Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 1

Size: px
Start display at page:

Download "Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 1"

Transcription

1 Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs Chang Ye Dept. of ECE and Goergen Institute for Data Science University of Rochester Co-authors: Rasoul Shafipour and Gonzalo Mateos Acknowledgment: NSF Awards CCF and ECCS EUSIPCO 2018, Rome, Italy, September 3, 2018 Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 1

2 Network Science analytics Online social media Internet Clean energy and grid analy,cs Network as undirected graph G = (V, E): encode pairwise relationships Desiderata: Process, analyze and learn from network data [Kolaczyk 09] Study graph signals, data associated with N nodes in V Ex: Opinion profile, buffer congestion levels, neural activity, epidemic Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 2

3 Graph signal processing fundamentals Graph signals mappings x : V R, represented as vectors x R N As.: Signal properties related to topology of G To process graph signals Graph-shift operator S R N N Local S ij = 0 for i j and (i, j) / E Ex: A or L = D A Spectrum of symmetric S = VΛV T Graph Fourier Transform (GFT) for signals: x = V T x Graph filters H : R N R N are maps between graph signals Polynomial in S with coefficients h R L H := L 1 l=0 h ls l Orthogonal frequency operator: H = Vdiag( h)v T Freq. response (GFT for filters): h = Ψh and [Ψ] k,l = λ k l 1 Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 3

4 Diffusion processes as graph filter outputs Q: Upon observing a graph signal y, how was this signal generated? Postulate y is the response of linear diffusion to a sparse input x y = α 0 (I α l S)x = l=1 β l S l x l=0 Common generative model, e.g., heat diffusion, consensus Cayley-Hamilton asserts we can write diffusion as (L N) y = ( L 1 ) h l S l x := Hx l=0 Model: Observed network process as output of a graph filter View few elements in supp(x) =: {i : x i 0} as sources Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 4

5 Motivation and problem statement Ex: Global opinion/belief profile formed by spreading a rumor What was the rumor? Who started it? How do people weigh in peers opinions to form their own? x y Graph Filter Unobserved Observed Problem: Blind identification of graph filters with sparse inputs Q: Given S, can we find sparse x and the filter coeffs. h from y = Hx? Extends classical blind deconvolution to graphs Localization of sources that diffuse on the network Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 5

6 Work in context Super-resolution of point sources via convex programming Signals on structured domains (e.g.,time series) [Fernandez-Granda 15] Known diffusion model (low-pass point-spread function) Source localization on graphs Maximum-likelihood estimator optimal for trees [Pinto et al 12] Scalable under restrictive dependency assumptions [Feizi el al 16] Non-convex estimators of sparse sources [Pena et al 16], [Hu et al 16] Blind identification of graph filters [Segarra et al 17] Matrix lifting can hinder applicability to large graphs Our contribution: mild requirement of graph filter invertibility Convex formulation amenable to efficient solvers Multi-signal case with arbitrary supports Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 6

7 Blind graph filter identification Suppose we observe P output signals Y = [y 1,..., y P ] R N P Leverage frequency response of graph filters Y = HX Y = Vdiag(Ψh)V T X Y is a bilinear function of the unknowns h and X Ill-posed problem L + NP unknowns and NP observations As.: X has S-sparse columns i.e., X 0 := supp(x) PS Blind graph filter identification Non-convex feasibility problem find {h, X}, s. to Y = Vdiag ( Ψh ) V T X, X 0 PS Identifiability for Bernoulli-Gaussian model on X [Li et al 17] Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 7

8 Permutation ambiguities Beyond scaling, permutation ambiguities can arise with unweighted G Let {X 0, h 0 } be a solution, i.e., Y = Vdiag( h 0 )V T X 0 Define unit-norm u (i,j) R N, with u (i,j) i = u (i,j) j = 1 2 If v k = u (i,j), then {X 1, h 1 } such that Y = Vdiag( h 1 )V T X 1 X 1 := PX 0, h1 := diag(p) h 0 P := I 2u (i,j) (u (i,j) ) T = Vdiag(p)V T Compare with cyclic-shift ambiguity for discrete-time signals Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 8

9 Inverse filter and convex relaxation Inverse filter G = H 1 is also a graph filter on G [Sandryhaila-Moura 13] Requires h i = L 1 l=0 h lλ l i 0, for all i = 1,..., N Inverse-filter coefficients g R N, frequency response g = Ψg Recast as linear inverse problem [Wang-Chi 16] min X 0, s. to X = Vdiag( g)v T Y, X 0 { g,x} Still NP hard. Relax! and minimize convex X 1 ˆ g = argmin (Y T V V) g 1, s. to 1 T g = 1 g Constraint fixes the scale and avoids all-zero solution l 1 -synthesis problem, efficient solvers available Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 9

10 Recovery guarantee for l 1 relaxation Let {X 0, g 0 } be the solution, i.e., X 0 = Vdiag( g 0 )V T Y I indexes the support of vec(x 0 ), complement is I c Define Z := Y T V V R NP N Z S is the submatrix of Z with rows indexed by S {1,..., NP}. Proposition: ˆ g = g 0 if the two following conditions are satisfied 1) rank(z I c ) = N 1; and 2) There exists f R NP such that Z T f = γ1, for some γ 0 and f I = sign(z I g 0 ) and f I c < 1 Cond. 1) ensures uniqueness of solution ˆ g Cond. 2) guarantees existence of a dual certificate f for l 0 optimality Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 10

11 Simulation setup Consider undirected graphs with S = D 1 2 AD 1 2 Erdős-Rényi (ER) graphs with N = 50 and edge prob. p = 0.3 Structural brain network with N = 66 [Hagmann et al 08] X 0 adheres to a Bernoulli-Gaussian model. Vary P and S Filter h 0 = (e 1 + αb)/ e 1 + αb 1 as in [Wang-Chi 16] e 1 = [1, 0,..., 0] T R L and b N (0, I) Recovery performance increases while α 0 decreases Observation matrix Y = Vdiag(Ψh 0 )V T X 0 Figure of merit: Relative recovery error e X = ˆX X 0 / X 0 Successful recovery e X < Show rates over 20 realizations Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 11

12 Recovery performance Successful recovery over most of the (S, P) plane Using multiple signals aids recovery Performance improves with smaller α Brain graph (α = 0.5). Proposed (left) and [Segarra et al 17] (right) Performance of matrix lifting approach degrades faster with L Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 12

13 Concluding summary Blind identification of graph filters with multiple sparse inputs Extends blind deconvolution of space/time signals to graphs Key: model diffusion process as output of graph filter Invertible graph filter assumption From a bilinear to a linear inverse problem Devoid of matrix lifting Scales better to large graphs Encouraging performance for random and real-world graphs Ongoing work Exact recovery under the Bernoulli-Gaussian model Stable recovery from noisy and sampled observations Envisioned application domains (a) Localize sources of epileptic seizure (b) Event-driven information cascades and fake-news detection (c) Trace patient zero for an epidemic outbreak Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 13

Network Topology Inference from Non-stationary Graph Signals

Network Topology Inference from Non-stationary Graph Signals Network Topology Inference from Non-stationary Graph Signals Rasoul Shafipour Dept. of Electrical and Computer Engineering University of Rochester rshafipo@ece.rochester.edu http://www.ece.rochester.edu/~rshafipo/

More information

Graph Signal Processing in Distributed Network Processing

Graph Signal Processing in Distributed Network Processing Graph Signal Processing in Distributed Network Processing Antonio G. Marques King Juan Carlos University - Madrid (SPAIN) antonio.garcia.marques@urjc.es http://www.tsc.urjc.es/~amarques/ Thanks: S. Segarra,

More information

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 8 th European Signal Processing Conference (EUSIPCO) Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs Chang Ye, Rasoul Shafipour and Gonzalo Mateos Dept. of Electrical and Computer

More information

Digraph Fourier Transform via Spectral Dispersion Minimization

Digraph Fourier Transform via Spectral Dispersion Minimization Digraph Fourier Transform via Spectral Dispersion Minimization Gonzalo Mateos Dept. of Electrical and Computer Engineering University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

More information

Stationary Graph Processes: Nonparametric Spectral Estimation

Stationary Graph Processes: Nonparametric Spectral Estimation Stationary Graph Processes: Nonparametric Spectral Estimation Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Dept. of Signal Theory and Communications King Juan Carlos University

More information

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Antonio G. Marques, Alejandro Ribeiro, Santiago Segarra King Juan Carlos University University of Pennsylvania Massachusetts

More information

DEMIXING AND BLIND DECONVOLUTION OF GRAPH-DIFFUSED SPARSE SIGNALS

DEMIXING AND BLIND DECONVOLUTION OF GRAPH-DIFFUSED SPARSE SIGNALS DEMIXING AND BLIND DECONVOLUTION OF GRAPH-DIFFUSED SPARSE SIGNALS Fernando J. Iglesias, Santiago Segarra, Samuel Rey-Escudero, Antonio G. Marques, and David Ramírez, Dept. of Signal Theory and Comms.,

More information

INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS

INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS Santiago Segarra, Antonio G. Marques, Geert Leus, Alejandro Ribeiro University of Pennsylvania, Dept. of Electrical and Systems Eng.,

More information

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Antonio G. Marques, Santiago Segarra, Alejandro Ribeiro King Juan Carlos University Massachusetts Institute of Technology University

More information

Reconstruction of graph signals: percolation from a single seeding node

Reconstruction of graph signals: percolation from a single seeding node Reconstruction of graph signals: percolation from a single seeding node Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Abstract Schemes to reconstruct signals defined in the nodes

More information

Blind Identification of Graph Filters

Blind Identification of Graph Filters IEEE TRANACTION ON IGNA PROCEING ACCEPTED Blind Identification of Graph Filters antiago egarra, Member, IEEE, Gonzalo Mateos, Member, IEEE, Antonio G. Marques, enior Member, IEEE, and Alejandro Ribeiro,

More information

A DIGRAPH FOURIER TRANSFORM WITH SPREAD FREQUENCY COMPONENTS

A DIGRAPH FOURIER TRANSFORM WITH SPREAD FREQUENCY COMPONENTS A DIGRAPH FOURIER TRANSFORM WITH SPREAD FREQUENCY COMPONENTS Rasoul Shafipour, Ali Khodabakhsh, Gonzalo Mateos, and Evdokia Nikolova Dept. of Electrical and Computer Engineering, University of Rochester,

More information

Rethinking Sketching as Sampling: A Graph Signal Processing Approach

Rethinking Sketching as Sampling: A Graph Signal Processing Approach IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 1 Rethinking Sketching as Sampling: A Graph Signal Processing Approach Fernando Gama, Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro arxiv:1611.00119v1

More information

Reconstruction of Graph Signals through Percolation from Seeding Nodes

Reconstruction of Graph Signals through Percolation from Seeding Nodes Reconstruction of Graph Signals through Percolation from Seeding Nodes Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Abstract New schemes to recover signals defined in the nodes

More information

Reconstruction of Graph Signals through Percolation from Seeding Nodes

Reconstruction of Graph Signals through Percolation from Seeding Nodes Reconstruction of Graph Signals through Percolation from Seeding Nodes Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro arxiv:507.08364v [cs.si] 30 Jul 05 Abstract New schemes to

More information

Stationary Graph Processes and Spectral Estimation

Stationary Graph Processes and Spectral Estimation Stationary Graph Processes and Spectral Estimation Antonio G. Marques, Santiago Segarra, Geert Leus, and Alejandro Ribeiro arxiv:63.667v [cs.sy] 5 Aug 7 Abstract Stationarity is a cornerstone property

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15, 2017 5911 Stationary Graph Processes and Spectral Estimation Antonio G. Marques, Senior Member, IEEE, Santiago Segarra, Member, IEEE,

More information

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210 ROBUST BLIND SPIKES DECONVOLUTION Yuejie Chi Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 4 ABSTRACT Blind spikes deconvolution, or blind super-resolution, deals with

More information

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER 2017 467 Network Topology Inference from Spectral Templates Santiago Segarra, Member, IEEE, Antonio G. Marques,

More information

Rethinking Sketching as Sampling: Linear Transforms of Graph Signals

Rethinking Sketching as Sampling: Linear Transforms of Graph Signals Rethinking Sketching as Sampling: Linear Transforms of Graph Signals Fernando Gama, Antonio G. Marques, Gonzalo Mateos and Alejandro Ribeiro Abstract Sampling of bandlimited graph signals has welldocumented

More information

Network observability and localization of the source of diffusion based on a subset of nodes

Network observability and localization of the source of diffusion based on a subset of nodes Network observability and localization of the source of diffusion based on a subset of nodes Sabina Zejnilović, João Gomes, Bruno Sinopoli Carnegie Mellon University, Department of Electrical and Computer

More information

ROBUST NETWORK TOPOLOGY INFERENCE

ROBUST NETWORK TOPOLOGY INFERENCE ROBUST NETWORK TOPOLOGY INFERENCE Santiago Segarra, Antonio G. Marques, Gonzalo Mateos and Alejandro Ribeiro Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge,

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 3: Sparse signal recovery: A RIPless analysis of l 1 minimization Yuejie Chi The Ohio State University Page 1 Outline

More information

Ergodicity in Stationary Graph Processes: A Weak Law of Large Numbers

Ergodicity in Stationary Graph Processes: A Weak Law of Large Numbers IEEE TRASACTIOS O SIGAL PROCESSIG (SUBMITTED) Ergodicity in Stationary Graph Processes: A Weak Law of Large umbers Fernando Gama and Alejandro Ribeiro arxiv:803.04550v [eess.sp] Mar 08 Abstract For stationary

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Submodular Functions Properties Algorithms Machine Learning

Submodular Functions Properties Algorithms Machine Learning Submodular Functions Properties Algorithms Machine Learning Rémi Gilleron Inria Lille - Nord Europe & LIFL & Univ Lille Jan. 12 revised Aug. 14 Rémi Gilleron (Mostrare) Submodular Functions Jan. 12 revised

More information

Sparse Recovery Beyond Compressed Sensing

Sparse Recovery Beyond Compressed Sensing Sparse Recovery Beyond Compressed Sensing Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda Applied Math Colloquium, MIT 4/30/2018 Acknowledgements Project funded by NSF award DMS-1616340 Separable Nonlinear

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

Sampling and Estimation in Network Graphs

Sampling and Estimation in Network Graphs Sampling and Estimation in Network Graphs Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ March

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

LINEAR NETWORK OPERATORS USING NODE-VARIANT GRAPH FILTERS

LINEAR NETWORK OPERATORS USING NODE-VARIANT GRAPH FILTERS LINEAR NETWORK OPERATORS USING NODE-VARIANT GRAPH FILTERS Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro Dept. of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia,

More information

Self-Calibration and Biconvex Compressive Sensing

Self-Calibration and Biconvex Compressive Sensing Self-Calibration and Biconvex Compressive Sensing Shuyang Ling Department of Mathematics, UC Davis July 12, 2017 Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 1 / 22 Acknowledgements

More information

Estimating network degree distributions from sampled networks: An inverse problem

Estimating network degree distributions from sampled networks: An inverse problem Estimating network degree distributions from sampled networks: An inverse problem Eric D. Kolaczyk Dept of Mathematics and Statistics, Boston University kolaczyk@bu.edu Introduction: Networks and Degree

More information

Distributed Implementation of Linear Network Operators using Graph Filters

Distributed Implementation of Linear Network Operators using Graph Filters Distributed Implementation of Linear Network Operators using Graph Filters Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro Abstract A signal in a network (graph) can be defined as a vector

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Network Infusion to Infer Information Sources in Networks Soheil Feizi, Ken Duffy, Manolis Kellis, and Muriel Medard

Network Infusion to Infer Information Sources in Networks Soheil Feizi, Ken Duffy, Manolis Kellis, and Muriel Medard Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-214-28 December 2, 214 Network Infusion to Infer Information Sources in Networks Soheil Feizi, Ken Duffy, Manolis Kellis,

More information

Identifying the Topology of Undirected Networks from Diffused Non-stationary Graph Signals

Identifying the Topology of Undirected Networks from Diffused Non-stationary Graph Signals 1 Identifying the Topology of Undirected Networks from Diffused Non-stationary Graph Signals Rasoul Shafipour, Santiago Segarra, Antonio G. Marques, and Gonzalo Mateos arxiv:1801.03862v1 [eess.sp] 11 Jan

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION EE229B PROJECT REPORT STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION Zhengya Zhang SID: 16827455 zyzhang@eecs.berkeley.edu 1 MOTIVATION Permutation matrices refer to the square matrices with

More information

Optimization-based sparse recovery: Compressed sensing vs. super-resolution

Optimization-based sparse recovery: Compressed sensing vs. super-resolution Optimization-based sparse recovery: Compressed sensing vs. super-resolution Carlos Fernandez-Granda, Google Computational Photography and Intelligent Cameras, IPAM 2/5/2014 This work was supported by a

More information

Model Selection with Partly Smooth Functions

Model Selection with Partly Smooth Functions Model Selection with Partly Smooth Functions Samuel Vaiter, Gabriel Peyré and Jalal Fadili vaiter@ceremade.dauphine.fr August 27, 2014 ITWIST 14 Model Consistency of Partly Smooth Regularizers, arxiv:1405.1004,

More information

Sampling of graph signals with successive local aggregations

Sampling of graph signals with successive local aggregations Sampling of graph signals with successive local aggregations Antonio G. Marques, Santiago Segarra, Geert Leus, and Alejandro Ribeiro Abstract A new scheme to sample signals defined in the nodes of a graph

More information

Support Detection in Super-resolution

Support Detection in Super-resolution Support Detection in Super-resolution Carlos Fernandez-Granda (Stanford University) 7/2/2013 SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 1 / 25 Acknowledgements This work was

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators

Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED) Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators Santiago Segarra, Member, IEEE, Antonio G. Marques, Senior Member,

More information

Learning Graphs from Data: A Signal Representation Perspective

Learning Graphs from Data: A Signal Representation Perspective 1 Learning Graphs from Data: A Signal Representation Perspective Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard arxiv:1806.00848v1 [cs.lg] 3 Jun 2018 The construction of a meaningful

More information

Leader selection in consensus networks

Leader selection in consensus networks Leader selection in consensus networks Mihailo Jovanović www.umn.edu/ mihailo joint work with: Makan Fardad Fu Lin 2013 Allerton Conference Consensus with stochastic disturbances 1 RELATIVE INFORMATION

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Parameter Estimation for Mixture Models via Convex Optimization

Parameter Estimation for Mixture Models via Convex Optimization Parameter Estimation for Mixture Models via Convex Optimization Yuanxin Li Department of Electrical and Computer Engineering The Ohio State University Columbus Ohio 432 Email: li.3822@osu.edu Yuejie Chi

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun (work with S.V.N. Vishwanathan) Department of Statistics Purdue Machine Learning Seminar November 9, 2011 Overview

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

arxiv: v1 [cs.it] 25 Jan 2015

arxiv: v1 [cs.it] 25 Jan 2015 A Unified Framework for Identifiability Analysis in Bilinear Inverse Problems with Applications to Subspace and Sparsity Models Yanjun Li Kiryung Lee Yoram Bresler Abstract arxiv:1501.06120v1 [cs.it] 25

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

Covariance Sketching via Quadratic Sampling

Covariance Sketching via Quadratic Sampling Covariance Sketching via Quadratic Sampling Yuejie Chi Department of ECE and BMI The Ohio State University Tsinghua University June 2015 Page 1 Acknowledgement Thanks to my academic collaborators on some

More information

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Instructor: Wotao Yin July 2013 Note scriber: Zheng Sun Those who complete this lecture will know what is a dual certificate for l 1 minimization

More information

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks Osman Yağan Department of ECE Carnegie Mellon University Joint work with Y. Zhuang and V. Gligor (CMU) Alex

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Mathematical Study of Complex Networks: Brain, Internet, and Power Grid

Mathematical Study of Complex Networks: Brain, Internet, and Power Grid Mathematical Study of Complex Networks: Brain, Internet, and Power Grid Thesis by Somayeh Sojoudi In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute

More information

Information Recovery from Pairwise Measurements

Information Recovery from Pairwise Measurements Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach Yuxin Chen, Changho Suh, Andrea Goldsmith Stanford University KAIST Page 1 Recovering data from correlation measurements A large

More information

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random Susceptible-Infective-Removed Epidemics and Erdős-Rényi random graphs MSR-Inria Joint Centre October 13, 2015 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all

More information

Sparse Solutions of an Undetermined Linear System

Sparse Solutions of an Undetermined Linear System 1 Sparse Solutions of an Undetermined Linear System Maddullah Almerdasy New York University Tandon School of Engineering arxiv:1702.07096v1 [math.oc] 23 Feb 2017 Abstract This work proposes a research

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Algebraic Transformations of Convex Codes

Algebraic Transformations of Convex Codes Algebraic Transformations of Convex Codes Amzi Jeffs Advisor: Mohamed Omar Feb 2, 2016 Outline Neuroscience: Place cells and neural codes. Outline Neuroscience: Place cells and neural codes. Algebra Background:

More information

Dual Decomposition for Inference

Dual Decomposition for Inference Dual Decomposition for Inference Yunshu Liu ASPITRG Research Group 2014-05-06 References: [1]. D. Sontag, A. Globerson and T. Jaakkola, Introduction to Dual Decomposition for Inference, Optimization for

More information

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence:

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence: A Omitted Proofs from Section 3 Proof of Lemma 3 Let m x) = a i On Acceleration with Noise-Corrupted Gradients fxi ), u x i D ψ u, x 0 ) denote the function under the minimum in the lower bound By Proposition

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Uncertainty Principle and Sampling of Signals Defined on Graphs

Uncertainty Principle and Sampling of Signals Defined on Graphs Uncertainty Principle and Sampling of Signals Defined on Graphs Mikhail Tsitsvero, Sergio Barbarossa, and Paolo Di Lorenzo 2 Department of Information Eng., Electronics and Telecommunications, Sapienza

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION. A Thesis MELTEM APAYDIN

PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION. A Thesis MELTEM APAYDIN PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION A Thesis by MELTEM APAYDIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Robust multichannel sparse recovery

Robust multichannel sparse recovery Robust multichannel sparse recovery Esa Ollila Department of Signal Processing and Acoustics Aalto University, Finland SUPELEC, Feb 4th, 2015 1 Introduction 2 Nonparametric sparse recovery 3 Simulation

More information

arxiv: v1 [cs.na] 6 Jan 2017

arxiv: v1 [cs.na] 6 Jan 2017 SPECTRAL STATISTICS OF LATTICE GRAPH STRUCTURED, O-UIFORM PERCOLATIOS Stephen Kruzick and José M. F. Moura 2 Carnegie Mellon University, Department of Electrical Engineering 5000 Forbes Avenue, Pittsburgh,

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS

FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS Thilina Weerasinghe, Daniel Romero, César Asensio-Marco, and Baltasar Beferull-Lozano Intelligent Signal Processing and Wireless Networks Laboratory

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018)

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec Presented by: Jesse Bettencourt and Harris Chan March 9, 2018 University

More information

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints By I. Necoara, Y. Nesterov, and F. Glineur Lijun Xu Optimization Group Meeting November 27, 2012 Outline

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Jérôme Thai 1 Timothy Hunter 1 Anayo Akametalu 1 Claire Tomlin 1 Alex Bayen 1,2 1 Department of Electrical Engineering

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Unsupervised learning: beyond simple clustering and PCA

Unsupervised learning: beyond simple clustering and PCA Unsupervised learning: beyond simple clustering and PCA Liza Rebrova Self organizing maps (SOM) Goal: approximate data points in R p by a low-dimensional manifold Unlike PCA, the manifold does not have

More information

Discrete Signal Processing on Graphs: Sampling Theory

Discrete Signal Processing on Graphs: Sampling Theory IEEE TRANS. SIGNAL PROCESS. TO APPEAR. 1 Discrete Signal Processing on Graphs: Sampling Theory Siheng Chen, Rohan Varma, Aliaksei Sandryhaila, Jelena Kovačević arxiv:153.543v [cs.it] 8 Aug 15 Abstract

More information

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies July 12, 212 Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies Morteza Mardani Dept. of ECE, University of Minnesota, Minneapolis, MN 55455 Acknowledgments:

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

Exploiting Sparsity for Wireless Communications

Exploiting Sparsity for Wireless Communications Exploiting Sparsity for Wireless Communications Georgios B. Giannakis Dept. of ECE, Univ. of Minnesota http://spincom.ece.umn.edu Acknowledgements: D. Angelosante, J.-A. Bazerque, H. Zhu; and NSF grants

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD

SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD EE-731: ADVANCED TOPICS IN DATA SCIENCES LABORATORY FOR INFORMATION AND INFERENCE SYSTEMS SPRING 2016 INSTRUCTOR: VOLKAN CEVHER SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD STRUCTURED SPARSITY

More information

Inderjit Dhillon The University of Texas at Austin

Inderjit Dhillon The University of Texas at Austin Inderjit Dhillon The University of Texas at Austin ( Universidad Carlos III de Madrid; 15 th June, 2012) (Based on joint work with J. Brickell, S. Sra, J. Tropp) Introduction 2 / 29 Notion of distance

More information