Digraph Fourier Transform via Spectral Dispersion Minimization

Size: px
Start display at page:

Download "Digraph Fourier Transform via Spectral Dispersion Minimization"

Transcription

1 Digraph Fourier Transform via Spectral Dispersion Minimization Gonzalo Mateos Dept. of Electrical and Computer Engineering University of Rochester Co-authors: Rasoul Shafipour, Ali Khodabakhsh, and Evdokia Nikolova Acknowledgment: NSF Award CCF Calgary, AB, April 20, 2018 Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

2 Network Science analytics Online social media Internet Clean energy and grid analy,cs Network as graph G = (V, E): encode pairwise relationships Desiderata: Process, analyze and learn from network data [Kolaczyk 09] Interest here not in G itself, but in data associated with nodes in V The object of study is a graph signal Ex: Opinion profile, buffer levels, neural activity, epidemic Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

3 Graph signal processing and Fourier transform Directed graph (digraph) G with adjacency matrix A A ij = Edge weight from node i to node j Define a signal x R N on top of the graph x i = Signal value at node i Associated with G is the underlying undirected G u Laplacian marix L = D A u, eigenvectors V = [v 1,, v N ] Graph Signal Processing (GSP): exploit structure in A or L to process x Graph Fourier Transform (GFT): x = V T x for undirected graphs Decompose x into different modes of variation Inverse (i)gft x = V x, eigenvectors as frequency atoms Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

4 GFT: Motivation and context Spectral analysis and filter design [Tremblay et al 17], [Isufi et al 16] Promising tool in neuroscience [Huang et al 16] Graph frequency analyses of fmri signals Noteworthy GFT approaches Eigenvectors of the Laplacian L [Shuman et al 13] Jordan decomposition of A [Sandryhaila-Moura 14], [Deri-Moura 17] Lovaśz extension of the graph cut size [Sardellitti et al 17] Greedy basis selection for spread modes [Shafipour et al 17] Generalized variation operators and inner products [Girault et al 18] Our contribution: design a novel digraph (D)GFT such that Bases offer notions of frequency and signal variation Frequencies are (approximately) equidistributed in [0, fmax] Bases are orthonormal, so Parseval s identity holds Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

5 Signal variation on digraphs Total variation of signal x with respect to L TV(x) = x T Lx = N i,j=1,j>i Smoothness measure on the graph G u A u ij(x i x j ) 2 For Laplacian eigenvectors V = [v 1,, v N ] TV(v k ) = λ k 0 = λ 1 < λ N can be viewed as frequencies Def: Directed variation for signals over digraphs ([x] + = max(0, x)) DV(x) := N A ij [x i x j ] 2 + i,j=1 Captures signal variation (flow) along directed edges Consistent, since DV(x) TV(x) for undirected graphs Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

6 DGFT with spread frequeny components Goal: find N orthonormal bases capturing different modes of DV on G Collect the desired bases in a matrix U = [u 1,, u N ] R N N DGFT: x = U T x u k represents the kth frequency mode with f k := DV(u k ) Similar to the DFT, seek N equidistributed graph frequencies f k = DV(u k ) = k 1 N 1 f max, k = 1,..., N f max is the maximum DV of a unit-norm graph signal on G Q: Why spread frequencies? Parsimonious representations of slowly-varying signals Interpretability better capture low, medium, and high frequencies Aid filter design in the graph spectral domain Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

7 Motivation for spread frequencies Ex: Directed variation minimization [Sardellitti et al 17] min U N i,j=1 A ij[u i u j ] + s.t. U T U = I U is the optimum basis where a = , b = 1 5 4, and c = 0.5 All columns of U satisfy DV(u k ) = 0, k = 1,..., 4 Expansion x = U x fails to capture different modes of variation Q: Can we always find equidistributed frequencies in [0, f max ]? Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

8 Challenges: Maximum directed variation Finding f max is in general challenging u max = argmax u =1 DV(u) and f max := DV(u max ). Let v N be the dominant eigenvector of L Can 1/2-approximate f max with ũ max = argmax DV(v) v {v N, v N } f max can be obtained analytically for particular graph families Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

9 Challenges: Equidistributed frequencies Equidistributed f k = k 1 N 1 f max may not be feasible. Ex: In undirected G u f u max = λ max and N N f k = TV(v k ) = trace(l) k=1 k=1 Idea: Set u 1 = u min := 1 N 1 N and u N = u max and minimize N 1 δ(u) := [DV(u i+1 ) DV(u i )] 2 i=1 δ(u) is the spectral dispersion function Minimized when the free DV values form an arithmetic sequence Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

10 Spectral dispersion minimization We cast the optimization problem of finding spread frequencies as min U N 1 [DV(u i+1 ) DV(u i )] 2 i=1 subject to U T U = I u 1 = u min u N = u max Non-convex, orthogonality-constrained minimization of smooth δ(u) Feasible since umax u min Adopt a feasible method in the Stiefel manifold to design the DGFT: (i) Obtain f max (and u max) by minimizing DV(u) over {u u T u = 1} (ii) Find the orthonormal basis U with minimum spectral dispersion Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

11 Feasible method in the Stiefel manifold Rewrite the problem of finding orthonormal basis as min U subject to φ(u) := δ(u) + λ 2 U T U = I ( u1 u min 2 + u N u max 2) Let U k be a feasible point at iteration k and the gradient G k = φ(u k ) Skew-symmetric matrix B k := G k U k T U k G k T Follow the update rule U k+1 (τ) = ( I + τ 2 B k) 1 ( I τ 2 B k) Uk Cayley transform preserves orthogonality (i.e., T Uk+1 U k+1 = I) Is a descent path for a proper step size τ Theorem (Wen-Yin 13) The procedure converges to a stationary point of smooth φ(u), while generating feasible points at every iteration Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

12 Algorithm 1: Input: Adjacency matrix A, parameters λ > 0 and ɛ > 0 2: Find u max by a similar feasible method and set u min = 1 N 1 N 3: Initialize k = 0 and orthonormal U 0 R N N at random 4: repeat 5: Compute gradient G k = φ(u k ) R N N 6: Form B k = G k U k T U k G k T 7: Select τ k satisfying Armijo-Wolfe conditions 8: Update U k+1 (τ k ) = (I + τ k 2 B k ) 1 (I τ k 2 B k )U k 9: k k : until U k U k 1 F ɛ 11: Return Û = U k Overall run-time is O(N 3 ) per iteration Additional details in arxiv: [eess.sp] Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

13 Numerical test: Synthetic graph Compute U and directed variations using Directed Laplacian eigenvectors [Chung 05] PAMAL method [Sardellitti et al 17] Greedy heuristic [Shafipour et al 17] Spectral dispersion minimization Rescale DV values to [0, 1] and calculate spectral dispersion δ(u) 0.256, 0.301, 0.118, and respectively Confirms the proposed method yields a better frequency spread Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

14 Numerical test: US average temperatures Consider the graph of the N = 48 contiguous United States Connect two states if they share a border Set arc directions from lower to higher latitudes Graph signal x Average annual temperature of each state Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

15 Numerical test: Denoising US temperatures Noisy signal y = x + n, with n N (0, 10 I N ) Define low-pass filter H = diag( h), where h i = I {i w} (for w = 3) Recover signal via filtering ˆx = U Hỹ = U HU T y Compute recovery error e f = ˆx x x 12% Reverse the edge orientations and repeat the experiment Feasible Method: N-S Feasible Method: S-N DGFT basis offers a parsimonious (i.e., bandlimited) signal representation Adequate network model improves the denoising performance Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

16 Closing remarks Measure of directed variation to capture the notion of frequency on G Find an orthonormal set of Fourier bases for signals on digraphs Span a maximal frequency range [0, fmax] Frequency modes are as evenly distributed as possible Two-step DGFT basis design via a feasible method over Stiefel manifold i) Find the maximum directed variation f max over the unit sphere ii) Minimize a smooth spectral dispersion criterion over [0, f max] Provable convergence guarantees to a stationary point Ongoing work and future directions Complexity of finding the maximum frequency fmax on a digraph? If NP-hard, what is the best approximation ratio Optimality gap between the local and global optimal dispersions? Digraph Fourier Transform via Spectral Dispersion Minimization ICASSP

17 GlobalSIP 18 Symposium on GSP Symposium on Graph Signal Processing Topics of interest Graph-signal transforms and filters Signals in high-order and multiplex graphs Distributed and non-linear graph SP Neural networks for graph data Statistical graph SP Topological data analysis Prediction and learning for graphs Graph-based image and video processing Network topology inference Communications, sensor and power networks Recovery of sampled graph signals Neuroscience and other medical fields Control of network processes Web, economic and social networks Paper submission due: June 17, th IEEE Global Conference on Signal and Information Processing November 26-28, 2018 Anaheim, California, USA Digraph Fourier Transform via Spectral Dispersion Minimization Organizers: Gonzalo Mateos (Univ. of Rochester) Santiago Segarra (MIT) Sundeep Chepuri (TU Delft) ICASSP

A DIGRAPH FOURIER TRANSFORM WITH SPREAD FREQUENCY COMPONENTS

A DIGRAPH FOURIER TRANSFORM WITH SPREAD FREQUENCY COMPONENTS A DIGRAPH FOURIER TRANSFORM WITH SPREAD FREQUENCY COMPONENTS Rasoul Shafipour, Ali Khodabakhsh, Gonzalo Mateos, and Evdokia Nikolova Dept. of Electrical and Computer Engineering, University of Rochester,

More information

A Directed Graph Fourier Transform with Spread Frequency Components

A Directed Graph Fourier Transform with Spread Frequency Components 1 A Directed Graph Fourier Transform with Spread Frequency Components Rasoul Shafipour, Student Member, IEEE, Ali Khodabakhsh, Student Member, IEEE, Gonzalo Mateos, Senior Member, IEEE, and Evdokia ikolova

More information

Network Topology Inference from Non-stationary Graph Signals

Network Topology Inference from Non-stationary Graph Signals Network Topology Inference from Non-stationary Graph Signals Rasoul Shafipour Dept. of Electrical and Computer Engineering University of Rochester rshafipo@ece.rochester.edu http://www.ece.rochester.edu/~rshafipo/

More information

946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 4, FEBRUARY,

946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 4, FEBRUARY, 946 IEEE TRASACTIOS O SIGAL PROCESSIG, VOL. 67, O. 4, FEBRUARY, 15 2019 A Directed Graph Fourier Transform With Spread Frequency Components Rasoul Shafipour, Student Member, IEEE, Ali Khodabakhsh, Student

More information

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 1

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 1 Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs Chang Ye Dept. of ECE and Goergen Institute for Data Science University of Rochester cye7@ur.rochester.edu http://www.ece.rochester.edu/~cye7/

More information

Graph Signal Processing in Distributed Network Processing

Graph Signal Processing in Distributed Network Processing Graph Signal Processing in Distributed Network Processing Antonio G. Marques King Juan Carlos University - Madrid (SPAIN) antonio.garcia.marques@urjc.es http://www.tsc.urjc.es/~amarques/ Thanks: S. Segarra,

More information

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Antonio G. Marques, Alejandro Ribeiro, Santiago Segarra King Juan Carlos University University of Pennsylvania Massachusetts

More information

arxiv: v1 [cs.it] 26 Sep 2018

arxiv: v1 [cs.it] 26 Sep 2018 SAPLING THEORY FOR GRAPH SIGNALS ON PRODUCT GRAPHS Rohan A. Varma, Carnegie ellon University rohanv@andrew.cmu.edu Jelena Kovačević, NYU Tandon School of Engineering jelenak@nyu.edu arxiv:809.009v [cs.it]

More information

CONTROL OF GRAPH SIGNALS OVER RANDOM TIME-VARYING GRAPHS

CONTROL OF GRAPH SIGNALS OVER RANDOM TIME-VARYING GRAPHS CONTROL OF GRAPH SIGNALS OVER RANDOM TIME-VARYING GRAPHS Fernando Gama, Elvin Isufi, Geert Leus and Alejandro Ribeiro Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia,

More information

Rethinking Sketching as Sampling: Linear Transforms of Graph Signals

Rethinking Sketching as Sampling: Linear Transforms of Graph Signals Rethinking Sketching as Sampling: Linear Transforms of Graph Signals Fernando Gama, Antonio G. Marques, Gonzalo Mateos and Alejandro Ribeiro Abstract Sampling of bandlimited graph signals has welldocumented

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS Akshay Gadde and Antonio Ortega Department of Electrical Engineering University of Southern California, Los Angeles Email: agadde@usc.edu,

More information

DATA defined on network-like structures are encountered

DATA defined on network-like structures are encountered Graph Fourier Transform based on Directed Laplacian Rahul Singh, Abhishek Chakraborty, Graduate Student Member, IEEE, and B. S. Manoj, Senior Member, IEEE arxiv:6.v [cs.it] Jan 6 Abstract In this paper,

More information

Reconstruction of graph signals: percolation from a single seeding node

Reconstruction of graph signals: percolation from a single seeding node Reconstruction of graph signals: percolation from a single seeding node Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Abstract Schemes to reconstruct signals defined in the nodes

More information

Tropical Graph Signal Processing

Tropical Graph Signal Processing Tropical Graph Signal Processing Vincent Gripon To cite this version: Vincent Gripon. Tropical Graph Signal Processing. 2017. HAL Id: hal-01527695 https://hal.archives-ouvertes.fr/hal-01527695v2

More information

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes

Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Graph Signal Processing: Fundamentals and Applications to Diffusion Processes Antonio G. Marques, Santiago Segarra, Alejandro Ribeiro King Juan Carlos University Massachusetts Institute of Technology University

More information

GRAPH FOURIER TRANSFORM FOR DIRECTED GRAPHS BASED ON LOVÁSZ EXTENSION OF MIN-CUT

GRAPH FOURIER TRANSFORM FOR DIRECTED GRAPHS BASED ON LOVÁSZ EXTENSION OF MIN-CUT GRAPH FOURIER TRANSFORM FOR DIRECTED GRAPHS BASED ON LOVÁSZ EXTENSION OF MIN-CUT Stefania Sardellitti 1, Sergio Barbarossa 1, Paolo Di Lorenzo 1 Sapienza University of Rome, DIET, Via Eudossiana 18, 184

More information

Graph Signal Processing

Graph Signal Processing Graph Signal Processing Rahul Singh Data Science Reading Group Iowa State University March, 07 Outline Graph Signal Processing Background Graph Signal Processing Frameworks Laplacian Based Discrete Signal

More information

Random Sampling of Bandlimited Signals on Graphs

Random Sampling of Bandlimited Signals on Graphs Random Sampling of Bandlimited Signals on Graphs Pierre Vandergheynst École Polytechnique Fédérale de Lausanne (EPFL) School of Engineering & School of Computer and Communication Sciences Joint work with

More information

Sampling, Inference and Clustering for Data on Graphs

Sampling, Inference and Clustering for Data on Graphs Sampling, Inference and Clustering for Data on Graphs Pierre Vandergheynst École Polytechnique Fédérale de Lausanne (EPFL) School of Engineering & School of Computer and Communication Sciences Joint work

More information

ROBUST NETWORK TOPOLOGY INFERENCE

ROBUST NETWORK TOPOLOGY INFERENCE ROBUST NETWORK TOPOLOGY INFERENCE Santiago Segarra, Antonio G. Marques, Gonzalo Mateos and Alejandro Ribeiro Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge,

More information

Submodular Functions Properties Algorithms Machine Learning

Submodular Functions Properties Algorithms Machine Learning Submodular Functions Properties Algorithms Machine Learning Rémi Gilleron Inria Lille - Nord Europe & LIFL & Univ Lille Jan. 12 revised Aug. 14 Rémi Gilleron (Mostrare) Submodular Functions Jan. 12 revised

More information

Learning Graphs from Data: A Signal Representation Perspective

Learning Graphs from Data: A Signal Representation Perspective 1 Learning Graphs from Data: A Signal Representation Perspective Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard arxiv:1806.00848v1 [cs.lg] 3 Jun 2018 The construction of a meaningful

More information

Uncertainty Principle and Sampling of Signals Defined on Graphs

Uncertainty Principle and Sampling of Signals Defined on Graphs Uncertainty Principle and Sampling of Signals Defined on Graphs Mikhail Tsitsvero, Sergio Barbarossa, and Paolo Di Lorenzo 2 Department of Information Eng., Electronics and Telecommunications, Sapienza

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS

INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS Santiago Segarra, Antonio G. Marques, Geert Leus, Alejandro Ribeiro University of Pennsylvania, Dept. of Electrical and Systems Eng.,

More information

Discrete Signal Processing on Graphs: Sampling Theory

Discrete Signal Processing on Graphs: Sampling Theory IEEE TRANS. SIGNAL PROCESS. TO APPEAR. 1 Discrete Signal Processing on Graphs: Sampling Theory Siheng Chen, Rohan Varma, Aliaksei Sandryhaila, Jelena Kovačević arxiv:153.543v [cs.it] 8 Aug 15 Abstract

More information

Stationary Graph Processes: Nonparametric Spectral Estimation

Stationary Graph Processes: Nonparametric Spectral Estimation Stationary Graph Processes: Nonparametric Spectral Estimation Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Dept. of Signal Theory and Communications King Juan Carlos University

More information

Irregularity-Aware Graph Fourier Transforms

Irregularity-Aware Graph Fourier Transforms 1 Irregularity-Aware Graph Fourier Transforms Benjamin Girault, Antonio Ortega Fellow, IEEE and Shrikanth S. Narayanan Fellow, IEEE arxiv:18.1v1 [eess.sp] 8 Feb 18 Abstract In this paper, we present a

More information

1 Maximizing a Submodular Function

1 Maximizing a Submodular Function 6.883 Learning with Combinatorial Structure Notes for Lecture 16 Author: Arpit Agarwal 1 Maximizing a Submodular Function In the last lecture we looked at maximization of a monotone submodular function,

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Collaborative Filtering via Graph Signal Processing

Collaborative Filtering via Graph Signal Processing Collaborative Filtering via Graph Signal Processing Weiyu Huang, Antonio G. Marques, and Alejandro Ribeiro Abstract This paper develops new designs for recommender systems inspired by recent advances in

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Ranking from Crowdsourced Pairwise Comparisons via Matrix Manifold Optimization

Ranking from Crowdsourced Pairwise Comparisons via Matrix Manifold Optimization Ranking from Crowdsourced Pairwise Comparisons via Matrix Manifold Optimization Jialin Dong ShanghaiTech University 1 Outline Introduction FourVignettes: System Model and Problem Formulation Problem Analysis

More information

Ergodicity in Stationary Graph Processes: A Weak Law of Large Numbers

Ergodicity in Stationary Graph Processes: A Weak Law of Large Numbers IEEE TRASACTIOS O SIGAL PROCESSIG (SUBMITTED) Ergodicity in Stationary Graph Processes: A Weak Law of Large umbers Fernando Gama and Alejandro Ribeiro arxiv:803.04550v [eess.sp] Mar 08 Abstract For stationary

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS

FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS Thilina Weerasinghe, Daniel Romero, César Asensio-Marco, and Baltasar Beferull-Lozano Intelligent Signal Processing and Wireless Networks Laboratory

More information

Unsupervised learning: beyond simple clustering and PCA

Unsupervised learning: beyond simple clustering and PCA Unsupervised learning: beyond simple clustering and PCA Liza Rebrova Self organizing maps (SOM) Goal: approximate data points in R p by a low-dimensional manifold Unlike PCA, the manifold does not have

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Diffuse interface methods on graphs: Data clustering and Gamma-limits

Diffuse interface methods on graphs: Data clustering and Gamma-limits Diffuse interface methods on graphs: Data clustering and Gamma-limits Yves van Gennip joint work with Andrea Bertozzi, Jeff Brantingham, Blake Hunter Department of Mathematics, UCLA Research made possible

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Irregularity-Aware Graph Fourier Transforms

Irregularity-Aware Graph Fourier Transforms 1 Irregularity-Aware Graph Fourier Transforms Benjamin Girault, Antonio Ortega Fellow, IEEE and Shrikanth S. Narayanan Fellow, IEEE Abstract In this paper, we present a novel generalization of the graph

More information

Regularization on Discrete Spaces

Regularization on Discrete Spaces Regularization on Discrete Spaces Dengyong Zhou and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany {dengyong.zhou, bernhard.schoelkopf}@tuebingen.mpg.de

More information

Info-Greedy Sequential Adaptive Compressed Sensing

Info-Greedy Sequential Adaptive Compressed Sensing Info-Greedy Sequential Adaptive Compressed Sensing Yao Xie Joint work with Gabor Braun and Sebastian Pokutta Georgia Institute of Technology Presented at Allerton Conference 2014 Information sensing for

More information

EE 224 Lab: Graph Signal Processing

EE 224 Lab: Graph Signal Processing EE Lab: Graph Signal Processing In our previous labs, we dealt with discrete-time signals and images. We learned convolution, translation, sampling, and frequency domain representation of discrete-time

More information

COMMUNITY DETECTION FROM LOW-RANK EXCITATIONS OF A GRAPH FILTER

COMMUNITY DETECTION FROM LOW-RANK EXCITATIONS OF A GRAPH FILTER COMMUNITY DETECTION FROM LOW-RANK EXCITATIONS OF A GRAPH FILTER Hoi-To Wai, Santiago Segarra, Asuman E. Ozdaglar, Anna Scaglione, Ali Jadbabaie School of ECEE, Arizona State University, Tempe, AZ, USA.

More information

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018 ELE 538B: Mathematics of High-Dimensional Data Spectral methods Yuxin Chen Princeton University, Fall 2018 Outline A motivating application: graph clustering Distance and angles between two subspaces Eigen-space

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Self-Tuning Spectral Clustering

Self-Tuning Spectral Clustering Self-Tuning Spectral Clustering Lihi Zelnik-Manor Pietro Perona Department of Electrical Engineering Department of Electrical Engineering California Institute of Technology California Institute of Technology

More information

Filtering and Sampling Graph Signals, and its Application to Compressive Spectral Clustering

Filtering and Sampling Graph Signals, and its Application to Compressive Spectral Clustering Filtering and Sampling Graph Signals, and its Application to Compressive Spectral Clustering Nicolas Tremblay (1,2), Gilles Puy (1), Rémi Gribonval (1), Pierre Vandergheynst (1,2) (1) PANAMA Team, INRIA

More information

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER 2017 467 Network Topology Inference from Spectral Templates Santiago Segarra, Member, IEEE, Antonio G. Marques,

More information

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 8 th European Signal Processing Conference (EUSIPCO) Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs Chang Ye, Rasoul Shafipour and Gonzalo Mateos Dept. of Electrical and Computer

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Diversity Regularization of Latent Variable Models: Theory, Algorithm and Applications

Diversity Regularization of Latent Variable Models: Theory, Algorithm and Applications Diversity Regularization of Latent Variable Models: Theory, Algorithm and Applications Pengtao Xie, Machine Learning Department, Carnegie Mellon University 1. Background Latent Variable Models (LVMs) are

More information

Subspace Projection Matrix Completion on Grassmann Manifold

Subspace Projection Matrix Completion on Grassmann Manifold Subspace Projection Matrix Completion on Grassmann Manifold Xinyue Shen and Yuantao Gu Dept. EE, Tsinghua University, Beijing, China http://gu.ee.tsinghua.edu.cn/ ICASSP 2015, Brisbane Contents 1 Background

More information

Sketching for Large-Scale Learning of Mixture Models

Sketching for Large-Scale Learning of Mixture Models Sketching for Large-Scale Learning of Mixture Models Nicolas Keriven Université Rennes 1, Inria Rennes Bretagne-atlantique Adv. Rémi Gribonval Outline Introduction Practical Approach Results Theoretical

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Learning graphs from data:

Learning graphs from data: Learning graphs from data: A signal processing perspective Xiaowen Dong MIT Media Lab Graph Signal Processing Workshop Pittsburgh, PA, May 2017 Introduction What is the problem of graph learning? 2/34

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Learning Parametric Dictionaries for. Signals on Graphs

Learning Parametric Dictionaries for. Signals on Graphs Learning Parametric Dictionaries for 1 Signals on Graphs Dorina Thanou, David I Shuman, and Pascal Frossard arxiv:141.887v1 [cs.lg] 5 Jan 214 Abstract In sparse signal representation, the choice of a dictionary

More information

ADMM and Fast Gradient Methods for Distributed Optimization

ADMM and Fast Gradient Methods for Distributed Optimization ADMM and Fast Gradient Methods for Distributed Optimization João Xavier Instituto Sistemas e Robótica (ISR), Instituto Superior Técnico (IST) European Control Conference, ECC 13 July 16, 013 Joint work

More information

SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS. Hilmi E. Egilmez and Antonio Ortega

SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS. Hilmi E. Egilmez and Antonio Ortega SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS Hilmi E. Egilmez and Antonio Ortega Signal and Image Processing Institute, University of Southern California hegilmez@usc.edu,

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

CS 435, 2018 Lecture 3, Date: 8 March 2018 Instructor: Nisheeth Vishnoi. Gradient Descent

CS 435, 2018 Lecture 3, Date: 8 March 2018 Instructor: Nisheeth Vishnoi. Gradient Descent CS 435, 2018 Lecture 3, Date: 8 March 2018 Instructor: Nisheeth Vishnoi Gradient Descent This lecture introduces Gradient Descent a meta-algorithm for unconstrained minimization. Under convexity of the

More information

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Fast Nonnegative Matrix Factorization with Rank-one ADMM Fast Nonnegative Matrix Factorization with Rank-one Dongjin Song, David A. Meyer, Martin Renqiang Min, Department of ECE, UCSD, La Jolla, CA, 9093-0409 dosong@ucsd.edu Department of Mathematics, UCSD,

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

arxiv: v1 [cs.na] 6 Jan 2017

arxiv: v1 [cs.na] 6 Jan 2017 SPECTRAL STATISTICS OF LATTICE GRAPH STRUCTURED, O-UIFORM PERCOLATIOS Stephen Kruzick and José M. F. Moura 2 Carnegie Mellon University, Department of Electrical Engineering 5000 Forbes Avenue, Pittsburgh,

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

Semi-Supervised Graph Classifier Learning with Negative Edge Weights

Semi-Supervised Graph Classifier Learning with Negative Edge Weights Gene Cheung National Institute of Informatics 15 th May, 217 Semi-Supervised Graph Classifier Learning with Negative Edge Weights. Torino Visit 5/15/217 1 Acknowledgement Collaborators: Y. Ji, M. Kaneko

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

Fractional Belief Propagation

Fractional Belief Propagation Fractional Belief Propagation im iegerinck and Tom Heskes S, niversity of ijmegen Geert Grooteplein 21, 6525 EZ, ijmegen, the etherlands wimw,tom @snn.kun.nl Abstract e consider loopy belief propagation

More information

Tutorial on Principal Component Analysis

Tutorial on Principal Component Analysis Tutorial on Principal Component Analysis Copyright c 1997, 2003 Javier R. Movellan. This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms

More information

Spectral Generative Models for Graphs

Spectral Generative Models for Graphs Spectral Generative Models for Graphs David White and Richard C. Wilson Department of Computer Science University of York Heslington, York, UK wilson@cs.york.ac.uk Abstract Generative models are well known

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Analytically tractable processes on networks

Analytically tractable processes on networks University of California San Diego CERTH, 25 May 2011 Outline Motivation 1 Motivation Networks Random walk and Consensus Epidemic models Spreading processes on networks 2 Networks Motivation Networks Random

More information

Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies

Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies 1 Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies Aamir Anis, Student Member, IEEE, Akshay Gadde, Student Member, IEEE, and Antonio Ortega, Fellow, IEEE Abstract

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

A projection algorithm for strictly monotone linear complementarity problems.

A projection algorithm for strictly monotone linear complementarity problems. A projection algorithm for strictly monotone linear complementarity problems. Erik Zawadzki Department of Computer Science epz@cs.cmu.edu Geoffrey J. Gordon Machine Learning Department ggordon@cs.cmu.edu

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via nonconvex optimization Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

Online Generalized Eigenvalue Decomposition: Primal Dual Geometry and Inverse-Free Stochastic Optimization

Online Generalized Eigenvalue Decomposition: Primal Dual Geometry and Inverse-Free Stochastic Optimization Online Generalized Eigenvalue Decomposition: Primal Dual Geometry and Inverse-Free Stochastic Optimization Xingguo Li Zhehui Chen Lin Yang Jarvis Haupt Tuo Zhao University of Minnesota Princeton University

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15, 2017 5911 Stationary Graph Processes and Spectral Estimation Antonio G. Marques, Senior Member, IEEE, Santiago Segarra, Member, IEEE,

More information

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Alfredo Nava-Tudela ant@umd.edu John J. Benedetto Department of Mathematics jjb@umd.edu Abstract In this project we are

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods Stat260/CS294: Spectral Graph Methods Lecture 20-04/07/205 Lecture: Local Spectral Methods (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review CE 191: Civil & Environmental Engineering Systems Analysis LEC 17 : Final Review Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

Robust Motion Segmentation by Spectral Clustering

Robust Motion Segmentation by Spectral Clustering Robust Motion Segmentation by Spectral Clustering Hongbin Wang and Phil F. Culverhouse Centre for Robotics Intelligent Systems University of Plymouth Plymouth, PL4 8AA, UK {hongbin.wang, P.Culverhouse}@plymouth.ac.uk

More information

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints By I. Necoara, Y. Nesterov, and F. Glineur Lijun Xu Optimization Group Meeting November 27, 2012 Outline

More information

Lecture 9: Laplacian Eigenmaps

Lecture 9: Laplacian Eigenmaps Lecture 9: Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 18, 2017 Optimization Criteria Assume G = (V, W ) is a undirected weighted graph with

More information

Rethinking Sketching as Sampling: A Graph Signal Processing Approach

Rethinking Sketching as Sampling: A Graph Signal Processing Approach IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 1 Rethinking Sketching as Sampling: A Graph Signal Processing Approach Fernando Gama, Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro arxiv:1611.00119v1

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information