STARMAX Revisted. Spatio-Temporal Modeling for Biosurveillance

Size: px
Start display at page:

Download "STARMAX Revisted. Spatio-Temporal Modeling for Biosurveillance"

Transcription

1 Spatio-Temporal Modeling for Biosurveillance D.S. Stoffer University of Pittsburgh STARMAX Revisted Stoffer (1986). Estimation and Identification of Space-Time ARMAX Models with Missing Data JASA, (An approach to space-time modeling using a spatially constrained state space model.) 1

2 The Data: The Pennsylvania portion of CDCs National Influenza Surveillance Effort data set. These are weekly mortality reports for pneumonia and influenza in various locations, 1962 present. Scranton Allentown Pittsburgh Reading Philadelphia 2

3 3 Weeks Mortality Allentown Philadelphia Pittsburgh 7 Three Series:

4 Poisson models: The basic model for time series of counts is yt y t 1, yt 2,... Poisson(µt), where log µt = Γut + p φiyt i. i=1 Here, ut are covariates (or inputs). Some difficulties: not stationary except under restrictive conditions no obvious way to analyze multiple series interpretation difficult: E{yt past} = exp(γut) exp( p i=1 φ iyt i) including correlated errors is difficult (glarma). Davis, Dunsmuir & Wang (1999). Modelling Time Series of Count Data. Asymptotics, Nonparametrics, and Time Series, Marcel Dekker, Fahrmeir & Tutz (1994) Multivariate Statistical Modeling Based on Generalised Linear Models, Springer-Verlag. Zeger (1988). A regression model for time series of counts. Biometrika,

5 It would be difficult to model the original data (even under normality) without some transformation, which isn t allowed in Poisson models, because it would destroy the Poisonness. The ACF for Pittsburgh (local trends, long memory, persistent seasonality): 5

6 An approach is to transform the data. For example, for Pittsburgh, let z t be the original observations. Let zt = z t + 1 (variance stabilizing transformation), and finally, consider the weekly changes: yt = zt zt 1 Pittsburgh Transformed Pittsburgh Transformed and Standardized

7 The ACF and PACF of yt suggest a simple MA(1) model: yt = wt θwt 1 where wt is white noise (or perhaps ARCH). Similary, this is an IMA(1,1) for the transformed series; that is, zt = zt 1 + wt θwt 1. (recall yt = zt zt 1 where z = data + 1 ) 7

8 8 Recall zt = zt 1 + wt θwt 1 where z = data + 1. Weeks Mortality Pittsburgh Predicted Pred + 3 SEs 6 A simple estimate yields θ =.6 and the fitted model (to the actual data) is:

9 How about Allentown? 4 Allentown Transformed Weeks 9

10 1 Weeks Mortality Allentown Predicted Pred + 3 SEs 16 Allentown? Same model as Pittsburgh with θ =.8. Not bad!

11 Toward a more general (spatial) model: A model that fits the data better is an ARMA(1, 1) for yt, that is, yt = φyt 1 + wt θwt 1 where yt = zt zt 1 and z = data + 1. This model can be written in state-space form : xt+1 = φxt + (φ θ)wt yt = xt + wt xt: state equation (unobserved - factor) yt: observation equation (observed) wt: white noise (unobserved - error). y t φyt 1 = xt + wt φ(xt 1 + wt 1) = [(φ θ)wt 1] + wt φwt 1 11

12 The General State-Space Model Notation: xt+1 = Φxt + Υut + Gwt t =, 1,..., n y t = Atxt + Γut + vt t = 1,..., n xt: p-dimensional state vector y t : q-dimensional observation vector ut: r-dimensional fixed input vector var(wt) = Q, var(vt) = R, cov(wt, vt) = S Model uniquely parameterized by Θ (k-dimensional): Φ = Φ(Θ), Υ = Υ(Θ), G = G(Θ), Q = Q(Θ), At = At(Θ), Γ = Γ(Θ), R = R(Θ), S = S(Θ). Shumway & Stoffer (2, Ch 4). Time Series Analysis and Its Applications. New York: Springer. 12

13 The Kalman filter yields Prediction: y t 1 t = BLP{y t yt 1,..., y 1 ; Θ} Innovations: ɛt(θ) = y t y t 1 t ; var{ɛt(θ)} = Σt(Θ) Estimation of Θ: The innovations form of the Gaussian likelihood (ignoring a constant) is ln LY (Θ) = 1 2 n { ln Σ t(θ) + ɛt(θ) Σt(Θ) 1 ɛt(θ) } t=1 where LY (Θ) denotes the likelihood of Θ given the data y 1,..., y n assuming normality. Quasi-GML via Newton-Raphson: Θ = argmax Θ LY (Θ) Notes: Can use a mixture of normal if the data are markedly non-normal. Can include stochastic volatility. cusum possible on standardized innovations Σ 1/2 t ɛt. 13

14 A Model for an Individual Location (e.g. Pittsburgh): xt+1 = φxt + (φ θ)wt, t =, 1,..., n yt = xt + Γut + wt t = 1,..., n. yt = zt zt 1 is a univariate process ( z = data could also try yt = zt zt 52), Γ is a 1 r vector of (constrained/unconstrained) regression parameters, ut is an r 1 vector of inputs, including mortality rates from nearby locations at various time lags (contemporaneous values included). Here, Θ = (φ, θ, γ1,..., γr, σ 2 w). 14

15 15 Weeks Mortality Pittsburgh Predicted Pred + 3 SEs 6 And φ =.1 (.5), θ =.7 (.2), σw =.7.3 alt 2,.1 pht 2,.6 rdt 2,.3 sct 2) [largest SE =.3] Γut = (.4 alt,.4 pht,.9 rdt,.11 sct,.7 alt 1,.2 pht 1,.1 rdt 1,.2 sct 1, The previous model was fit to the Pittsburgh data.

16 The Innovations (residuals): Histogram of the Residuals Empirical Distribution of the Standardized Residuals Normal cdf Empirical df

17 17 Weeks Mortality Philadelphia Predicted Pred + 3 SEs 9 Similar model for Philadelphia:

18 STARMAX: A Spatially Constrained Multivariate Approach: xt+1 = DΦxt + D(Φ Θ)wt t =, 1,..., n y t = xt + Γut + wt t = 1,..., n xt is the p-dimensional state vector y t is the p-dimensional observation vector ut is the r-dimensional vector of exogenous variables wt is the p-dimensional noise vector Φ and Θ are diagonal p p parameter matrices Γ is a p r matrix of regression parameters D is a p p matrix of specified spatial constraints This state-space model implies y t = DΦy t 1 + Γut + wt DΘwt 1 18

19 The model is easily generalized to arbitrary orders and spatial constraints. For example: [ ] [ ] D 1Φ1 D2Φ2 D 1(Φ1 Θ1) xt+1 = I xt + D2Φ2 wt y t = [ I, ] xt + Γut + wt yields the STARMAX(2, 1) model: y t = D1Φ1y t 1 + D2Φ2y t 2 + Γut + wt D1Θ1wt 1 where D1 and D2 are first order and second order spatial constraint matrices and Φ1, Φ2, Θ1 are diagonal matrices, as before. The exogenous variables [inputs] are ut. Note: xt is 2p 1 and y t is p 1 19

20 Pittsburgh 6 5 Pittsburgh Predicted Pred + 3 SEs

21 Philadelphia 9 8 Philadelphia Predicted Pred + 3 SEs

22 Allentown Allentown Predicted Pred + 3 SEs

23 D Matrix [Dij = ĉorr(y t, y t 1 )]: Alln(t-1) Phil(t-1) Pitt(t-1) Read(t-1) Scrn(t-1) Alln(t) Phil(t) Pitt(t) Read(t) Scrn(t) Estimates & Errors: original data units phi se theta se rmspe stdev improvement Allentown % Philadelphia % Pittsburgh % Reading % Scranton % 23

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

ESSE 4020 / ESS 5020 Time Series and Spectral Analysis Notes 6 26 November 2018 State Space Models

ESSE 4020 / ESS 5020 Time Series and Spectral Analysis Notes 6 26 November 2018 State Space Models ESSE 4020 / ESS 5020 Time Series and Spectral Analysis Notes 6 26 November 2018 State Space Models SS2011/2017 Chapter 6 State Space Models - Kalman Filtering or 2016 at https://www.stat.pitt.edu/stoffer/tsa4/chapter6.pdf

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

Generalized Quasi-likelihood (GQL) Inference* by Brajendra C. Sutradhar Memorial University address:

Generalized Quasi-likelihood (GQL) Inference* by Brajendra C. Sutradhar Memorial University  address: Generalized Quasi-likelihood (GQL) Inference* by Brajendra C. Sutradhar Memorial University Email address: bsutradh@mun.ca QL Estimation for Independent Data. For i = 1,...,K, let Y i denote the response

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Statistics Homework #4

Statistics Homework #4 Statistics 910 1 Homework #4 Chapter 6, Shumway and Stoffer These are outlines of the solutions. If you would like to fill in other details, please come see me during office hours. 6.1 State-space representation

More information

Multivariate ARMA Processes

Multivariate ARMA Processes LECTURE 8 Multivariate ARMA Processes A vector y(t) of n elements is said to follow an n-variate ARMA process of orders p and q if it satisfies the equation (1) A 0 y(t) + A 1 y(t 1) + + A p y(t p) = M

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Residuals in Time Series Models

Residuals in Time Series Models Residuals in Time Series Models José Alberto Mauricio Universidad Complutense de Madrid, Facultad de Económicas, Campus de Somosaguas, 83 Madrid, Spain. (E-mail: jamauri@ccee.ucm.es.) Summary: Three types

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Errors-in-variables identification through covariance matching: Analysis of a colored measurement noise case

Errors-in-variables identification through covariance matching: Analysis of a colored measurement noise case 008 American Control Conference Westin Seattle Hotel Seattle Washington USA June -3 008 WeB8.4 Errors-in-variables identification through covariance matching: Analysis of a colored measurement noise case

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

12. Prediction Error Methods (PEM)

12. Prediction Error Methods (PEM) 12. Prediction Error Methods (PEM) EE531 (Semester II, 2010) description optimal prediction Kalman filter statistical results computational aspects 12-1 Description idea: determine the model parameter

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström PREDICTIO ERROR METHODS Torsten Söderström Department of Systems and Control, Information Technology, Uppsala University, Uppsala, Sweden Keywords: prediction error method, optimal prediction, identifiability,

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Time-Varying Parameters

Time-Varying Parameters Kalman Filter and state-space models: time-varying parameter models; models with unobservable variables; basic tool: Kalman filter; implementation is task-specific. y t = x t β t + e t (1) β t = µ + Fβ

More information

Linear Regression and Discrimination

Linear Regression and Discrimination Linear Regression and Discrimination Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Nonlinear Time Series Modeling

Nonlinear Time Series Modeling Nonlinear Time Series Modeling Part II: Time Series Models in Finance Richard A. Davis Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures) MaPhySto Workshop Copenhagen September

More information

Machine Learning. 7. Logistic and Linear Regression

Machine Learning. 7. Logistic and Linear Regression Sapienza University of Rome, Italy - Machine Learning (27/28) University of Rome La Sapienza Master in Artificial Intelligence and Robotics Machine Learning 7. Logistic and Linear Regression Luca Iocchi,

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Introduction to Time Series Analysis. Lecture 12.

Introduction to Time Series Analysis. Lecture 12. Last lecture: Introduction to Time Series Analysis. Lecture 12. Peter Bartlett 1. Parameter estimation 2. Maximum likelihood estimator 3. Yule-Walker estimation 1 Introduction to Time Series Analysis.

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

ECONOMETRICS FIELD EXAM Michigan State University August 21, 2009

ECONOMETRICS FIELD EXAM Michigan State University August 21, 2009 ECONOMETRICS FIELD EXAM Michigan State University August 21, 2009 Instructions: Answer all four (4) questions. Point totals for each question are given in parentheses; there are 100 points possible. Within

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

A Course in Time Series Analysis

A Course in Time Series Analysis A Course in Time Series Analysis Edited by DANIEL PENA Universidad Carlos III de Madrid GEORGE C. TIAO University of Chicago RUEY S. TSAY University of Chicago A Wiley-Interscience Publication JOHN WILEY

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Gaussian processes. Basic Properties VAG002-

Gaussian processes. Basic Properties VAG002- Gaussian processes The class of Gaussian processes is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space, or time and space. The popularity

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

GARCH Models. Eduardo Rossi University of Pavia. December Rossi GARCH Financial Econometrics / 50

GARCH Models. Eduardo Rossi University of Pavia. December Rossi GARCH Financial Econometrics / 50 GARCH Models Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 50 Outline 1 Stylized Facts ARCH model: definition 3 GARCH model 4 EGARCH 5 Asymmetric Models 6

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Kalman Filter and Parameter Identification. Florian Herzog

Kalman Filter and Parameter Identification. Florian Herzog Kalman Filter and Parameter Identification Florian Herzog 2013 Continuous-time Kalman Filter In this chapter, we shall use stochastic processes with independent increments w 1 (.) and w 2 (.) at the input

More information

13 Notes on Markov Chain Monte Carlo

13 Notes on Markov Chain Monte Carlo 13 Notes on Markov Chain Monte Carlo Markov Chain Monte Carlo is a big, and currently very rapidly developing, subject in statistical computation. Many complex and multivariate types of random data, useful

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Financial Times Series. Lecture 12

Financial Times Series. Lecture 12 Financial Times Series Lecture 12 Multivariate Volatility Models Here our aim is to generalize the previously presented univariate volatility models to their multivariate counterparts We assume that returns

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Part I State space models

Part I State space models Part I State space models 1 Introduction to state space time series analysis James Durbin Department of Statistics, London School of Economics and Political Science Abstract The paper presents a broad

More information

Index. Regression Models for Time Series Analysis. Benjamin Kedem, Konstantinos Fokianos Copyright John Wiley & Sons, Inc. ISBN.

Index. Regression Models for Time Series Analysis. Benjamin Kedem, Konstantinos Fokianos Copyright John Wiley & Sons, Inc. ISBN. Regression Models for Time Series Analysis. Benjamin Kedem, Konstantinos Fokianos Copyright 0 2002 John Wiley & Sons, Inc. ISBN. 0-471-36355-3 Index Adaptive rejection sampling, 233 Adjacent categories

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Time Series 4. Robert Almgren. Oct. 5, 2009

Time Series 4. Robert Almgren. Oct. 5, 2009 Time Series 4 Robert Almgren Oct. 5, 2009 1 Nonstationarity How should you model a process that has drift? ARMA models are intrinsically stationary, that is, they are mean-reverting: when the value of

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005 Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach Radford M. Neal, 28 February 2005 A Very Brief Review of Gaussian Processes A Gaussian process is a distribution over

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Jeremy S. Conner and Dale E. Seborg Department of Chemical Engineering University of California, Santa Barbara, CA

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

Estimating Variances and Covariances in a Non-stationary Multivariate Time Series Using the K-matrix

Estimating Variances and Covariances in a Non-stationary Multivariate Time Series Using the K-matrix Estimating Variances and Covariances in a Non-stationary Multivariate ime Series Using the K-matrix Stephen P Smith, January 019 Abstract. A second order time series model is described, and generalized

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

PhD/MA Econometrics Examination. January, 2015 PART A. (Answer any TWO from Part A)

PhD/MA Econometrics Examination. January, 2015 PART A. (Answer any TWO from Part A) PhD/MA Econometrics Examination January, 2015 Total Time: 8 hours MA students are required to answer from A and B. PhD students are required to answer from A, B, and C. PART A (Answer any TWO from Part

More information

A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED

A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED by W. Robert Reed Department of Economics and Finance University of Canterbury, New Zealand Email: bob.reed@canterbury.ac.nz

More information

Final Examination 7/6/2011

Final Examination 7/6/2011 The Islamic University of Gaza Faculty of Commerce Department of Economics & Applied Statistics Time Series Analysis - Dr. Samir Safi Spring Semester 211 Final Examination 7/6/211 Name: ID: INSTRUCTIONS:

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference Università di Pavia GARCH Models Estimation and Inference Eduardo Rossi Likelihood function The procedure most often used in estimating θ 0 in ARCH models involves the maximization of a likelihood function

More information

Covariance modelling for longitudinal randomised controlled trials

Covariance modelling for longitudinal randomised controlled trials Covariance modelling for longitudinal randomised controlled trials G. MacKenzie 1,2 1 Centre of Biostatistics, University of Limerick, Ireland. www.staff.ul.ie/mackenzieg 2 CREST, ENSAI, Rennes, France.

More information

Generalized Autoregressive Score Smoothers

Generalized Autoregressive Score Smoothers Generalized Autoregressive Score Smoothers Giuseppe Buccheri 1, Giacomo Bormetti 2, Fulvio Corsi 3,4, and Fabrizio Lillo 2 1 Scuola Normale Superiore, Italy 2 University of Bologna, Italy 3 University

More information

Multivariate GARCH models.

Multivariate GARCH models. Multivariate GARCH models. Financial market volatility moves together over time across assets and markets. Recognizing this commonality through a multivariate modeling framework leads to obvious gains

More information

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series Journal of Mathematics and Statistics 8 (4): 500-505, 2012 ISSN 1549-3644 2012 doi:10.3844/jmssp.2012.500.505 Published Online 8 (4) 2012 (http://www.thescipub.com/jmss.toc) Seasonal Autoregressive Integrated

More information

An Overview of Traffic Matrix Estimation Methods

An Overview of Traffic Matrix Estimation Methods An Overview of Traffic Matrix Estimation Methods Nina Taft Berkeley www.intel.com/research Problem Statement 1 st generation solutions 2 nd generation solutions 3 rd generation solutions Summary Outline

More information

Classical Decomposition Model Revisited: I

Classical Decomposition Model Revisited: I Classical Decomposition Model Revisited: I recall classical decomposition model for time series Y t, namely, Y t = m t + s t + W t, where m t is trend; s t is periodic with known period s (i.e., s t s

More information

July 31, 2009 / Ben Kedem Symposium

July 31, 2009 / Ben Kedem Symposium ing The s ing The Department of Statistics North Carolina State University July 31, 2009 / Ben Kedem Symposium Outline ing The s 1 2 s 3 4 5 Ben Kedem ing The s Ben has made many contributions to time

More information

Stat 565. Spurious Regression. Charlotte Wickham. stat565.cwick.co.nz. Feb

Stat 565. Spurious Regression. Charlotte Wickham. stat565.cwick.co.nz. Feb Stat 565 Spurious Regression Feb 16 2016 Charlotte Wickham stat565.cwick.co.nz Last time: We can extend regression to deal with correlated errors. Today: Explore the concept of spurious correlation/regression

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Hakone Seminar Recent Developments in Statistics

Hakone Seminar Recent Developments in Statistics Hakone Seminar Recent Developments in Statistics November 12-14, 2015 Hotel Green Plaza Hakone: http://www.hgp.co.jp/language/english/sp/ Organizer: Masanobu TANIGUCHI (Research Institute for Science &

More information

Trend and long-run relations in electricity prices

Trend and long-run relations in electricity prices Trend and long-run relations in electricity prices Why pre-filtering is inevitable Matteo Pelagatti 2 jointly with A. Gianfreda 1 L. Parisio 2 P. Maranzano 2 1 Free University of Bozen 2 University of

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

ECONOMETRIC REVIEWS, 5(1), (1986) MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT

ECONOMETRIC REVIEWS, 5(1), (1986) MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT ECONOMETRIC REVIEWS, 5(1), 51-56 (1986) MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT Professors Engle and Bollerslev have delivered an excellent blend of "forest" and "trees"; their important

More information