(y

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

Advanced Quantitative Methods: maximum likelihood

Advanced Quantitative Methods: maximum likelihood Advanced Quantitative Methods: Maximum Likelihood University College Dublin 4 March 2014 1 2 3 4 5 6 Outline 1 2 3 4 5 6 of straight lines y = 1 2 x + 2 dy dx = 1 2 of curves y = x 2 4x + 5 of curves y

More information

Modern Methods of Statistical Learning sf2935 Auxiliary material: Exponential Family of Distributions Timo Koski. Second Quarter 2016

Modern Methods of Statistical Learning sf2935 Auxiliary material: Exponential Family of Distributions Timo Koski. Second Quarter 2016 Auxiliary material: Exponential Family of Distributions Timo Koski Second Quarter 2016 Exponential Families The family of distributions with densities (w.r.t. to a σ-finite measure µ) on X defined by R(θ)

More information

Harrison B. Prosper. CMS Statistics Committee

Harrison B. Prosper. CMS Statistics Committee Harrison B. Prosper Florida State University CMS Statistics Committee 08-08-08 Bayesian Methods: Theory & Practice. Harrison B. Prosper 1 h Lecture 3 Applications h Hypothesis Testing Recap h A Single

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Likelihood and p-value functions in the composite likelihood context

Likelihood and p-value functions in the composite likelihood context Likelihood and p-value functions in the composite likelihood context D.A.S. Fraser and N. Reid Department of Statistical Sciences University of Toronto November 19, 2016 Abstract The need for combining

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Integrated Objective Bayesian Estimation and Hypothesis Testing

Integrated Objective Bayesian Estimation and Hypothesis Testing BAYESIAN STATISTICS 9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.) c Oxford University Press, 2010 Integrated Objective Bayesian Estimation

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

Nuisance parameters and their treatment

Nuisance parameters and their treatment BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008 Ancillarity Inference principles Completeness A statistic A = a(x ) is said to be ancillary if (i) The distribution of A does not depend

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

Bayesian Statistics from Subjective Quantum Probabilities to Objective Data Analysis

Bayesian Statistics from Subjective Quantum Probabilities to Objective Data Analysis Bayesian Statistics from Subjective Quantum Probabilities to Objective Data Analysis Luc Demortier The Rockefeller University Informal High Energy Physics Seminar Caltech, April 29, 2008 Bayes versus Frequentism...

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Aspects of Likelihood Inference

Aspects of Likelihood Inference Submitted to the Bernoulli Aspects of Likelihood Inference NANCY REID 1 1 Department of Statistics University of Toronto 100 St. George St. Toronto, Canada M5S 3G3 E-mail: reid@utstat.utoronto.ca, url:

More information

The formal relationship between analytic and bootstrap approaches to parametric inference

The formal relationship between analytic and bootstrap approaches to parametric inference The formal relationship between analytic and bootstrap approaches to parametric inference T.J. DiCiccio Cornell University, Ithaca, NY 14853, U.S.A. T.A. Kuffner Washington University in St. Louis, St.

More information