Performance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor Interactions and Tunable Overlap

Size: px
Start display at page:

Download "Performance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor Interactions and Tunable Overlap"

Transcription

1 Performance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor Interactions and Tunable Overlap Martin Pelikan, Kumara Sastry, David E. Goldberg, Martin V. Butz, and Mark Hauschild Missouri Estimation of Distribution Algorithms Laboratory (MEDAL) University of Missouri, St. Louis, MO Download MEDAL Report No

2 Motivation Testing evolutionary algorithms Adversarial problems on the boundary of design envelope. Random instances of important classes of problems. Real-world problems. This work bridges and extends two prior studies on random problems Random additively decomposable problems (radps) (Pelikan et al., 2006). NK landscapes (superset of radps) (Pelikan et al., 2007). This study Propose the class of polynomially solvable NK landscapes with nearest neighbor interactions and tunable overlap. Generate large number of instances of proposed problem class. Test evolutionary algorithms on the generated instances. Analyze the results.

3 Outline 1. Additively decomposable problems NK landscapes. Random additively decomposable problems (radps). 2. NK with nearest neighbors and tunable overlap. 3. Experiments. 4. Conclusions and future work.

4 Additively Decomposable Problems (ADPs) Additively decomposable problem (ADP) Fitness defined as m f(x 1, X 2,..., X n ) = f i (S i ), i=1 n is the number of bits (variables), m is the number of subproblems, S i is the subset of variables in ith subproblem. ADPs play crucial role in design and analysis of GAs & EDAs. All problems in this work are ADPs. Two prior studies on ADPs serve as starting points Unrestricted NK landscapes. Restricted random ADPs (radps).

5 NK Landscape NK landscape Proposed by Kauffman (1989). Model of rugged landscape and popular test function. An NK landscape is defined by Number of bits, n. Number of neighbors per bit, k. Set of k neighbors Π(X i ) for i-th bit, X i. Subfunction f i defining contribution of X i and Π(X i ). The objective function f nk to maximize is then defined as n 1 f nk (X 0, X 1,..., X n 1 ) = f i (X i, Π(X i )). i=0

6 NK Landscape Exmaple for n = 9 and k = 2:

7 Restricted Random ADPs (radps) of Bounded Order Order-k radps with and without overlap Each subproblem contains k bits. Separable problems contain non-overlapping subproblems: Tight linkage: Shuffled: There may be overlap in o bits between neighboring subproblems (may also be shuffled): Tight linkage: Shuffled:

8 Properties of NK Landscapes and radps Common properties Additive decomposability. Subproblems are complex (look-up tables). High multimodality, complex structure. Overlap further increases problem difficulty. Challenge for most genetic algorithms and local search. NK landscapes NP-completeness (can t solve worst case in polynomial time). radps Using prior knowledge of problem structure, we can exactly solve radps in polynomial time (dynamic programming) in O(2 k n) evaluations. Multivariate EDAs can solve shuffled EDAs polynomially fast.

9 NK Landscapes with Nearest Neighbors & Tunable Overlap NK Landscapes with Nearest Neighbors and Tunable Overlap Neighbors of each bit are restricted to the following k bits. For simplicity, the neighborhoods don t wrap around. Some subproblems may be excluded to provide a mechanism for tuning the size of overlap. Use parameter step {1, 2,..., k + 1}. Only subproblems at positions i, i mod step = 0 contribute. Bit positions shuffled randomly to eliminate tight linkage.

10 NK Landscapes with Nearest Neighbors & Tunable Overlap High overlap (k = 2, step = 1): Sequential Shuffled Note step = 1 maximizes the amount of overlap between subproblems.

11 NK Landscapes with Nearest Neighbors & Tunable Overlap Low overlap (k = 2, step = 2): Sequential Shuffled Note step parameter allows tuning of the size of overlap.

12 NK Landscapes with Nearest Neighbors & Tunable Overlap No overlap (k = 2, step = 3): Sequential Shuffled Note step = k + 1 implies separability (subproblems are independent).

13 NK Landscapes with Nearest Neighbors & Tunable Overlap Why? Nearest neighbors enable polynomial solvability Deshuffle the string. Use dynamic programming. Parameter step enables tunining the overlap between subproblems: For standard NK landscapes, step = 1. With larger values of step, the amount of overlap between consequent subproblems is reduced. For step = k + 1, the problem becomes separable (the subproblems are fully independent).

14 Problem Instances Parameters n = 20 to 120. k = 2 to 5. step = 1 to k + 1 for each k. Variety of instances For each (n, k, step), generate 10,000 random instances. Overall 1,800,000 unique problem instances.

15 Compared Algorithms Basic algorithms Hierarchical Bayesian optimization algorithm (hboa). Genetic algorithm with uniform crossover (GAU). Genetic algorithm with twopoint crossover (G2P). Local search Single-bit-flip hill climbing (DHC) on each solution. Improves performance of all methods. Niching Restricted tournament replacement (niching).

16 Results: Flips Until Optimum; hboa; k = 2 and k = 5 Numb Problem size 10 4 k=4, step=1 k=2, step=1 k=4, step=2 k=2, step=2 k=4, step=3 k=2, step=3 k=4, step=4 k=4, step= Number of flips (hboa) Number of flips (hboa) Problem size k=5, step= k=5, step=2 k=5, step=3 k=5, step=4 k=5, step=5 k=5, step= Number of flips (hboa) k=3, step=1 k=3, step=2 k=3, step=3 k=3, step= Problem size Problem size umber of flips (hboa) k=4, step=1 k=4, step=2 k=4, step=3 k=4, step=4 k=4, step= Problem size Problem size umber of flips (hboa) k=5, step=1 k=5, step=2 k=5, step=3 k=5, step=4 k=5, step=5 k=5, step=6 Growth appears to be polynomial w.r.t. problem size, n Performance Figure 1: Average best with number no overlap. of flips for hboa. Besides n, performance depends on both k and step. the effects 10 3 of k on performance of all compared algorithms, figure 6 sh mber of DHC flips with k for hboa and GA on problems of size n = 10 A are not included, because UMDA was incapable of 3 M. Pelikan, K. Sastry, D.E. Goldberg, M.V. Butz, M. Hauschild NK Landscapes with Nearest Neighbors solving and Tunable many Overlap inst

17 Results: Comparison w.r.t. Flips DHC steps (flips) until optimum n k step hboa GA (uniform) GA (twopoint) , , , , , , , , , , , , , , , ,607 35,101 47,576

18 Results: Comparison w.r.t. Evaluations Number of evaluations until optimum n k step hboa GA (uniform) GA (twopoint) ,414 16,519 34, ,011 25,032 56, ,988 30,285 72, ,606 24,016 51, ,307 13,749 26, ,328 6,004 10,949

19 Number o Numb 0.75 Results: Flips Until Optimum; hboa vs. GA; k = Problem size Problem size k=4, step=1 k=4, step=2 k=4, step=3 k=4, step=4 k=4, step=5 Number of flips (GA, uniform) / Number of flips (hboa) k=5, step=1 k=5, step=2 k=5, step=3 k=5, step=4 k=5, step=5 k=5, step= Problem size Problem size Problem size Ratio GA with of the Differences uniform number crossover grow of flips faster for andthan GA hboa. with polynomially twopoint with crossover n. and hboa. Besides n, differences depend on both k and step. DHC flips until optimum GA 5, and (uniform) step GA {1,6}; (twopoint) since UMDA was not capable of solving many o in141,108 practical time, the 220,318 results for UMDA are not included. The figure sho fm. DHC Pelikan, K. flips Sastry, D.E. until Goldberg, optimum M.V. Butz, M. for Hauschild different NK Landscapes percentages with Nearest Neighbors of instances and Tunable Overlap with sm Number Num Number of flips (GA, twopoint) / Number of flips (hboa) 0.75 hboa outperforms both versions of GA k=5, step=1 k=5, step=2 k=5, step=3 k=5, step=4 k=5, step=5 k=5, step= Problem size

20 Results: Correlations Between Algorithms step = 1 (high overlap): step = 6 (separable): I I GA versions more similar than hboa with GA. Correlations stronger for problems with more overlap/less structure. M. Pelikan, K. Sastry, D.E. Goldberg, M.V. Butz, M. Hauschild NK Landscapes with Nearest Neighbors and Tunable Overlap

21 Problem Difficulty: Signal-to-Noise and Signal Variance Signal and noise Signal: The difference between fitness of the best and the 2 nd best solutions to a subproblem. Noise: Models contributions of other subproblems. Signal-to-noise ratio Decision making done by GA is stochastic. The larger the signal-to-noise ratio, the easier the decision making. Signal variance Sequential vs. parallel convergence. How much do contributions of different subproblems differ? One way to model this is to look at the variance of the signal.

22 hboa (a) hboa (b) GA (uniform) (b) GA (uniform) (c) GA (twopoint) (c) GA ( Results: Flips Until Optimum; hboa vs. GA; k = 5 e 13: Figure Influence 13: of Influence overlapof foroverlap n = 120 forandn = k 120 = 5 and (step k = varies 5 (step withvaries overlap). with o step = 1 (high overlap) step = 6 (separable) (divided by mean) Average number of flips (divided by mean) GA (twpoint) GA (uniform) hboa GA (twpoint) GA (uniform) hboa Signal to noise percentile Signal to noise (% smallest) percentile (% smallest) (a) step = 1(a) step = 1 Average number of flips (divided by mean) GA (tw GA (u hboa Signal to noise percentile Signal to noise (% smallest) percentile (% s (b) step = 6(b) step = 6 For problems with overlap, noise appears insignificant. Figure Influence 14: of Influence signal-to-noise of signal-to-noise ratio on the ratio number on theofnumber flips forof n flips = 120 forandn = k 120 = Average number of flips (divided by mean) For separable problems, noise clearly matters. GA (twpoint) GA (uniform) hboa nowledgments

23 Results: Flips Until Optimum; hboa vs. GA; k = 5 (divided by mean) Average number of flips (divided by mean) step = 1 (high overlap) GA (twopoint) GA (twopoint) GA (uniform) GA (uniform) hboa hboa Average number of flips (divided by mean) step = 6 (separable) Average number of flips (divided by mean) GA (twopoint) GA (twopoi GA (uniform) GA (uniform hboa hboa Signal variance Signal percentile variance (% smallest) percentile (% smallest) Signal variance Signal percentile variance (% percentile smallest) (% small (a) step = (a) 1 step = 1 (b) step = (b) 6 step = 6 For problems with overlap, signal variance appears 15: Figure Influence 15: insignificant. Influence of signal of variance signal variance on the number on the of number flips for of n flips = 120 for n and = 120 k = and 5. ferences s For separable problems, signal variance clearly matters.

24 Conclusions and Future Work Summary and conclusions Considered subset of NK landscapes as class of random test problems with tunable subproblem size and overlap. All proposed instances solvable in polynomial time. Generated a broad range of problem instances. Analyzed results using hybrids of GEAs. Future work Use generated problems to test other algorithms. Relate performance to other measures of problem difficulty. Develop/test new tools for understanding of problem difficulty. Wrap subproblems around. Use other distributions for generating look-up tables.

25 Acknowledgments Acknowledgments NSF; NSF CAREER grant ECS U.S. Air Force, AFOSR; FA University of Missouri; High Performance Computing Collaboratory sponsored by Information Technology Services; Research Award; Research Board.

Analysis of Epistasis Correlation on NK Landscapes. Landscapes with Nearest Neighbor Interactions

Analysis of Epistasis Correlation on NK Landscapes. Landscapes with Nearest Neighbor Interactions Analysis of Epistasis Correlation on NK Landscapes with Nearest Neighbor Interactions Missouri Estimation of Distribution Algorithms Laboratory (MEDAL University of Missouri, St. Louis, MO http://medal.cs.umsl.edu/

More information

Finding Ground States of SK Spin Glasses with hboa and GAs

Finding Ground States of SK Spin Glasses with hboa and GAs Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with hboa and GAs Martin Pelikan, Helmut G. Katzgraber, & Sigismund Kobe Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)

More information

Analysis of Epistasis Correlation on NK Landscapes with Nearest-Neighbor Interactions

Analysis of Epistasis Correlation on NK Landscapes with Nearest-Neighbor Interactions Analysis of Epistasis Correlation on NK Landscapes with Nearest-Neighbor Interactions Martin Pelikan MEDAL Report No. 20102 February 2011 Abstract Epistasis correlation is a measure that estimates the

More information

Initial-Population Bias in the Univariate Estimation of Distribution Algorithm

Initial-Population Bias in the Univariate Estimation of Distribution Algorithm Initial-Population Bias in the Univariate Estimation of Distribution Algorithm Martin Pelikan and Kumara Sastry MEDAL Report No. 9 January 9 Abstract This paper analyzes the effects of an initial-population

More information

Spurious Dependencies and EDA Scalability

Spurious Dependencies and EDA Scalability Spurious Dependencies and EDA Scalability Elizabeth Radetic, Martin Pelikan MEDAL Report No. 2010002 January 2010 Abstract Numerous studies have shown that advanced estimation of distribution algorithms

More information

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Mark Hauschild, Martin Pelikan, Claudio F. Lima, and Kumara Sastry IlliGAL Report No. 2007008 January 2007 Illinois Genetic

More information

Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with Hierarchical BOA and Genetic Algorithms

Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with Hierarchical BOA and Genetic Algorithms Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with Hierarchical BOA and Genetic Algorithms Martin Pelikan, Helmut G. Katzgraber and Sigismund Kobe MEDAL Report No. 284 January 28 Abstract

More information

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Mark Hauschild Missouri Estimation of Distribution Algorithms Laboratory (MEDAL) Dept. of Math and Computer Science, 320 CCB

More information

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Martin Pelikan 1, Alexander K. Hartmann 2, and Kumara Sastry 1 Dept. of Math and Computer Science, 320 CCB University of Missouri at

More information

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Martin Pelikan and Alexander K. Hartmann MEDAL Report No. 2006002 March 2006 Abstract This paper analyzes the hierarchical Bayesian

More information

Estimation-of-Distribution Algorithms. Discrete Domain.

Estimation-of-Distribution Algorithms. Discrete Domain. Estimation-of-Distribution Algorithms. Discrete Domain. Petr Pošík Introduction to EDAs 2 Genetic Algorithms and Epistasis.....................................................................................

More information

Probabilistic Model-Building Genetic Algorithms

Probabilistic Model-Building Genetic Algorithms Probabilistic Model-Building Genetic Algorithms Martin Pelikan Dept. of Math. and Computer Science University of Missouri at St. Louis St. Louis, Missouri pelikan@cs.umsl.edu Foreword! Motivation Genetic

More information

From Mating Pool Distributions to Model Overfitting

From Mating Pool Distributions to Model Overfitting From Mating Pool Distributions to Model Overfitting Claudio F. Lima DEEI-FCT University of Algarve Campus de Gambelas 85-39, Faro, Portugal clima.research@gmail.com Fernando G. Lobo DEEI-FCT University

More information

From Mating Pool Distributions to Model Overfitting

From Mating Pool Distributions to Model Overfitting From Mating Pool Distributions to Model Overfitting Claudio F. Lima 1 Fernando G. Lobo 1 Martin Pelikan 2 1 Department of Electronics and Computer Science Engineering University of Algarve, Portugal 2

More information

Hierarchical BOA Solves Ising Spin Glasses and MAXSAT

Hierarchical BOA Solves Ising Spin Glasses and MAXSAT Hierarchical BOA Solves Ising Spin Glasses and MAXSAT Martin Pelikan 1,2 and David E. Goldberg 2 1 Computational Laboratory (Colab) Swiss Federal Institute of Technology (ETH) Hirschengraben 84 8092 Zürich,

More information

Upper Bounds on the Time and Space Complexity of Optimizing Additively Separable Functions

Upper Bounds on the Time and Space Complexity of Optimizing Additively Separable Functions Upper Bounds on the Time and Space Complexity of Optimizing Additively Separable Functions Matthew J. Streeter Computer Science Department and Center for the Neural Basis of Cognition Carnegie Mellon University

More information

Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage

Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage Kumara Sastry 1,2 and David E. Goldberg 1,3 1 Illinois Genetic Algorithms Laboratory (IlliGAL) 2 Department of Material

More information

Linkage Identification Based on Epistasis Measures to Realize Efficient Genetic Algorithms

Linkage Identification Based on Epistasis Measures to Realize Efficient Genetic Algorithms Linkage Identification Based on Epistasis Measures to Realize Efficient Genetic Algorithms Masaharu Munetomo Center for Information and Multimedia Studies, Hokkaido University, North 11, West 5, Sapporo

More information

Fitness Inheritance in Multi-Objective Optimization

Fitness Inheritance in Multi-Objective Optimization Fitness Inheritance in Multi-Objective Optimization Jian-Hung Chen David E. Goldberg Shinn-Ying Ho Kumara Sastry IlliGAL Report No. 2002017 June, 2002 Illinois Genetic Algorithms Laboratory (IlliGAL) Department

More information

Centric Selection: a Way to Tune the Exploration/Exploitation Trade-off

Centric Selection: a Way to Tune the Exploration/Exploitation Trade-off : a Way to Tune the Exploration/Exploitation Trade-off David Simoncini, Sébastien Verel, Philippe Collard, Manuel Clergue Laboratory I3S University of Nice-Sophia Antipolis / CNRS France Montreal, July

More information

Probabilistic Model-Building Genetic Algorithms

Probabilistic Model-Building Genetic Algorithms Probabilistic Model-Building Genetic Algorithms a.k.a. Estimation of Distribution Algorithms a.k.a. Iterated Density Estimation Algorithms Martin Pelikan Foreword Motivation Genetic and evolutionary computation

More information

State of the art in genetic algorithms' research

State of the art in genetic algorithms' research State of the art in genetic algorithms' Genetic Algorithms research Prabhas Chongstitvatana Department of computer engineering Chulalongkorn university A class of probabilistic search, inspired by natural

More information

Behaviour of the UMDA c algorithm with truncation selection on monotone functions

Behaviour of the UMDA c algorithm with truncation selection on monotone functions Mannheim Business School Dept. of Logistics Technical Report 01/2005 Behaviour of the UMDA c algorithm with truncation selection on monotone functions Jörn Grahl, Stefan Minner, Franz Rothlauf Technical

More information

Interaction-Detection Metric with Differential Mutual Complement for Dependency Structure Matrix Genetic Algorithm

Interaction-Detection Metric with Differential Mutual Complement for Dependency Structure Matrix Genetic Algorithm Interaction-Detection Metric with Differential Mutual Complement for Dependency Structure Matrix Genetic Algorithm Kai-Chun Fan Jui-Ting Lee Tian-Li Yu Tsung-Yu Ho TEIL Technical Report No. 2010005 April,

More information

c Copyright by Martin Pelikan, 2002

c Copyright by Martin Pelikan, 2002 c Copyright by Martin Pelikan, 2002 BAYESIAN OPTIMIZATION ALGORITHM: FROM SINGLE LEVEL TO HIERARCHY BY MARTIN PELIKAN DIPL., Comenius University, 1998 THESIS Submitted in partial fulfillment of the requirements

More information

Probabilistic Model-Building Genetic Algorithms

Probabilistic Model-Building Genetic Algorithms Probabilistic Model-Building Genetic Algorithms a.k.a. Estimation of Distribution Algorithms a.k.a. Iterated Density Estimation Algorithms Martin Pelikan Missouri Estimation of Distribution Algorithms

More information

Lecture 22. Introduction to Genetic Algorithms

Lecture 22. Introduction to Genetic Algorithms Lecture 22 Introduction to Genetic Algorithms Thursday 14 November 2002 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Readings: Sections 9.1-9.4, Mitchell Chapter 1, Sections

More information

Bounding the Population Size in XCS to Ensure Reproductive Opportunities

Bounding the Population Size in XCS to Ensure Reproductive Opportunities Bounding the Population Size in XCS to Ensure Reproductive Opportunities Martin V. Butz and David E. Goldberg Illinois Genetic Algorithms Laboratory (IlliGAL) University of Illinois at Urbana-Champaign

More information

Landscapes and Other Art Forms.

Landscapes and Other Art Forms. Landscapes and Other Art Forms. Darrell Whitley Computer Science, Colorado State University Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted

More information

A Tractable Walsh Analysis of SAT and its Implications for Genetic Algorithms

A Tractable Walsh Analysis of SAT and its Implications for Genetic Algorithms From: AAAI-98 Proceedings. Copyright 998, AAAI (www.aaai.org). All rights reserved. A Tractable Walsh Analysis of SAT and its Implications for Genetic Algorithms Soraya Rana Robert B. Heckendorn Darrell

More information

optimization problem x opt = argmax f(x). Definition: Let p(x;t) denote the probability of x in the P population at generation t. Then p i (x i ;t) =

optimization problem x opt = argmax f(x). Definition: Let p(x;t) denote the probability of x in the P population at generation t. Then p i (x i ;t) = Wright's Equation and Evolutionary Computation H. Mühlenbein Th. Mahnig RWCP 1 Theoretical Foundation GMD 2 Laboratory D-53754 Sankt Augustin Germany muehlenbein@gmd.de http://ais.gmd.de/οmuehlen/ Abstract:

More information

On the Impact of Objective Function Transformations on Evolutionary and Black-Box Algorithms

On the Impact of Objective Function Transformations on Evolutionary and Black-Box Algorithms On the Impact of Objective Function Transformations on Evolutionary and Black-Box Algorithms [Extended Abstract] Tobias Storch Department of Computer Science 2, University of Dortmund, 44221 Dortmund,

More information

Evolutionary computation

Evolutionary computation Evolutionary computation Andrea Roli andrea.roli@unibo.it DEIS Alma Mater Studiorum Università di Bologna Evolutionary computation p. 1 Evolutionary Computation Evolutionary computation p. 2 Evolutionary

More information

Optimization and Complexity

Optimization and Complexity Optimization and Complexity Decision Systems Group Brigham and Women s Hospital, Harvard Medical School Harvard-MIT Division of Health Sciences and Technology Aim Give you an intuition of what is meant

More information

Evolutionary Computation

Evolutionary Computation Evolutionary Computation - Computational procedures patterned after biological evolution. - Search procedure that probabilistically applies search operators to set of points in the search space. - Lamarck

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

Convergence Time for Linkage Model Building in Estimation of Distribution Algorithms

Convergence Time for Linkage Model Building in Estimation of Distribution Algorithms Convergence Time for Linkage Model Building in Estimation of Distribution Algorithms Hau-Jiun Yang Tian-Li Yu TEIL Technical Report No. 2009003 January, 2009 Taiwan Evolutionary Intelligence Laboratory

More information

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Jasjeet S. Sekhon UC Berkeley June 21, 2016 Jasjeet S. Sekhon (UC Berkeley) Methods for Massive

More information

Introduction. Genetic Algorithm Theory. Overview of tutorial. The Simple Genetic Algorithm. Jonathan E. Rowe

Introduction. Genetic Algorithm Theory. Overview of tutorial. The Simple Genetic Algorithm. Jonathan E. Rowe Introduction Genetic Algorithm Theory Jonathan E. Rowe University of Birmingham, UK GECCO 2012 The theory of genetic algorithms is beginning to come together into a coherent framework. However, there are

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators

Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators Andrea Mambrini 1 University of Birmingham, Birmingham UK 6th June 2013 1 / 33 Andrea Mambrini GSGP: theory-laden

More information

Efficient Discretization Scheduling in Multiple Dimensions. Laura A. Albert and David E. Goldberg. IlliGAL Report No February 2002

Efficient Discretization Scheduling in Multiple Dimensions. Laura A. Albert and David E. Goldberg. IlliGAL Report No February 2002 Efficient Discretization Scheduling in Multiple Dimensions Laura A. Albert and David E. Goldberg IlliGAL Report No. 2002006 February 2002 Illinois Genetic Algorithms Laboratory University of Illinois at

More information

Probabilistic Methods in Landscape Analysis: phase transitions, interaction structures, and complexity measures

Probabilistic Methods in Landscape Analysis: phase transitions, interaction structures, and complexity measures Probabilistic Methods in Landscape Analysis: phase transitions, interaction structures, and complexity measures Yong Gao and Joseph Culberson Department of Computing Science, University of Alberta Edmonton,

More information

Research Article Effect of Population Structures on Quantum-Inspired Evolutionary Algorithm

Research Article Effect of Population Structures on Quantum-Inspired Evolutionary Algorithm Applied Computational Intelligence and So Computing, Article ID 976202, 22 pages http://dx.doi.org/10.1155/2014/976202 Research Article Effect of Population Structures on Quantum-Inspired Evolutionary

More information

2-bit Flip Mutation Elementary Fitness Landscapes

2-bit Flip Mutation Elementary Fitness Landscapes RN/10/04 Research 15 September 2010 Note 2-bit Flip Mutation Elementary Fitness Landscapes Presented at Dagstuhl Seminar 10361, Theory of Evolutionary Algorithms, 8 September 2010 Fax: +44 (0)171 387 1397

More information

Analyzing the Evolutionary Pressures in XCS Martin V. Butz Institute for Psychology III University of Wurzburg Wurzburg, 977, Germany

Analyzing the Evolutionary Pressures in XCS Martin V. Butz Institute for Psychology III University of Wurzburg Wurzburg, 977, Germany Analyzing the Evolutionary Pressures in XCS Martin V. Butz and Martin Pelikan IlliGAL Report No. 219 February 21 Illinois Genetic Algorithms Laboratory University of Illinois at Urbana-Champaign 117 Transportation

More information

CSC 4510 Machine Learning

CSC 4510 Machine Learning 10: Gene(c Algorithms CSC 4510 Machine Learning Dr. Mary Angela Papalaskari Department of CompuBng Sciences Villanova University Course website: www.csc.villanova.edu/~map/4510/ Slides of this presenta(on

More information

Repeated Occurrences of the Baldwin Effect Can Guide Evolution on Rugged Fitness Landscapes

Repeated Occurrences of the Baldwin Effect Can Guide Evolution on Rugged Fitness Landscapes Repeated Occurrences of the Baldwin Effect Can Guide Evolution on Rugged Fitness Landscapes Reiji Suzuki and Takaya Arita Graduate School of Information Science, Nagoya University Furo-cho, Chikusa-ku,

More information

Gaussian EDA and Truncation Selection: Setting Limits for Sustainable Progress

Gaussian EDA and Truncation Selection: Setting Limits for Sustainable Progress Gaussian EDA and Truncation Selection: Setting Limits for Sustainable Progress Petr Pošík Czech Technical University, Faculty of Electrical Engineering, Department of Cybernetics Technická, 66 7 Prague

More information

Lecture 9 Evolutionary Computation: Genetic algorithms

Lecture 9 Evolutionary Computation: Genetic algorithms Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Simulation of natural evolution Genetic algorithms Case study: maintenance scheduling with genetic

More information

Density Modeling and Clustering Using Dirichlet Diffusion Trees

Density Modeling and Clustering Using Dirichlet Diffusion Trees p. 1/3 Density Modeling and Clustering Using Dirichlet Diffusion Trees Radford M. Neal Bayesian Statistics 7, 2003, pp. 619-629. Presenter: Ivo D. Shterev p. 2/3 Outline Motivation. Data points generation.

More information

Local Search and Optimization

Local Search and Optimization Local Search and Optimization Outline Local search techniques and optimization Hill-climbing Gradient methods Simulated annealing Genetic algorithms Issues with local search Local search and optimization

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

A.I.: Beyond Classical Search

A.I.: Beyond Classical Search A.I.: Beyond Classical Search Random Sampling Trivial Algorithms Generate a state randomly Random Walk Randomly pick a neighbor of the current state Both algorithms asymptotically complete. Overview Previously

More information

Chapter 8: Introduction to Evolutionary Computation

Chapter 8: Introduction to Evolutionary Computation Computational Intelligence: Second Edition Contents Some Theories about Evolution Evolution is an optimization process: the aim is to improve the ability of an organism to survive in dynamically changing

More information

New Epistasis Measures for Detecting Independently Optimizable Partitions of Variables

New Epistasis Measures for Detecting Independently Optimizable Partitions of Variables New Epistasis Measures for Detecting Independently Optimizable Partitions of Variables Dong-Il Seo, Sung-Soon Choi, and Byung-Ro Moon School of Computer Science & Engineering, Seoul National University

More information

Experimental Supplements to the Theoretical Analysis of EAs on Problems from Combinatorial Optimization

Experimental Supplements to the Theoretical Analysis of EAs on Problems from Combinatorial Optimization Experimental Supplements to the Theoretical Analysis of EAs on Problems from Combinatorial Optimization Patrick Briest, Dimo Brockhoff, Bastian Degener, Matthias Englert, Christian Gunia, Oliver Heering,

More information

Simulation of quantum computers with probabilistic models

Simulation of quantum computers with probabilistic models Simulation of quantum computers with probabilistic models Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. April 6, 2010 Vlad Gheorghiu (CMU) Simulation of quantum

More information

Timo Latvala Landscape Families

Timo Latvala Landscape Families HELSINKI UNIVERSITY OF TECHNOLOGY Department of Computer Science Laboratory for Theoretical Computer Science T-79.300 Postgraduate Course in Theoretical Computer Science Timo Latvala Landscape Families

More information

REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531

REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 U N I V E R S I T Y OF D O R T M U N D REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence

More information

Integer weight training by differential evolution algorithms

Integer weight training by differential evolution algorithms Integer weight training by differential evolution algorithms V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis University of Patras, Department of Mathematics, GR-265 00, Patras, Greece. e-mail: vpp

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Genetic Algorithm. Outline

Genetic Algorithm. Outline Genetic Algorithm 056: 166 Production Systems Shital Shah SPRING 2004 Outline Genetic Algorithm (GA) Applications Search space Step-by-step GA Mechanism Examples GA performance Other GA examples 1 Genetic

More information

Implicit Formae in Genetic Algorithms

Implicit Formae in Genetic Algorithms Implicit Formae in Genetic Algorithms Márk Jelasity ½ and József Dombi ¾ ¾ ½ Student of József Attila University, Szeged, Hungary jelasity@inf.u-szeged.hu Department of Applied Informatics, József Attila

More information

The Story So Far... The central problem of this course: Smartness( X ) arg max X. Possibly with some constraints on X.

The Story So Far... The central problem of this course: Smartness( X ) arg max X. Possibly with some constraints on X. Heuristic Search The Story So Far... The central problem of this course: arg max X Smartness( X ) Possibly with some constraints on X. (Alternatively: arg min Stupidness(X ) ) X Properties of Smartness(X)

More information

The Parameterized Complexity of Approximate Inference in Bayesian Networks

The Parameterized Complexity of Approximate Inference in Bayesian Networks The Parameterized Complexity of Approximate Inference in Bayesian Networks Johan Kwisthout j.kwisthout@donders.ru.nl http://www.dcc.ru.nl/johank/ Donders Center for Cognition Department of Artificial Intelligence

More information

Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis

Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis Juan Aparicio 1 Domingo Giménez 2 Martín González 1 José J. López-Espín 1 Jesús T. Pastor 1 1 Miguel Hernández

More information

Pengju

Pengju Introduction to AI Chapter04 Beyond Classical Search Pengju Ren@IAIR Outline Steepest Descent (Hill-climbing) Simulated Annealing Evolutionary Computation Non-deterministic Actions And-OR search Partial

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Evolutionary Computation. DEIS-Cesena Alma Mater Studiorum Università di Bologna Cesena (Italia)

Evolutionary Computation. DEIS-Cesena Alma Mater Studiorum Università di Bologna Cesena (Italia) Evolutionary Computation DEIS-Cesena Alma Mater Studiorum Università di Bologna Cesena (Italia) andrea.roli@unibo.it Evolutionary Computation Inspiring principle: theory of natural selection Species face

More information

Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization

Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization Deepak Singh Raipur Institute of Technology Raipur, India Vikas Singh ABV- Indian Institute of Information Technology

More information

Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in:

Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in: AA. 2014/2015 Bibliography Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in: M. R. Garey and D. S. Johnson, Computers and Intractability:

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

The Role of Crossover in Genetic Algorithms to Solve Optimization of a Function Problem Falih Hassan

The Role of Crossover in Genetic Algorithms to Solve Optimization of a Function Problem Falih Hassan The Role of Crossover in Genetic Algorithms to Solve Optimization of a Function Problem Falih Hassan ABSTRACT The genetic algorithm is an adaptive search method that has the ability for a smart search

More information

Finding Multiple Global Optima Exploiting Differential Evolution s Niching Capability

Finding Multiple Global Optima Exploiting Differential Evolution s Niching Capability Finding Multiple Global Optima Exploiting Differential Evolution s Niching Capability Michael G. Epitropakis Computational Intelligence Laboratory, Department of Mathematics, University of Patras, Greece.

More information

how should the GA proceed?

how should the GA proceed? how should the GA proceed? string fitness 10111 10 01000 5 11010 3 00011 20 which new string would be better than any of the above? (the GA does not know the mapping between strings and fitness values!)

More information

An Analysis on Recombination in Multi-Objective Evolutionary Optimization

An Analysis on Recombination in Multi-Objective Evolutionary Optimization An Analysis on Recombination in Multi-Objective Evolutionary Optimization Chao Qian, Yang Yu, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 20023, China

More information

8 Basics of Hypothesis Testing

8 Basics of Hypothesis Testing 8 Basics of Hypothesis Testing 4 Problems Problem : The stochastic signal S is either 0 or E with equal probability, for a known value E > 0. Consider an observation X = x of the stochastic variable X

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

COMS W4995 Introduction to Cryptography October 12, Lecture 12: RSA, and a summary of One Way Function Candidates.

COMS W4995 Introduction to Cryptography October 12, Lecture 12: RSA, and a summary of One Way Function Candidates. COMS W4995 Introduction to Cryptography October 12, 2005 Lecture 12: RSA, and a summary of One Way Function Candidates. Lecturer: Tal Malkin Scribes: Justin Cranshaw and Mike Verbalis 1 Introduction In

More information

Improved TBL algorithm for learning context-free grammar

Improved TBL algorithm for learning context-free grammar Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 267 274 2007 PIPS Improved TBL algorithm for learning context-free grammar Marcin Jaworski

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

Beta Damping Quantum Behaved Particle Swarm Optimization

Beta Damping Quantum Behaved Particle Swarm Optimization Beta Damping Quantum Behaved Particle Swarm Optimization Tarek M. Elbarbary, Hesham A. Hefny, Atef abel Moneim Institute of Statistical Studies and Research, Cairo University, Giza, Egypt tareqbarbary@yahoo.com,

More information

Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data

Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data Juan Torres 1, Ashraf Saad 2, Elliot Moore 1 1 School of Electrical and Computer

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Real Annealing and Simulated Annealing Metropolis Algorithm Template of SA A Simple Example References

More information

Evolutionary Design I

Evolutionary Design I Evolutionary Design I Jason Noble jasonn@comp.leeds.ac.uk Biosystems group, School of Computing Evolutionary Design I p.1/29 This lecture Harnessing evolution in a computer program How to construct a genetic

More information

Parallel Genetic Algorithms

Parallel Genetic Algorithms Parallel Genetic Algorithms for the Calibration of Financial Models Riccardo Gismondi June 13, 2008 High Performance Computing in Finance and Insurance Research Institute for Computational Methods Vienna

More information

Evolutionary Algorithms How to Cope With Plateaus of Constant Fitness and When to Reject Strings of The Same Fitness

Evolutionary Algorithms How to Cope With Plateaus of Constant Fitness and When to Reject Strings of The Same Fitness Evolutionary Algorithms How to Cope With Plateaus of Constant Fitness and When to Reject Strings of The Same Fitness Thomas Jansen and Ingo Wegener FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund,

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14 LOCAL SEARCH Today Reading AIMA Chapter 4.1-4.2, 5.1-5.2 Goals Local search algorithms n hill-climbing search n simulated annealing n local beam search n genetic algorithms n gradient descent and Newton-Rhapson

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Blackbox Optimization Marc Toussaint U Stuttgart Blackbox Optimization The term is not really well defined I use it to express that only f(x) can be evaluated f(x) or 2 f(x)

More information

1. Computação Evolutiva

1. Computação Evolutiva 1. Computação Evolutiva Renato Tinós Departamento de Computação e Matemática Fac. de Filosofia, Ciência e Letras de Ribeirão Preto Programa de Pós-Graduação Em Computação Aplicada 1.6. Aspectos Teóricos*

More information

Chapter 1 - Lecture 3 Measures of Location

Chapter 1 - Lecture 3 Measures of Location Chapter 1 - Lecture 3 of Location August 31st, 2009 Chapter 1 - Lecture 3 of Location General Types of measures Median Skewness Chapter 1 - Lecture 3 of Location Outline General Types of measures What

More information

Evolving Presentations of Genetic Information: Motivation, Methods, and Analysis

Evolving Presentations of Genetic Information: Motivation, Methods, and Analysis Evolving Presentations of Genetic Information: Motivation, Methods, and Analysis Peter Lee Stanford University PO Box 14832 Stanford, CA 94309-4832 (650)497-6826 peterwlee@stanford.edu June 5, 2002 Abstract

More information

A Genetic Algorithm Approach for Doing Misuse Detection in Audit Trail Files

A Genetic Algorithm Approach for Doing Misuse Detection in Audit Trail Files A Genetic Algorithm Approach for Doing Misuse Detection in Audit Trail Files Pedro A. Diaz-Gomez and Dean F. Hougen Robotics, Evolution, Adaptation, and Learning Laboratory (REAL Lab) School of Computer

More information