STUDENT NAME: STUDENT id #: NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.

Size: px
Start display at page:

Download "STUDENT NAME: STUDENT id #: NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc."

Transcription

1 GENERAL PHYSICS PH 1-3A (Dr. S. Mirov) Test 1 (09/17/07) Key STUDENT NAME: STUDENT id #: ALL QUESTIONS ARE WORTH 0 POINTS. WORK OUT FIVE PROBLEMS. NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.) Important Formulas: 1. Motion along a straight line with a constant acceleration v aver. speed = [dist. taken]/[time trav.]=s/t; v aver.vel. = Δ/Δt; v ins =d/δt; a aver. = Δv aver. vel. /Δt; a = dv/δt; v = v o + at; = 1/(v o +v)t; = v o t + 1/ at ; v = v o + a (if o =0 at t o =0). Free fall motion (with positive direction ) g = 9.80 m/s ; y = v aver. t v aver. = (v+v o )/; v = v o - gt; y = v o t - 1/ g t ; v = v o gy (if y o =0 at t o =0) 3. Motion in a plane v = v o cosθ; v y = v o sinθ; = v o t+ 1/ a t ; y = v oy t + 1/ a y t ; v = v o + at; v y = v oy + at; 4. Projectile motion (with positive direction ) v = v o = v o cosθ; = v o t; ma = ( v o sinθ cosθ)/g )g = (v o sinθ)/g )gfor y in = y fin ; v y = v oy - gt = v o sinθ - gt; y = v oy t - 1/ gt ; 5. Uniform circular Motion a=v /r, T=πr/v 6. Relative motion v P A = v P B + v B A a PA = a PB 5. Component method of vector addition 1

2 A = A + ;A = + = + = = -1 1 A A 1 A and A y A y1 A y ; A A + Ay ; θ tan A y /A ; The scalar product A ab = abcosφ ab = ( aiˆ ˆ ˆ) ( ˆ ˆ ˆ + aj y + ak z bi + bj y + bk z ) ab = ab + ab y y + ab z z The vector product a b= ( aiˆ+ a ˆj+ akˆ) ( biˆ+ b ˆj+ bkˆ) y z y z iˆ ˆj kˆ ay az a ˆ ˆ a a z ˆ ay a b= b a= a ay az = i j + k = by bz b b bz by b b b y z = ( ab ba) iˆ+ ( ab ba) ˆj + ( ab ba) kˆ y z y z z z y y

3 1. Starting at time t = 0, an object moves along a straight line. Its coordinate in meters is given by (t) = 75t 1.0t 3, where t is in seconds. What is its acceleration when it momentarily stops? d 1) v = = t dt ) Time at which the object will stop corresponds to v = t = 0; t=5s dv 3) a = = 6.0t dt 4) for t=5s a = 30m s 3

4 . 4

5 3. 5

6 4. 6

7 5. Let R = S T and θ is the angle between S and T when they are drawn with their tails at the same point. Which of the following is not true? A. R = S T sin θ It is true by definition. B. R = T S it is true since iˆ ˆ j kˆ ay az a ˆ ˆ a a z ˆ ay a b = a ay az = i j + k = by bz b b bz by b b b y z = ( ab ba) i ˆ+ ( ab ba) ˆj + ( ab ba) k ˆ y z y z z z y y iˆ ˆj kˆ by bz b ˆ ˆ b b z ˆ by b a = b b y b z = i j + k = ay az a a a a z y a ay az = ( ab ba) iˆ ( ab ba) ˆ ( ) ˆ j a b b a k = ( b a) y z y z z z y y C. R S = 0. It is true since R S = RScos90 = 0 D. R T = 0 It is true since R T = RTcos90 = 0 E. S T = 0 It is not true since cosθ 0 7

8 6. According to an ancient Greek source, a stone throwing machine on one occasion achieved a range of 730 m. If this is true, (a) What must have been the minimal initial speed of the stone as it was ejected from the engine? (b) When ejected with this speed, how long would the stone have taken to reach its target? Given: = 730 m θ =45 Find (a) vo =? (b) t f Solution : v sin θ v a v g m m s m s g g o o ( ) = = o = = (730 ) (9.8 / ) = 84.6 / ( b) Consider y motion. Given: 1) Time of flight corresponds to y=0; ) a=-9.8 m/s 3) v oy = v o sin 45 = 84. Use equation (3) to find time of flight 6sin45= 59.8 m/ s 1 v (59.8 m/ s) v t + at t = = = s a ( m/ s ) oy 0= oy f f f 1. 8

9 y 7. A ball is thrown horizontally from the top of a 0-m high hill. It strikes the ground at an angle of 45. With what speed was it thrown? v a) Consider motion along y direction. Choose the origin point at the top of the hill and y ais directed vertically upwards. The ball is in a free fall from the height of 0 m Given: 1) voy = 0; ) y= 0m; 3) a= 9.8 m/ s. Find v y =? Use equation 4. y = oy+ ; y = = ( / )( 0 ) = / v v ay v ay m s m m s b) Since a ball strikes the ground at 45 final component of velocity equal final y component of velocity v = v = v = 0 m/ s o 9

10 8. A girl wishes to swim across a river to a point directly opposite as shown. She can swim at m/s in still water and the river is flowing at 1m/s. At what angle θ with respect to the line joining the starting and finishing points should she swim? vgb velocity of a girl with respect to the bank of the river vwb velocity of a water with respect to the bank of the river v gw velocity of a girl with respect to the still water According to the relative motion rule v = v + v vwb 1 θ = arctan( ) = arctan( ) = 3 10 v gw gb wb gw 1 10

11 9. A girl jogs around a horizontal circle with a constant speed. She travels one fourth of a revolution, a distance of 5m along the circumference of the circle, in 5.0 s. What is the magnitude of her acceleration? ( a) Find speed of the uniform circular motion. since qurter of a full revolution travel corresponds to 5 m, and time it takes equal to 5.0 s the speed of the motion is 5/5.0=5.0m/s (b) Find radius r of a circular trajectory. π r = 5 m, r = 15.9m 4 (c) Find centripital acceleration. a (5 / ) = v m s r = (15.9 m) = 1.6 m/ s 11

Sample Test 2. GENERAL PHYSICS PH 221-3A (Dr. S. Mirov) Test 2 (10/10/07) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Sample Test 2. GENERAL PHYSICS PH 221-3A (Dr. S. Mirov) Test 2 (10/10/07) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GENERAL PHYSICS PH -3A (Dr. S. Mirov) Test (0/0/07) Sample Test STUDENT NAME: _Key STUDENT id #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (04/29/13) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (04/29/13) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GENERAL PHYSICS PH -D (Dr. S. Mirov) Test 4 (04/9/3) STUDENT NAME: key STUDENT id #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1 Coordinator: Abdelmonem Monday, October 30, 006 Page: 1 Q1. An aluminum cylinder of density.70 g/cm 3, a radius of.30 cm, and a height of 1.40 m has the mass of: A) 6.8 kg B) 45.1 kg C) 13.8 kg D) 8.50

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

ISSUED BY K V - DOWNLOADED FROM KINEMATICS

ISSUED BY K V - DOWNLOADED FROM   KINEMATICS KINEMATICS *rest and Motion are relative terms, nobody can exist in a state of absolute rest or of absolute motion. *One dimensional motion:- The motion of an object is said to be one dimensional motion

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper

More information

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6 A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given b ( 6.m ) ˆ ( 8.m ) A ˆ i ˆ ˆ j A ˆ i ˆ ˆ j C) A ˆ ( 1 ) ( i ˆ ˆ j) D) Aˆ.6 iˆ+.8 ˆj E) Aˆ.6 iˆ.8 ˆj A) (.6m

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

2D and 3D Motion. with constant (uniform) acceleration

2D and 3D Motion. with constant (uniform) acceleration 2D and 3D Motion with constant (uniform) acceleration 1 Dimension 2 or 3 Dimensions x x v : position : position : displacement r : displacement : velocity v : velocity a : acceleration a r : acceleration

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

2. Two Dimensional Kinematics

2. Two Dimensional Kinematics . Two Dimensional Kinematics A) Overview We will begin by introducing the concept of vectors that will allow us to generalize what we learned last time in one dimension to two and three dimensions. In

More information

Need to have some new mathematical techniques to do this: however you may need to revise your basic trigonometry. Basic Trigonometry

Need to have some new mathematical techniques to do this: however you may need to revise your basic trigonometry. Basic Trigonometry Kinematics in Two Dimensions Kinematics in 2-dimensions. By the end of this you will 1. Remember your Trigonometry 2. Know how to handle vectors 3. be able to handle problems in 2-dimensions 4. understand

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Solutions to 1 st Major 111

Solutions to 1 st Major 111 Solutions to 1 st Major 111 Q1. Consider a cube of iron of mass 8.0 kg and side 4.0 inches. What is its density in kg/m 3? (1 inch = 2.54 cm) A) 7.6 10 3 B) 6.9 10 3 C) 9.8 10 3 D) 4.3 10 3 2.54 cm 1 m

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

PHYS 103 (GENERAL PHYSICS) CHAPTER 3: VECTORS LECTURE NO. 4 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED

PHYS 103 (GENERAL PHYSICS) CHAPTER 3: VECTORS LECTURE NO. 4 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED First Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 3: VECTORS LECTURE NO. 4 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction.

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. Vectors and Scalars Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. To distinguish a vector from a scalar quantity, it is usually written

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Lecture4- Projectile Motion Chapter 4

Lecture4- Projectile Motion Chapter 4 1 / 32 Lecture4- Projectile Motion Chapter 4 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 28 th, 2018 2 / 32 Objectives Vector

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Physics I Exam 1 Fall 2015 (version A)

Physics I Exam 1 Fall 2015 (version A) 95.141 Physics I Exam 1 Fall 2015 (version A) Recitation Section Number Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name on

More information

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

More information

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180 Chapter Four MOTION IN A PLANE MCQ I 4.1 The angle between A = ˆi + ˆj and B = ˆi ˆj is (a) 45 (b) 90 (c) 45 (d) 180 4.2 Which one of the following statements is true? (a) A scalar quantity is the one

More information

Halliday/Resnick/Walker 7e Chapter 4

Halliday/Resnick/Walker 7e Chapter 4 HRW 7e Chapter 4 Page of Hallida/Resnick/Walker 7e Chapter 4 3. The initial position vector r o satisfies r r = r, which results in o o r = r r = (3.j ˆ 4.k) ˆ (.i ˆ 3.j ˆ + 6. k) ˆ =.ˆi + 6.ˆj k ˆ where

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

MOTION OF A PROJECTILE

MOTION OF A PROJECTILE MOTION OF A PROJECTILE Today s Objectives: Students will be able to: 1. Analyze the free-flight motion of a projectile. In-Class Activities: Check Homework Reading Quiz Applications Kinematic Equations

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Angular Momentum. Physics 1425 Lecture 21. Michael Fowler, UVa

Angular Momentum. Physics 1425 Lecture 21. Michael Fowler, UVa Angular Momentum Physics 1425 Lecture 21 Michael Fowler, UVa A New Look for τ = Iα We ve seen how τ = Iα works for a body rotating about a fixed axis. τ = Iα is not true in general if the axis of rotation

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Phys 201, Lecture 5 Feb.2. Chapter 3: Mo;on in Two and Three Dimensions

Phys 201, Lecture 5 Feb.2. Chapter 3: Mo;on in Two and Three Dimensions Phys 201, Lecture 5 Feb.2 Chapter 3: Mo;on in Two and Three Dimensions Displacement, Velocity and Acceleration Displacement describes the location change of a particle Velocity is rate of change of displacement

More information

General Physics I. Lecture 2: Motion in High Dimensions. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 2: Motion in High Dimensions. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 2: Motion in High Dimensions Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motion in 2D at Discrete Time Do It the High School Way Along x direction,

More information

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS General properties of vectors displacement vector position and velocity vectors acceleration vector equations of motion in 2- and 3-dimensions Projectile motion

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6. 1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (

More information

11.1 Introduction Galilean Coordinate Transformations

11.1 Introduction Galilean Coordinate Transformations 11.1 Introduction In order to describe physical events that occur in space and time such as the motion of bodies, we introduced a coordinate system. Its spatial and temporal coordinates can now specify

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Physics ( (Chapter 4) (Motion in a Plane)

Physics (  (Chapter 4) (Motion in a Plane) () Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement,

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

KINEMATICS REVIEW VECTOR ALGEBRA - SUMMARY

KINEMATICS REVIEW VECTOR ALGEBRA - SUMMARY 1 KINEMATICS REVIEW VECTOR ALGEBRA - SUMMARY Magnitude A numerical value with appropriate units. Scalar is a quantity that is completely specified by magnitude. Vector requires both, magnitude and direction

More information

170 Test example problems CH1,2,3

170 Test example problems CH1,2,3 170 Test example problems CH1,2,3 WARNING: these are simply examples that showed up in previous semesters test. It does NOT mean that similar problems will be present in THIS semester s test. Hence, you

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

Chapter 9 Uniform Circular Motion

Chapter 9 Uniform Circular Motion 9.1 Introduction Chapter 9 Uniform Circular Motion Special cases often dominate our study of physics, and circular motion is certainly no exception. We see circular motion in many instances in the world;

More information

PHYS-2010: General Physics I Course Lecture Notes Section IV

PHYS-2010: General Physics I Course Lecture Notes Section IV PHYS-010: General Phsics I Course Lecture Notes Section IV Dr. Donald G. Luttermoser East Tennessee State Universit Edition.3 Abstract These class notes are designed for use of the instructor and students

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Physics I (Navitas) EXAM #1 Fall 2015

Physics I (Navitas) EXAM #1 Fall 2015 95.141 Physics I (Navitas) EXAM #1 Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning each

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

(b) A sketch is shown. The coordinate values are in meters.

(b) A sketch is shown. The coordinate values are in meters. 1. (a) The magnitude of r is 5.0 + ( 30.) +.0 = 6. m. (b) A sketch is shown. The coordinate values are in meters. . Wherever the length unit is not specified (in this solution), the unit meter should be

More information

Units. EMU Physics Department. Ali ÖVGÜN.

Units. EMU Physics Department. Ali ÖVGÜN. Units Ali ÖVGÜN EMU Physics Department www.aovgun.com 1 mile = 1609 m January 22-25, 2013 January 22-25, 2013 Vectors Ali ÖVGÜN EMU Physics Department www.aovgun.com Example 1: Operations with Vectors

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA PAGE NO.: 1 of 6 + Formula Sheet Equal marks for all questions. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

More information

Physics 201, Midterm Exam 1, Fall Answer Key

Physics 201, Midterm Exam 1, Fall Answer Key Physics 201, Midterm Exam 1, Fall 2006 Answer Key 1) The equation for the change of position of a train starting at x = 0 m is given by x(t) = 1 2 at 2 + bt 3. The dimensions of b are: A. T 3 B. LT 3 C.

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

State, for each of the following physical quantities, if it is a scalar or a vector:

State, for each of the following physical quantities, if it is a scalar or a vector: Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement,

More information

Downloaded from 3. Motion in a straight line. Study of motion of objects along a straight line is known as rectilinear motion.

Downloaded from  3. Motion in a straight line. Study of motion of objects along a straight line is known as rectilinear motion. 3. Motion in a straight line IMPORTANT POINTS Study of motion of objects along a straight line is known as rectilinear motion. If a body does not change its position with time it is said to be at rest.

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print) Physics 116A, Section 2, Second Exam A, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the OPSCAN

More information

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print) Physics 116A, Section 2, Second Exam Version B, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the

More information

APPLICATIONS OF DERIVATIVES OBJECTIVES. The approimate increase in the area of a square plane when each side epands from c m to.0 cm is () 0.00 sq. cm () 0.006 sq. cm () 0.06 sq. cm () None. If y log then

More information

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 10 5 0 0 5 10 15 20 25 30 There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 55 / 67 10 5 0 0 5

More information

Answer: Scalars: Volume, mass, speed, density, number of moles, angular frequency. Vectors: Acceleration, velocity, displacement, angular velocity.

Answer: Scalars: Volume, mass, speed, density, number of moles, angular frequency. Vectors: Acceleration, velocity, displacement, angular velocity. Question State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement, angular

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

Phys 2425: University Physics I Spring 2016 Practice Exam 1

Phys 2425: University Physics I Spring 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 140 c. PHYS 45 d. PHYS 46 Survey Questions no points. (0 Points) Which exam is this? a. Exam 1 b. Exam c. Final Exam 3. (0 Points) What version of

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Page 1 of 35 Website: Mobile:

Page 1 of 35 Website:     Mobile: Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement,

More information

Study Guide for Exam #2

Study Guide for Exam #2 Physical Mechanics METR103 November, 000 Study Guide for Exam # The information even below is meant to serve as a guide to help you to prepare for the second hour exam. The absence of a topic or point

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Two-Dimensional. 8.7 Relative Motion CHAPTER 8

Two-Dimensional. 8.7 Relative Motion CHAPTER 8 CHAPTER 8 Two-Dimensional Motion 8.7 Relative Motion In Chapter 7, we reviewed the basic elements of one-dimensional rectilinear motion. In this chapter, we will consider only two-dimensional motion. In

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

PHYS1131 HIGHER PHYSICS 1A SOLUTIONS Homework Problem Set 1. To calculate the time taken, we substitute d=10 m into the above equation.

PHYS1131 HIGHER PHYSICS 1A SOLUTIONS Homework Problem Set 1. To calculate the time taken, we substitute d=10 m into the above equation. PHYS1131 HIGHER PHYSICS 1A SOLUTIONS Homework Problem Set 1 Q1. We use the equations of uniform accelerated motion with zero initial displacement and velocity. y 1 = " 1 gt where t is measured in seconds.

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 11 Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information