Comparison between CFD and Measurements for Real-gas Effects on Laminar Shockwave Boundary Layer Interaction, I.

Size: px
Start display at page:

Download "Comparison between CFD and Measurements for Real-gas Effects on Laminar Shockwave Boundary Layer Interaction, I."

Transcription

1 Comparison between CFD and Measurements for Real-gas Effects on Laminar Shockwave Boundary Layer Interaction, I. 20 June 2014 MacLean, Matthew Holden, Michael Dufrene, Aaron CUBRC, Inc.

2 New Test Cases for Hollow Cylinder Flare Model 2

3 New Test Cases for Double Cone Model 3

4 Comparisons to Previous Data Obtained over Double Cone Model from LENS-I Reflected Shock Tunnel 3 MJ/kg (2.5 km/s) Nitrogen 5 MJ/kg (3 km/s) Air 10 MJ/kg (4.5 km/s) Air 4

5 Test Conditions for Double Cone and Hollow Cylinder Flare Experiments Double Cone Hollow Cylinder Flare 5

6 Operation schematic of an Expansion Tunnel 1. Three tubes initially separated by diaphragms (test gas shown in center tube) DRIVER TEST GAS ACCELERATION GAS 2. Breaking the primary diaphragm transmits a shock into the test gas, increasing its pressure 3. When the shock reaches the secondary diaphragm, the higher pressure test gas breaks it and causes the test gas to expand into the acceleration tube 3. The expanding test gas cools and gains velocity while it drives a very strong shock through the acceleration gas ahead of it Freestream gas Shock-heated accelerator gas 5. Testing begins as soon as the test gas arrives at the test station and lasts until the unsteady expansion fan begins to alter the freestream state of the gas [ O(~1ms) ] Freestream gas 6

7 TIME (t) Wave Diagram of an Expansion Tunnel showing Propagation of Shocks, Expansions, and Contact Surfaces Test Time Limited by Two Factors: Head of unsteady expansion (reflected off primary contact) Tail of unsteady expansion unsteady expansion adds kinetic energy directly (U5 >> U2) peak temperature (2) 5 TEST TIME expansion wave contact surface shock 4 1 freestream (5) POSITION (x) DRIVER TEST GAS ACCELERATION GAS assume: P 4 >> P 1 >> P 10 7

8 Freestream Condition Calculation for LENS-XX CUBRC High Enthalpy Expansion Tunnel Analysis (CHEETAh) Code Numerically solves 1D primary and secondary wave systems (shown right) incorporating equilibrium chemistry, thermodynamics, ionization, etc. Makes use of measurable quantities like shock speed, Pitot pressure, static pressure, etc. to anchor the solution. Rapid, real-time solution of as-run freestream conditions available in less than 1 second. Primary Shock system Secondary Shock system 8

9 Development of Separated Region over Double Cone: Run 05 Arrival of initial gas marked approximately by time=0.0 Separation length estimated using distance from the corner forward to the point where heat flux sharply drops on the front cone (eyeballed). Accelerator gas pre-cursor time is shown in yellow, followed by establishing test gas shown in gray the accelerator gas partially develops the separated region. As pressure and heat flux rise post-test as shown in blue, separation point remains invariant for quite a while. 9

10 Development of Separated Region over Hollow Cylinder Flare: Run 04 Separation region size is approximately 2.5X the size observed on the double-cone; establishment timescale seems to increase correspondingly. In all cases, the hollow cylinder over-shoots (separated region gets too large) immediately after the contact surface arrives, and then shrinks back to its minimum observed size (recall the CFD solutions over-predict this). Post-test as pressure and heat flux rises on the model, separation region increases again (as Reynolds number increases) 10

11 Freestream Conditions Run # Total Enthalpy (MJ/kg) Mach Number Pitot Pressure (kpa) Unit Reynolds Number /10 6 (1/m) Velocity (km/s) Density (g/m 3 ) Temperature (K) Run # Total Enthalpy /10 6 (ft 2 /s 2 ) Mach Number Pitot Pressure (psia) Unit Reynolds Number /10 3 (1/ft) Velocity (kft/s) Density x10 6 (sl/ft 3 ) Temperature (R)

12 Run 01: [3.2 km/s, 0.5 g/m 3 ] 12

13 Run 02: [4.3 km/s, 1.0 g/m 3 ] 13

14 Run 03: [6.0 km/s, 0.5 g/m 3 ] 14

15 Run 04: [6.5 km/s, 1.0 g/m 3 ] 15

16 Run 05: [6.0 km/s, 1.1 g/m 3 ] 16

17 Run 06: [5.4 km/s, 2.1 g/m 3 ] 17

18 Reynolds Number Trend in Experimental Data 18

19 Velocity (Enthalpy) Trend in Experimental Data 19

20 Freestream Conditions Run # Total Enthalpy (MJ/kg) Mach Number Pitot Pressure (kpa) Unit Reynolds Number /10 6 (1/m) Velocity (km/s) Density (g/m 3 ) Temperature (K) Run # Total Enthalpy /10 6 (ft 2 /s 2 ) Mach Number Pitot Pressure (psia) Unit Reynolds Number /10 3 (1/ft) Velocity (kft/s) Density x10 6 (sl/ft 3 ) Temperature (R)

21 Run 01: [3.1 km/s, 0.6 g/m 3 ] 21

22 Run 02: [4.5 km/s, 0.5 g/m 3 ] 22

23 Run 03: [4.7 km/s, 1.8 g/m 3 ] 23

24 Run 04: [5.5 km/s, 2.2 g/m 3 ] 24

25 Run 05: [6.5 km/s, 0.9 g/m 3 ] 25

26 Reynolds Number Trend in Experimental Data 26

27 Double Cone Data Obtained in LENS-I vs LENS-XX LENS-I NOTE: Reynolds numbers are 5 MJ/kg (3 km/s) not the same between the 10 MJ/kg (4.5 km/s) two tunnels! LENS-XX 27

28 Conclusions Unique dataset of laminar shock/bl-interaction experiments available from LENS-XX from 3 to 6.5 km/s freestream velocity. Comparison between LENS-I and LENS-XX at 5 and 10 MJ/kg compares favorably. Comparisons with CFD to be made at end of session. 28

29 Comparison between CFD and Measurements for Real-gas Effects on Laminar Shockwave Boundary Layer Interaction, II. 20 June 2014 MacLean, Matthew Holden, Michael Dufrene, Aaron CUBRC, Inc.

30 Model Configurations 30

31 Freestream Conditions Run # Total Enthalpy (MJ/kg) Mach Number Pitot Pressure (kpa) Unit Reynolds Number /10 6 (1/m) Velocity (km/s) Density (g/m 3 ) Temperature (K) Run # Total Enthalpy /10 6 (ft 2 /s 2 ) Mach Number Pitot Pressure (psia) Unit Reynolds Number /10 3 (1/ft) Velocity (kft/s) Density x10 6 (sl/ft 3 ) Temperature (R)

32 Run 01: [3.2 km/s, 0.5 g/m 3 ] 32

33 Run 02: [4.3 km/s, 1.0 g/m 3 ] 33

34 Run 03: [6.0 km/s, 0.5 g/m 3 ] 34

35 Run 04: [6.5 km/s, 1.0 g/m 3 ] 35

36 Run 05: [6.0 km/s, 1.1 g/m 3 ] 36

37 Run 06: [5.4 km/s, 2.1 g/m 3 ] 37

38 Freestream Conditions Run # Total Enthalpy (MJ/kg) Mach Number Pitot Pressure (kpa) Unit Reynolds Number /10 6 (1/m) Velocity (km/s) Density (g/m 3 ) Temperature (K) Run # Total Enthalpy /10 6 (ft 2 /s 2 ) Mach Number Pitot Pressure (psia) Unit Reynolds Number /10 3 (1/ft) Velocity (kft/s) Density x10 6 (sl/ft 3 ) Temperature (R)

39 Run 01: [3.1 km/s, 0.6 g/m 3 ] 39

40 Run 01: [3.1 km/s, 0.6 g/m 3 ] 40

41 Run 02: [4.5 km/s, 0.5 g/m 3 ] 41

42 Run 02: [4.5 km/s, 0.5 g/m 3 ] 42

43 Run 03: [4.7 km/s, 1.8 g/m 3 ] 43

44 Run 03: [4.7 km/s, 1.8 g/m 3 ] 44

45 Run 04: [5.5 km/s, 2.2 g/m 3 ] 45

46 Run 04: [5.5 km/s, 2.2 g/m 3 ] 46

47 Run 05: [6.5 km/s, 0.9 g/m 3 ] 47

48 Run 05: [6.5 km/s, 0.9 g/m 3 ] 48

49 Conclusions Dataset of laminar shock/bl-interaction experiments available from LENS-XX from 3 to 6.5 km/s freestream velocity. In general, the CFD simulations are very consistent with each other except for specific instances shown during the presentation. In general, the CFD tends toward over-predicting separated region length on the hollow cylinder flare and under-predicting separated region length on the double cone. Data on the hollow cylinder flare in the attachment region shows consistently broader character than the CFD predicts reason unclear. 49

June 2014 Atlanta Georgia. Michael S. Holden Timothy Wadhams Matthew MacLean

June 2014 Atlanta Georgia. Michael S. Holden Timothy Wadhams Matthew MacLean MEASUREMENTS IN REGIONS OF SHOCK WAVE/TURBULENT BOUNDARY LAYER INTERACTION ON DOUBLE CONE AND HOLLOW CYLINDER/FLARE CONFIGURATIONS FROM MACH 5 TO 8 AT FLIGHT VELOCITIES FOR OPEN AND BLIND CODE EVALUATION/VALIDATION

More information

Numerical and Experimental Characterization of High Enthalpy Flow in an Expansion Tunnel Facility

Numerical and Experimental Characterization of High Enthalpy Flow in an Expansion Tunnel Facility Numerical and Experimental Characterization of High Enthalpy Flow in an Expansion Tunnel Facility Matthew MacLean 1 Aaron Dufrene 2 Timothy Wadhams 3 Michael Holden 4 CUBRC / LENS, Buffalo, NY 14225 Several

More information

Direct Skin Friction Measurements in High-Speed Flow Environments

Direct Skin Friction Measurements in High-Speed Flow Environments Direct Skin Friction Measurements in High-Speed Flow Environments International Test and Evaluation Association (ITEA) 22nd Test and Training Instrumentation Workshop 15-17 May 2018 Las Vegas, Nevada Veteran-Owned

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Comparisons between Measurements in Regions of Laminar Shock Wave Boundary Layer Interaction in Hypersonic Flows with Navier-Stokes and DSMC Solutions

Comparisons between Measurements in Regions of Laminar Shock Wave Boundary Layer Interaction in Hypersonic Flows with Navier-Stokes and DSMC Solutions ABSTRACT Comparisons between Measurements in Regions of Laminar Shock Wave Boundary Layer Interaction in Hypersonic Flows with Navier-Stokes and DSMC Solutions Michael S. Holden, Timothy P. Wadhams Aerothermal

More information

Numerical Analysis of Nonequilibrium-flow at Nozzle Inlet in High-entahlpy Shock Tunnel

Numerical Analysis of Nonequilibrium-flow at Nozzle Inlet in High-entahlpy Shock Tunnel Numerical Analysis of Nonequilibrium-flow at Nozzle Inlet in High-entahlpy Shock Tunnel,, -8, E mail: kaneko@fluid.nuae.nagoya-u.ac.jp,, E mail: menshov@nuae.nagoya-u.ac.jp,, E mail: nakamura@nuae.nagoya-u.ac.jp

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

Detached Eddy Simulation on Hypersonic Base Flow Structure of Reentry-F Vehicle

Detached Eddy Simulation on Hypersonic Base Flow Structure of Reentry-F Vehicle Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

Design and characteristics of the suborbital expansion tube HEK-X for afterbody heating of sample return capsule. Kohei Shimamura

Design and characteristics of the suborbital expansion tube HEK-X for afterbody heating of sample return capsule. Kohei Shimamura Design and characteristics of the suborbital expansion tube HEK-X for afterbody heating of sample return capsule Kohei Shimamura 1 Evaluation of afterbody heating of sample return capsule in the ground

More information

Expansion tube investigation of shock stand-off distances in high-enthalpy CO 2 flow over blunt bodies

Expansion tube investigation of shock stand-off distances in high-enthalpy CO 2 flow over blunt bodies 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-1566 Expansion tube investigation of shock stand-off distances

More information

Application of Computational Fluid Dynamics in Discontinuous Unsteady Flow with Large Amplitude Changes; the Shock Tube Problem

Application of Computational Fluid Dynamics in Discontinuous Unsteady Flow with Large Amplitude Changes; the Shock Tube Problem Application of Computational Fluid Dynamics in Discontinuous Unsteady Flow with Large Amplitude Changes; the Shock Tube Problem KHALED ALHUSSAN Research Assistant Professor, Space Research Institute, King

More information

CFD Validation Studies for Hypersonic Flow Prediction

CFD Validation Studies for Hypersonic Flow Prediction CFD Validation Studies for Hypersonic Flow Prediction Peter A. Gnoffo p.a.gnoffo@larc.nasa.gov NASA Langley Research Center Hampton, VA 23681-0001 Abstract A series of experiments to measure pressure and

More information

Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions

Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions aerospace Article Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions Mehrnaz Rouhi Youssefi * and Doyle Knight Department of Mechanical and Aerospace Engineering,

More information

Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics. Daniel Oliden

Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics. Daniel Oliden Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics by Daniel Oliden A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved November

More information

Shock tunnel operation and correlation of boundary layer transition on a cone in hypervelocity flow

Shock tunnel operation and correlation of boundary layer transition on a cone in hypervelocity flow Shock tunnel operation and correlation of boundary layer transition on a cone in hypervelocity flow J.S. Jewell 1, J.E. Shepherd 1, and I.A. Leyva 2 1 Introduction The Caltech T reflected shock is used

More information

Prospects for High-Speed Flow Simulations

Prospects for High-Speed Flow Simulations Prospects for High-Speed Flow Simulations Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota Support from AFOSR and ASDR&E Future Directions in CFD Research: A Modeling & Simulation

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information

Effect of Concave Wall Geometry on Heat Transfer in Hypersonic Boundary Layers

Effect of Concave Wall Geometry on Heat Transfer in Hypersonic Boundary Layers 40th Fluid Dynamics Conference and Exhibit 28 June - 1 July 2010, Chicago, Illinois AIAA 2010-4986 Effect of Concave Wall Geometry on Heat Transfer in Hypersonic Boundary Layers W. Flaherty and J.M. Austin

More information

Experimental and Numerical Study of Laminar and Turbulent Base Flow on a Spherical Capsule

Experimental and Numerical Study of Laminar and Turbulent Base Flow on a Spherical Capsule Experimental and Numerical Study of Laminar and Turbulent Base Flow on a Spherical Capsule Matthew MacLean * Erik Mundy * Timothy Wadhams * Michael Holden CUBRC, Aerothermal/Aero-optics Evaluation Center,

More information

A Balance for Measurement of Yaw, Lift and Drag on a Model in a Hypersonic Shock Tunnel

A Balance for Measurement of Yaw, Lift and Drag on a Model in a Hypersonic Shock Tunnel , July 6-8, 2011, London, U.K. A Balance for Measurement of Yaw, Lift and Drag on a Model in a Hypersonic Shock Tunnel S. Trivedi, and V. Menezes Abstract This paper describes the design of an accelerometer

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

RUTGERS UNIVERSITY. Final Technical Report ONR Grant N

RUTGERS UNIVERSITY. Final Technical Report ONR Grant N RUTGERS UNIVERSITY Final Technical Report ONR Grant N00014-14-1-0827 Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary Layer Interactions 30 November 2015 Doyle Knight Dept Mechanical

More information

Catalytic Effects on Heat Transfer Measurements for Aerothermal Studies with CO 2

Catalytic Effects on Heat Transfer Measurements for Aerothermal Studies with CO 2 Catalytic Effects on Heat Transfer Measurements for Aerothermal Studies with CO 2 Matthew MacLean * and Michael Holden CUBRC, Aerothermal/Aero-optics Evaluation Center, Buffalo, NY, 14225 An investigation

More information

Successful integration of CFD and experiments in fluid dynamics: the computational investigator point of view

Successful integration of CFD and experiments in fluid dynamics: the computational investigator point of view Successful integration of CFD and experiments in fluid dynamics: the computational investigator point of view G. Degrez, W. Dieudonné, T. Magin gdegrez@ulb.ac.be for Fluid Dynamics Page 1 of 41 Service

More information

Lab Section Date. ME4751 Air Flow Rate Measurement

Lab Section Date. ME4751 Air Flow Rate Measurement Name Lab Section Date ME4751 Air Flow Rate Measurement Objective The objective of this experiment is to determine the volumetric flow rate of air flowing through a pipe using a Pitot-static tube and a

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Oblique Shock Visualization and Analysis using a Supersonic Wind Tunnel

Oblique Shock Visualization and Analysis using a Supersonic Wind Tunnel Oblique Shock Visualization and Analysis using a Supersonic Wind Tunnel Benjamin M. Sandoval 1 Arizona State University - Ira A. Fulton School of Engineering, Tempe, AZ, 85281 I. Abstract In this experiment,

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Interface (backside) & Extraction Lens

Interface (backside) & Extraction Lens Plasma Interface Interface (backside) & Extraction Lens Extraction Lens (-2000 volts) ION OPTICS Tip of the sampler cone is positioned to be in the region of maximum ionization Ions no longer under control

More information

Aerodynamics of the reentry capsule EXPERT at full modeling viscous effect conditions

Aerodynamics of the reentry capsule EXPERT at full modeling viscous effect conditions ISTC-STCU WORKSHOP FOR AEROSPACE TECHNOLGIES Aerodynamics of the reentry capsule EXPERT at full modeling viscous effect conditions A.M. Kharitonov ITAM SB RAS Ljubljana, Slovenia 10-12 March 2008 CONTENTS

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

A computational investigation of laminar shock/wave boundary layer interactions

A computational investigation of laminar shock/wave boundary layer interactions THE AERONAUTICAL JOURNAL JANUARY 213 VOLUME 117 NO 1187 27 A computational investigation of laminar shock/wave boundary layer interactions N. R. Deepak, S. L. Gai and A. J. Neely deepak.narayan@gmail.com

More information

3.8 The First Law of Thermodynamics and the Energy Equation

3.8 The First Law of Thermodynamics and the Energy Equation CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1-D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and

More information

Unsteady Wave Motion Shock Tube Problem - Shock Reflection

Unsteady Wave Motion Shock Tube Problem - Shock Reflection Unsteady Wave Motion Shock Tube Problem - Shock Reflection Niklas Andersson Division of Fluid Dynamics Department of Applied Mechanics Chalmers University of Tecnology 8 februari 09 Shock Reflection When

More information

Expansion Tunnel Radiation Experiments to Support Hayabusa Re-entry Observations

Expansion Tunnel Radiation Experiments to Support Hayabusa Re-entry Observations Expansion Tunnel Radiation Experiments to Support Hayabusa Re-entry Observations David Buttsworth 1 University of Southern Queensland, Toowoomba, Queensland, 4350, Australia Mary D Souza 2, Daniel Potter

More information

Shape Optimisation of Axisymmetric Scramjets

Shape Optimisation of Axisymmetric Scramjets Shape Optimisation of Axisymmetric Scramjets Hideaki Ogawa 11 th International Workshop on Shock Tube Technology Australian Hypersonics Workshop 2011 University of Queensland, Brisbane 23 rd March 2011

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

Chemical Kinetics of Ethane Oxidation and Methane Oxidation with Platinum

Chemical Kinetics of Ethane Oxidation and Methane Oxidation with Platinum Abstract Chemical Kinetics of Ethane Oxidation and Methane Oxidation with Platinum Jerry J. Zhang University of Southern California Professor Kenneth Brezinsky University of Illinois at Chicago Aleksandr

More information

Limits of Simulating Gas Giant Entry at True Gas Composition and True Flight Velocities in an Expansion Tube

Limits of Simulating Gas Giant Entry at True Gas Composition and True Flight Velocities in an Expansion Tube Limits of Simulating Gas Giant Entry at True Gas Composition and True Flight Velocities in an Expansion Tube 8th European Symposium on Aerothermodynamics for Space Vehicles C.M. James, D.E. Gildfind, R.G.

More information

Refining the Transonic Capability of Purdue s 12-inch Ludwieg Tube. AAE520 Project Report Draft April 16, Lynn Hendricks Matt Schmitt

Refining the Transonic Capability of Purdue s 12-inch Ludwieg Tube. AAE520 Project Report Draft April 16, Lynn Hendricks Matt Schmitt Refining the Transonic Capability of Purdue s 12-inch Ludwieg Tube AAE520 Project Report Draft April 16, 2007 Lynn Hendricks Matt Schmitt School of Aeronautics and Astronautics Purdue University Abstract

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

Laminar and Turbulent Flow Calculations for the HIFiRE-5b Flight Test

Laminar and Turbulent Flow Calculations for the HIFiRE-5b Flight Test Laminar and Turbulent Flow Calculations for the HIFiRE-5b Flight Test Kevin M. Porter, Jonathan Poggie Purdue University, West Lafayette, IN 47907-045, USA and Roger L. Kimmel, Air Force Research Laboratory,

More information

Comparative surface heat transfer measurements in hypervelocity flow

Comparative surface heat transfer measurements in hypervelocity flow 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-671 Comparative surface heat transfer measurements in hypervelocity

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

Numerical Simulation of the Effect of Heat Conductivity in a 4 K Regenerator

Numerical Simulation of the Effect of Heat Conductivity in a 4 K Regenerator 257 1 Numerical Simulation of the Effect of Heat Conductivity in a 4 K Regenerator M. Xu, Q. Bao, A. Tsuchiya Technology Research Center, Sumitomo Heavy Industries, Ltd. Nishitokyo-city, Tokyo, Japan 188-8585

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Comparison of drag measurements of two axisymmetric scramjet models at Mach 6

Comparison of drag measurements of two axisymmetric scramjet models at Mach 6 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Comparison of drag measurements of two axisymmetric scramjet models at Mach 6 Katsuyoshi Tanimizu, D. J.

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions NASA/TM--1539 DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions James N. Moss Langley Research Center, Hampton, Virginia October The NASA STI Program Office... in Profile

More information

Isentropic Flow. Gas Dynamics

Isentropic Flow. Gas Dynamics Isentropic Flow Agenda Introduction Derivation Stagnation properties IF in a converging and converging-diverging nozzle Application Introduction Consider a gas in horizontal sealed cylinder with a piston

More information

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 CEE 331 Lab 4 Page 1 of 6 Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water and

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow AA210A Fundamentals of Compressible Flow Chapter 13 - Unsteady Waves in Compressible Flow The Shock Tube - Wave Diagram 13.1 Equations for irrotational, homentropic, unsteady flow ρ t + x k ρ U i t (

More information

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s. CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1-D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines

More information

Detonation initiation by hypervelocity projectiles

Detonation initiation by hypervelocity projectiles Detonation initiation 1 Detonation initiation by hypervelocity projectiles J. Bélanger, M.Kaneshige,J.E.Shepherd California Institute of Technology Pasadena, CA 91125 USA Abstract: We report experimental

More information

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

More information

IV. Compressible flow of inviscid fluids

IV. Compressible flow of inviscid fluids IV. Compressible flow of inviscid fluids Governing equations for n = 0, r const: + (u )=0 t u + ( u ) u= p t De e = + ( u ) e= p u+ ( k T ) Dt t p= p(, T ), e=e (,T ) Alternate forms of energy equation

More information

Driver-gas Tailoring For Test-time Extension Using Unconventional Driver Mixtures

Driver-gas Tailoring For Test-time Extension Using Unconventional Driver Mixtures University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Driver-gas Tailoring For Test-time Extension Using Unconventional Driver Mixtures 006 Anthony Amadio University

More information

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 8 : Solutions

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 8 : Solutions Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 8 : Solutions Manjul Sharma & Aswathy Nair K. Department of Aerospace Engineering IIT Madras April 5, 016 (Note : The solutions discussed below

More information

Unit C-1: List of Subjects

Unit C-1: List of Subjects Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

More information

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys CEE 3310 Control Volume Analysis, Oct. 10, 2018 77 3.16 Review First Law of Thermodynamics ( ) de = dt Q Ẇ sys Sign convention: Work done by the surroundings on the system < 0, example, a pump! Work done

More information

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute

More information

A Proposed Vertical Expansion Tunnel

A Proposed Vertical Expansion Tunnel 42nd AIAA Fluid Dynamics Conference and Exhibit 25-28 June 2012, New Orleans, Louisiana AIAA 2012-3263 A Proposed Vertical Expansion Tunnel N. J. Parziale and J. Rabinovitch California Institute of Technology,

More information

Kinetic Energy Measurement of a 1kW Arcjet by Pitot Probe and Laser Absorption Spectroscopy

Kinetic Energy Measurement of a 1kW Arcjet by Pitot Probe and Laser Absorption Spectroscopy 26th AIAA Aerodynamic Measurement echnology and Ground esting Conference 23-26 June 2008, Seattle, Washington AIAA 2008-4139 Kinetic Energy Measurement of a 1kW Arcjet by Pitot Probe and Laser Absorption

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory 2017 AFOSR High Speed Aerodynamics Portfolio Overview July 24-27, 2017 NASA Langley, VA Integrity Service Excellence Ivett A Leyva, Ph.D., P.E. Program Officer, AFOSR Air

More information

CF D Validation r fo Hypersoni c Flight : Hypersonic Double-Cone Flow Simulations

CF D Validation r fo Hypersoni c Flight : Hypersonic Double-Cone Flow Simulations (c)22 American nstitute of Aeronautics & Astronautics or Published with Permission of Author(s) andor Author(s)' Sponsoring Organization. CF D Validation r fo Hypersoni c Flight : Hypersonic Double-Cone

More information

CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS

CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS Keiichi Murakami*, Yukimitsu Yamamoto*, Olivier Rouzand**

More information

Effects of Disturbances on Quiet Flow in the Mach 4 Ludwieg Tube

Effects of Disturbances on Quiet Flow in the Mach 4 Ludwieg Tube Effects of Disturbances on Quiet Flow in the Mach 4 Ludwieg Tube AAE 50 Experimental Aerodynamics Final Report Matt Borg and Justin Smith May 5, 004 Abstract The PQFLT was used to determine the effects

More information

ASSESSMENT OF AEROTHERMAL HEATING AUGMENTATION ATTRIBUTED TO SURFACE CATALYSIS IN HIGH ENTHALPY SHOCK TUNNEL FLOWS

ASSESSMENT OF AEROTHERMAL HEATING AUGMENTATION ATTRIBUTED TO SURFACE CATALYSIS IN HIGH ENTHALPY SHOCK TUNNEL FLOWS ASSESSMENT OF AEROTHERMAL HEATING AUGMENTATION ATTRIBUTED TO SURFACE CATALYSIS IN HIGH ENTHALPY SHOCK TUNNEL FLOWS Matthew MacLean (1) and Michael Holden (2) (1)CUBRC, Inc.; 4455 Genesee St., Buffalo,

More information

Experimental Study of Steam Flow in a Convergent-Divergent Nozzle

Experimental Study of Steam Flow in a Convergent-Divergent Nozzle Experimental Study of Steam Flow in a Convergent-Divergent Nozzle 1 Marwa H. Athab, 2 Arkan Al-Taie, 3 Hussein W. Mashi 1 M.SC Student, 2 Professor, 3 Lecturer, Mechanical Engineering Department, UOT Abstract:

More information

URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver

URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver *Yohan Choe 1), Hyeongjun Kim 1), Chongam Kim 2) 1), 2) Department of Aerospace Engineering, Seoul National

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers)

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers) Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers) T-S Leu May. 3, 2018 Chapter 5: Phenomena of laminar-turbulent boundary layer transition (including free

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 83-90 Research India Publications http://www.ripublication.com/aasa.htm Studies on the Transition of the Flow

More information

Hypersonic flow and flight

Hypersonic flow and flight University of Stuttgart, Aerospace Engineering and Geodesy Dept. - Lecture - Hypersonic flow and flight Master Level, Specialization 4 lecture hours per week in WS, 3-6 LPs/ECTS Lecturer: Dr. Markus J.

More information

Detonation Diffraction

Detonation Diffraction Detonation Diffraction E. Schultz, J. Shepherd Detonation Physics Laboratory Pasadena, CA 91125 MURI Mid-Year Pulse Detonation Engine Review Meeting February 10-11, 2000 Super-critical Detonation Diffraction

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations AA210A Fundamentals of Compressible Flow Chapter 5 -The conservation equations 1 5.1 Leibniz rule for differentiation of integrals Differentiation under the integral sign. According to the fundamental

More information

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1 ME 131B Fluid Mechanics Solutions to Week Three Problem Session: Isentropic Flow II (1/26/98) 1. From an energy view point, (a) a nozzle is a device that converts static enthalpy into kinetic energy. (b)

More information

Rapid Prototyping for Aerospace Launch Vehicles

Rapid Prototyping for Aerospace Launch Vehicles Rapid Prototyping for Aerospace Launch Vehicles K. Siva Prasad *, E.Rathakrishnan +, Sanjay.G.Dhande * * Department of Mechanical engineering, IIT-Kanpur, India + Department of Aerospace Engineering, IIT-Kanpur,

More information

LAMINAR FLOW CONTROL OF A HIGH-SPEED BOUNDARY LAYER BY LOCALIZED WALL HEATING OR COOLING

LAMINAR FLOW CONTROL OF A HIGH-SPEED BOUNDARY LAYER BY LOCALIZED WALL HEATING OR COOLING LAMINAR FLOW CONTROL OF A HIGH-SPEED BOUNDARY LAYER BY LOCALIZED WALL HEATING OR COOLING Fedorov A.V.*, Soudakov V.G.*, Egorov I.V.*, Sidorenko A.A.**, Gromyko Y.*, Bountin D.** *TsAGI, Russia, **ITAM

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

NATIONALADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 4214 AT MACH 3.1. Paul F. Brinich. Flight Propulsion Laboratory Cleveland, Ohio.

NATIONALADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 4214 AT MACH 3.1. Paul F. Brinich. Flight Propulsion Laboratory Cleveland, Ohio. r NATONALADVSORY COMMTTEE FOR AERONAUTCS TECHNCAL NOTE 4214 BOUNDARY -LAYER TRANSTON ON AN OPEN -NOSE CONE AT MACH 3.1 By Paul F. Brinich Lewis Flight Propulsion Laboratory Cleveland, Ohio =w= Washington

More information

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system The Energy Equation for Control Volumes Recall, the First Law of Thermodynamics: where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

More information

THE BEHAVIOUR OF PROBES IN TRANSONIC FLOW FIELDS OF TURBOMACHINERY

THE BEHAVIOUR OF PROBES IN TRANSONIC FLOW FIELDS OF TURBOMACHINERY 8th European Conference on TURBOMACHINERY - Fluid Dynamics and Thermodynamics 23-27 March 2009 - Graz, Austria THE BEHAVIOUR OF PROBES IN TRANSONIC FLOW FIELDS OF TURBOMACHINERY Friedrich Kost DLR, Institute

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information