Finding Ground States of SK Spin Glasses with hboa and GAs

Size: px
Start display at page:

Download "Finding Ground States of SK Spin Glasses with hboa and GAs"

Transcription

1 Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with hboa and GAs Martin Pelikan, Helmut G. Katzgraber, & Sigismund Kobe Missouri Estimation of Distribution Algorithms Laboratory (MEDAL) University of Missouri, St. Louis, MO Theoretische Physik ETH Zürich, Switzerland Institut fr Theoretische Physik Technische Universität Dresden, Germany

2 Background Background Spin glasses are prototypical models for disordered systems. Important topic in theoretical physics for several decades. Popular also as test problem for evolutionary algorithms Can generate many random instances of varying difficulty. Highly multimodal landscape. Strong interactions between variables. Similarities with other difficult NP-complete problems. Usually spins arranged on 2D or 3D lattices, but only few studies for the infinitely dimensional SK spin glass. Yet the infinitely dimensional systems are most difficult and interesting.

3 Purpose Purpose Develop and test a robust approach to reliably solving large instances of SK spin glass and other NP complete problems. Don t compromise problem size or reliability. Two target areas Computational physics. Optimization.

4 Outline 1. Sherrington-Kirkpatrick (SK) spin glass. 2. Branch and bound for SK spin glass. 3. Approaches to reliable solution of large SK instances. 4. Future work. 5. Summary and conclusions.

5 SK Spin Glass SK spin glass (Sherrington & Kirkpatrick, 1978) Contains n spins s 1, s 2,..., s n. Ising spin can be in two states: +1 or 1. All pairs of spins interact. Interaction of spins s i and s j specified by real-valued coupling J i,j. Spin glass instance is defined by set of couplings {J i,j }. Spin configuration is defined by the values of spins {s i }.

6 Ground States of SK Spin Glasses Energy Energy of a spin configuration C is given by H(C) = i<j J i,j s i s j Ground states are spin configurations that minimize energy. Finding ground states of SK instances is NP-complete. Compare with other standard spin glass types 2D: Spin interacts with only 4 neighbors in 2D lattice. 3D: Spin interacts with only 6 neighbors in 3D lattice. SK: Spin interacts with all other spins. 2D is polynomially solvable; 3D and SK are NP-complete.

7 Random Instances of SK Spin Glass Random spin glass instances Spin glass models usually studied over large sets of random instances. Two most common distributions for couplings Gaussian: N(0, 1). ±J: +1 or 1 with equal probability. Sometimes a distance metric is imposed and coupling strength decreases with distance. Instances used in this work We use Gaussian couplings from N(0, 1).

8 Branch and Bound for SK Spin Glass Basic idea Traverse the entire search space (try all spin configurations). Each level decides on one spin (+1 or -1). Each leaf encodes a unique spin configuration. Branches that lead to provably suboptimal solutions are cut. Why? BB is inefficient, but can verify the global optimum.

9 Iterative Branch and Bound Basic idea Hartwig, Daske, and Kobe (1984). Reduce the system to consider only first i spins. Solve for i = 2 to i = n with step 1. Use previous results to provide better bounds. Denote best energy for for first i spins by f i. Lower bound on best energy for first j spins given by j 1 fj fj 1 J i,j. i=1 Effects of iterative approach We must solve n 1 problems instead of 1. But the overall performance much better.

10 Current Situation and Goal Current situation We have BB which is guaranteed solve small instances. We have hboa and other evolutionary algorithms which can solve larger instances but we need to set Population size. Number of generations. Goal Find reliable optima of relatively large instances. Don t stick with small problems because of BB. Don t compromise reliability by guessing EA parameters wildly.

11 Basic Approach Step 1: Branch and bound Generate many instances for small problems solvable with BB. Solve each instance with iterative BB. Step 2: hboa with optimal settings Apply hboa to each new instance. Find accurate statistical model for hboa parameters. Use model to predict sufficient parameters for larger problems. Step 3: Going to larger problems Apply hboa with the conservative settings from step 2 to find reliable global optima of larger instances. Go to step 2 (to get to larger and larger problems).

12 Step 1: Solve Small Problems with BB Prepare instances Generate 10,000 random SK instances for n = 20 to 80. This gives a total of 310,000 unique problem instances. Solve each instance with BB to find global optimum.

13 Step 2: Run hboa and Analyze Parameters Basic setup hboa with default parameters. Only population size and number of generations tuned. Deterministic 1-bit hill climber improves all solutions. Maximum number of generations is set to n. Population size set with bisection for each instance (10 successes in 10 independent runs). Analysis Total of 3,100,000 hboa runs to analyze. Analyze the distribution of the following Population size. Number of generations. Number of evaluations. Number of flips of hill climber.

14 Step 2: Results Population size appears to follow log-normal distribution. Number of generations is very small in all cases n = 20 n = Frequency Frequency Population size Population size

15 Step 2: Results Estimate parameters of pop. size distribution for each n. Derive upper bound from 0.001% tail of the distribution, which sould solve % instances. Find a fit of this upper bound. Predict pop. size for larger problems (up to n = 200). Population size Fit of % percentile Power law fit 95% prediction bounds percentile Problem size Population size Prediction for larger instances Power law fit 95% prediction bounds Problem size

16 Step 3: Find Reliable Optima of Larger Instances Starting point Predicted bound on pop. size to solve % instances. Prepare larger instances Generate 1,000 instances for n = 100 to 200. For each instance Use estimated upper bound of the population size. Use maximum number of generations of n. Make 10 hboa runs on each instance to find global optimum. Record the best solution found. All runs should agree.

17 Step 2 Revisited: Run hboa and Analyze Parameters Run and analyze hboa Run hboa for n = 100 to 200 as for smaller instances. Repeat bisection 10 times for each instance. Analysis Total of 2,100,000 successful hboa runs. Do the analysis as for smaller problems.

18 Step 2 Revisited: Results Estimate parameters of pop. size distribution for each n. Derive upper bound from 0.001% tail of the distribution. Find a fit of this upper bound. Predict pop. size for larger problems (up to n = 300). Population size Fit of % percentile Power law fit 95% prediction bounds percentile Problem size Population size Prediction for larger instances Power law fit 95% prediction bounds Problem size

19 So How Does It Work? How does it work? Incrementally increase problem size. Set parameters using model based on smaller problems. If distributions are easy to model and the growth of different parameters can be fit reliably, this allows us to reliably solve large instances even when no complete algorithm is tractable. Ultimate goal Go to problems with 4,000 spins or so. Important Don t make too big steps to ensure tractability and reliability.

20 hboa Results for n Mean number of evaluations Problem size

21 Other Approaches: Fit Distribution Parameters Basic idea Fit distribution of a quantity (e.g. pop. size). Fit a model to the parameters of the distribution. Estimate parameters for larger problems from the fit. Compute tails from estimated parameters. Population size Log mean Power law fit for mean Log standard deviation Power law fit for std. dev Problem size Number of iterations Log mean Power law fit (mean) Log standard deviation Power law fit (std. dev.) Problem size

22 Other Approaches: Population Doubling Basic idea Related to parameter-less genetic algorithms. Start with a reasonable population size. Make 10 runs (can change). Double the population and repeat. Terminate doubling when All 10 runs result in the same solution. Last couple of rounds resulted in the same solution.

23 Comparison: hboa vs. GA (Uniform Crossover) Number of evaluations Number of flips Num. GA (U) evals. / num. hboa evals Number of spins Num. GA (U) flips / num. hboa flips Number of spins

24 Comparison: Uniform vs. Two-Point Crossover Number of evaluations Number of flips Num. GA (U) evals. / num. GA (2P) evals Number of spins Num. GA (U) flips / num. GA (2P) flips Number of spins

25 Conclusions and Future Work Conclusions The proposed approaches hold big promise for reliable solution of extremely large problems. The proposed approaches can be used with other optimization techniques which require adequate parameter settings. SK spin glass closely related to other difficult problems, such as protein folding. Future work Compare hboa & GA to other techniques Extremal optimization (EO). Hysteretic optimization (HO). Create efficient hybrids of hboa, GA, EO, HO, and BB. Apply other efficiency enhancement techniques. Further increase problem size to 1,000 4,000 and more.

26 Acknowledgments Acknowledgments NSF; NSF CAREER grant ECS U.S. Air Force, AFOSR; FA University of Missouri; High Performance Computing Collaboratory sponsored by Information Technology Services; Research Award; Research Board.

Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with Hierarchical BOA and Genetic Algorithms

Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with Hierarchical BOA and Genetic Algorithms Finding Ground States of Sherrington-Kirkpatrick Spin Glasses with Hierarchical BOA and Genetic Algorithms Martin Pelikan, Helmut G. Katzgraber and Sigismund Kobe MEDAL Report No. 284 January 28 Abstract

More information

Performance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor Interactions and Tunable Overlap

Performance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor Interactions and Tunable Overlap Performance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor Interactions and Tunable Overlap Martin Pelikan, Kumara Sastry, David E. Goldberg, Martin V. Butz, and Mark Hauschild Missouri

More information

Analysis of Epistasis Correlation on NK Landscapes. Landscapes with Nearest Neighbor Interactions

Analysis of Epistasis Correlation on NK Landscapes. Landscapes with Nearest Neighbor Interactions Analysis of Epistasis Correlation on NK Landscapes with Nearest Neighbor Interactions Missouri Estimation of Distribution Algorithms Laboratory (MEDAL University of Missouri, St. Louis, MO http://medal.cs.umsl.edu/

More information

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Martin Pelikan 1, Alexander K. Hartmann 2, and Kumara Sastry 1 Dept. of Math and Computer Science, 320 CCB University of Missouri at

More information

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses

Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses Martin Pelikan and Alexander K. Hartmann MEDAL Report No. 2006002 March 2006 Abstract This paper analyzes the hierarchical Bayesian

More information

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Mark Hauschild Missouri Estimation of Distribution Algorithms Laboratory (MEDAL) Dept. of Math and Computer Science, 320 CCB

More information

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses

Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses Mark Hauschild, Martin Pelikan, Claudio F. Lima, and Kumara Sastry IlliGAL Report No. 2007008 January 2007 Illinois Genetic

More information

Analysis of Epistasis Correlation on NK Landscapes with Nearest-Neighbor Interactions

Analysis of Epistasis Correlation on NK Landscapes with Nearest-Neighbor Interactions Analysis of Epistasis Correlation on NK Landscapes with Nearest-Neighbor Interactions Martin Pelikan MEDAL Report No. 20102 February 2011 Abstract Epistasis correlation is a measure that estimates the

More information

Initial-Population Bias in the Univariate Estimation of Distribution Algorithm

Initial-Population Bias in the Univariate Estimation of Distribution Algorithm Initial-Population Bias in the Univariate Estimation of Distribution Algorithm Martin Pelikan and Kumara Sastry MEDAL Report No. 9 January 9 Abstract This paper analyzes the effects of an initial-population

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 4 Metaheuristic Algorithms Sarah Gaggl Dresden, 5th May 2017 Agenda 1 Introduction 2 Constraint

More information

Frustration and optimization:

Frustration and optimization: Frustration and optimization: What magnetic materials and proteins have in common Sigismund Kobe Institut für Theoretische Physik, Technische Universität Dresden, D 01062 Dresden, Germany Outline» Ising

More information

Optimization and Frustration:

Optimization and Frustration: Optimization and Frustration: The Dynamical Lattice Model of Proteins Sigismund Kobe and Frank Dressel Institut für Theoretische Physik, Technische Universität Dresden, D 01062 Dresden, Germany (http://www.physik.tu-dresden.de/~fdressel/dlm-main.html)

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Hierarchical BOA Solves Ising Spin Glasses and MAXSAT

Hierarchical BOA Solves Ising Spin Glasses and MAXSAT Hierarchical BOA Solves Ising Spin Glasses and MAXSAT Martin Pelikan 1,2 and David E. Goldberg 2 1 Computational Laboratory (Colab) Swiss Federal Institute of Technology (ETH) Hirschengraben 84 8092 Zürich,

More information

Spurious Dependencies and EDA Scalability

Spurious Dependencies and EDA Scalability Spurious Dependencies and EDA Scalability Elizabeth Radetic, Martin Pelikan MEDAL Report No. 2010002 January 2010 Abstract Numerous studies have shown that advanced estimation of distribution algorithms

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/ peter/talks/sinica.pdf e-mail:peter@physics.ucsc.edu Supported by the Hierarchical Systems Research Foundation.

More information

Estimation-of-Distribution Algorithms. Discrete Domain.

Estimation-of-Distribution Algorithms. Discrete Domain. Estimation-of-Distribution Algorithms. Discrete Domain. Petr Pošík Introduction to EDAs 2 Genetic Algorithms and Epistasis.....................................................................................

More information

Timo Latvala Landscape Families

Timo Latvala Landscape Families HELSINKI UNIVERSITY OF TECHNOLOGY Department of Computer Science Laboratory for Theoretical Computer Science T-79.300 Postgraduate Course in Theoretical Computer Science Timo Latvala Landscape Families

More information

Landscapes and Other Art Forms.

Landscapes and Other Art Forms. Landscapes and Other Art Forms. Darrell Whitley Computer Science, Colorado State University Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted

More information

Energy-Decreasing Dynamics in Mean-Field Spin Models

Energy-Decreasing Dynamics in Mean-Field Spin Models arxiv:cond-mat/0210545 v1 24 Oct 2002 Energy-Decreasing Dynamics in Mean-Field Spin Models L. Bussolari, P. Contucci, M. Degli Esposti, C. Giardinà Dipartimento di Matematica dell Università di Bologna,

More information

Probabilistic Model-Building Genetic Algorithms

Probabilistic Model-Building Genetic Algorithms Probabilistic Model-Building Genetic Algorithms Martin Pelikan Dept. of Math. and Computer Science University of Missouri at St. Louis St. Louis, Missouri pelikan@cs.umsl.edu Foreword! Motivation Genetic

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

Who Has Heard of This Problem? Courtesy: Jeremy Kun

Who Has Heard of This Problem? Courtesy: Jeremy Kun P vs. NP 02-201 Who Has Heard of This Problem? Courtesy: Jeremy Kun Runtime Analysis Last time, we saw that there is no solution to the Halting Problem. Halting Problem: Determine if a program will halt.

More information

New insights from one-dimensional spin glasses.

New insights from one-dimensional spin glasses. New insights from one-dimensional spin glasses http://katzgraber.org/stuff/leipzig 1 New insights from one-dimensional spin glasses Helmut G. Katzgraber http://katzgraber.org 2 New insights from one-dimensional

More information

Is the Sherrington-Kirkpatrick Model relevant for real spin glasses?

Is the Sherrington-Kirkpatrick Model relevant for real spin glasses? Is the Sherrington-Kirkpatrick Model relevant for real spin glasses? A. P. Young Department of Physics, University of California, Santa Cruz, California 95064 E-mail: peter@physics.ucsc.edu Abstract. I

More information

Sparse Proteomics Analysis (SPA)

Sparse Proteomics Analysis (SPA) Sparse Proteomics Analysis (SPA) Toward a Mathematical Theory for Feature Selection from Forward Models Martin Genzel Technische Universität Berlin Winter School on Compressed Sensing December 5, 2015

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Blackbox Optimization Marc Toussaint U Stuttgart Blackbox Optimization The term is not really well defined I use it to express that only f(x) can be evaluated f(x) or 2 f(x)

More information

Quantum annealing for problems with ground-state degeneracy

Quantum annealing for problems with ground-state degeneracy Proceedings of the International Workshop on Statistical-Mechanical Informatics September 14 17, 2008, Sendai, Japan Quantum annealing for problems with ground-state degeneracy Yoshiki Matsuda 1, Hidetoshi

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 8: Simulated annealing Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation

More information

Nonlinear Equations and Continuous Optimization

Nonlinear Equations and Continuous Optimization Nonlinear Equations and Continuous Optimization Sanzheng Qiao Department of Computing and Software McMaster University March, 2014 Outline 1 Introduction 2 Bisection Method 3 Newton s Method 4 Systems

More information

Spin glasses and Adiabatic Quantum Computing

Spin glasses and Adiabatic Quantum Computing Spin glasses and Adiabatic Quantum Computing A.P. Young alk at the Workshop on heory and Practice of Adiabatic Quantum Computers and Quantum Simulation, ICP, rieste, August 22-26, 2016 Spin Glasses he

More information

State of the art in genetic algorithms' research

State of the art in genetic algorithms' research State of the art in genetic algorithms' Genetic Algorithms research Prabhas Chongstitvatana Department of computer engineering Chulalongkorn university A class of probabilistic search, inspired by natural

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 19 2017 Part 5 out of 5 Last week was all about Context-Free Languages Context-Free

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses p.1 Phase Transitions in Spin Glasses Peter Young http://physics.ucsc.edu/ peter/talks/bifi2008.pdf e-mail:peter@physics.ucsc.edu Work supported by the and the Hierarchical Systems Research Foundation.

More information

6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM

6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM 6. Application to the Traveling Salesman Problem 92 6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM The properties that have the most significant influence on the maps constructed by Kohonen s algorithm

More information

Algebraic and Geometric ideas in the theory of Discrete Optimization

Algebraic and Geometric ideas in the theory of Discrete Optimization Algebraic and Geometric ideas in the theory of Discrete Optimization Jesús A. De Loera, UC Davis Three Lectures based on the book: Algebraic & Geometric Ideas in the Theory of Discrete Optimization (SIAM-MOS

More information

Tractable & Intractable Problems

Tractable & Intractable Problems Tractable & Intractable Problems We will be looking at : What is a P and NP problem NP-Completeness The question of whether P=NP The Traveling Salesman problem again Programming and Data Structures 1 Polynomial

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Jun 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Jun 2003 Performance imitations of Flat Histogram Methods and Optimality of Wang-andau Sampling arxiv:cond-mat/030608v [cond-mat.stat-mech] 5 Jun 2003 P. Dayal, S. Trebst,2, S. Wessel, D. Würtz, M. Troyer,2, S.

More information

Local Search and Optimization

Local Search and Optimization Local Search and Optimization Outline Local search techniques and optimization Hill-climbing Gradient methods Simulated annealing Genetic algorithms Issues with local search Local search and optimization

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

DETECTING THE FAULT FROM SPECTROGRAMS BY USING GENETIC ALGORITHM TECHNIQUES

DETECTING THE FAULT FROM SPECTROGRAMS BY USING GENETIC ALGORITHM TECHNIQUES DETECTING THE FAULT FROM SPECTROGRAMS BY USING GENETIC ALGORITHM TECHNIQUES Amin A. E. 1, El-Geheni A. S. 2, and El-Hawary I. A **. El-Beali R. A. 3 1 Mansoura University, Textile Department 2 Prof. Dr.

More information

Looking Under the EA Hood with Price s Equation

Looking Under the EA Hood with Price s Equation Looking Under the EA Hood with Price s Equation Jeffrey K. Bassett 1, Mitchell A. Potter 2, and Kenneth A. De Jong 1 1 George Mason University, Fairfax, VA 22030 {jbassett, kdejong}@cs.gmu.edu 2 Naval

More information

Pengju

Pengju Introduction to AI Chapter04 Beyond Classical Search Pengju Ren@IAIR Outline Steepest Descent (Hill-climbing) Simulated Annealing Evolutionary Computation Non-deterministic Actions And-OR search Partial

More information

Dynamic Optimization using Self-Adaptive Differential Evolution

Dynamic Optimization using Self-Adaptive Differential Evolution Dynamic Optimization using Self-Adaptive Differential Evolution IEEE Congress on Evolutionary Computation (IEEE CEC 2009), Trondheim, Norway, May 18-21, 2009 J. Brest, A. Zamuda, B. Bošković, M. S. Maučec,

More information

Almost transparent short proofs for NP R

Almost transparent short proofs for NP R Brandenburgische Technische Universität, Cottbus, Germany From Dynamics to Complexity: A conference celebrating the work of Mike Shub Toronto, May 10, 2012 Supported by DFG under GZ:ME 1424/7-1 Outline

More information

Interplanetary Trajectory Optimization using a Genetic Algorithm

Interplanetary Trajectory Optimization using a Genetic Algorithm Interplanetary Trajectory Optimization using a Genetic Algorithm Abby Weeks Aerospace Engineering Dept Pennsylvania State University State College, PA 16801 Abstract Minimizing the cost of a space mission

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Bracketing Methods Roots of Equations Given a function f(x), the roots are those values of x that

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

A Gentle Introduction to the Time Complexity Analysis of Evolutionary Algorithms

A Gentle Introduction to the Time Complexity Analysis of Evolutionary Algorithms A Gentle Introduction to the Time Complexity Analysis of Evolutionary Algorithms Pietro S. Oliveto Department of Computer Science, University of Sheffield, UK Symposium Series in Computational Intelligence

More information

Complexity, Parallel Computation and Statistical Physics

Complexity, Parallel Computation and Statistical Physics Complexity, Parallel Computation and Statistical Physics Jon Machta! Measures of Complexity workshop Santa Fe Institute January 13, 2011 Outline Overview and motivation: What aspect of natural complexity

More information

Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in:

Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in: AA. 2014/2015 Bibliography Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in: M. R. Garey and D. S. Johnson, Computers and Intractability:

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

Studying Spin Glasses via Combinatorial Optimization

Studying Spin Glasses via Combinatorial Optimization Studying Spin Glasses via Combinatorial Optimization Frauke Liers Emmy Noether Junior Research Group, Department of Computer Science, University of Cologne Dec 11 th, 2007 What we are interested in...

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems S 331: rtificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines Or

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Matt Weinberg Scribe: Sanjeev Arora One of the running themes in this course is

More information

CSC 4510 Machine Learning

CSC 4510 Machine Learning 10: Gene(c Algorithms CSC 4510 Machine Learning Dr. Mary Angela Papalaskari Department of CompuBng Sciences Villanova University Course website: www.csc.villanova.edu/~map/4510/ Slides of this presenta(on

More information

Probabilistic Model-Building Genetic Algorithms

Probabilistic Model-Building Genetic Algorithms Probabilistic Model-Building Genetic Algorithms a.k.a. Estimation of Distribution Algorithms a.k.a. Iterated Density Estimation Algorithms Martin Pelikan Foreword Motivation Genetic and evolutionary computation

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Lecture 9 Evolutionary Computation: Genetic algorithms

Lecture 9 Evolutionary Computation: Genetic algorithms Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Simulation of natural evolution Genetic algorithms Case study: maintenance scheduling with genetic

More information

Toward Precise PLRU Cache Analysis

Toward Precise PLRU Cache Analysis Toward Precise PLRU Cache Analysis Daniel Grund Jan Reineke 2 Saarland University, Saarbrücken, Germany 2 University of California, Berkeley, USA Workshop on Worst-Case Execution-Time Analysis 2 Outline

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... Introduce the topic of numerical methods Consider the Error analysis and sources of errors Introduction A numerical method which

More information

Statistical Physics of The Symmetric Group. Mobolaji Williams Harvard Physics Oral Qualifying Exam Dec. 12, 2016

Statistical Physics of The Symmetric Group. Mobolaji Williams Harvard Physics Oral Qualifying Exam Dec. 12, 2016 Statistical Physics of The Symmetric Group Mobolaji Williams Harvard Physics Oral Qualifying Exam Dec. 12, 2016 1 Theoretical Physics of Living Systems Physics Particle Physics Condensed Matter Astrophysics

More information

Metaheuristics and Local Search

Metaheuristics and Local Search Metaheuristics and Local Search 8000 Discrete optimization problems Variables x 1,..., x n. Variable domains D 1,..., D n, with D j Z. Constraints C 1,..., C m, with C i D 1 D n. Objective function f :

More information

Part II. Combinatorial Models. 5 A Sketch of Basic Statistical Physics. 5.1 Thermodynamics

Part II. Combinatorial Models. 5 A Sketch of Basic Statistical Physics. 5.1 Thermodynamics Part II Combinatorial Models 5 A Sketch of Basic Statistical Physics Statistical physics = Thermodynamics (macroscopic) + Statistical mechanics (microscopic) 5.1 Thermodynamics A thermodynamic system is

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

Numerical Methods Lecture 7 - Statistics, Probability and Reliability

Numerical Methods Lecture 7 - Statistics, Probability and Reliability Topics Numerical Methods Lecture 7 - Statistics, Probability and Reliability A summary of statistical analysis A summary of probability methods A summary of reliability analysis concepts Statistical Analysis

More information

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Wang-Landau sampling for Quantum Monte Carlo Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Overview Classical Monte Carlo First order phase transitions Classical Wang-Landau

More information

Metaheuristics and Local Search. Discrete optimization problems. Solution approaches

Metaheuristics and Local Search. Discrete optimization problems. Solution approaches Discrete Mathematics for Bioinformatics WS 07/08, G. W. Klau, 31. Januar 2008, 11:55 1 Metaheuristics and Local Search Discrete optimization problems Variables x 1,...,x n. Variable domains D 1,...,D n,

More information

Probabilistic Model-Building Genetic Algorithms

Probabilistic Model-Building Genetic Algorithms Probabilistic Model-Building Genetic Algorithms a.k.a. Estimation of Distribution Algorithms a.k.a. Iterated Density Estimation Algorithms Martin Pelikan Missouri Estimation of Distribution Algorithms

More information

How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms

How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms Technical University of Denmark (Workshop Computational Approaches to Evolution, March 19, 2014) 1/22 Context Running time/complexity

More information

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations Methods for Systems of Methods for Systems of Outline Scientific Computing: An Introductory Survey Chapter 5 1 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Extremal Optimization for Low-Energy Excitations of very large Spin-Glasses

Extremal Optimization for Low-Energy Excitations of very large Spin-Glasses Etremal Optimization for Low-Energy Ecitations of very large Spin-Glasses Stefan Boettcher Dept of Physics Collaborators: Senior: Allon Percus (Los Alamos) Paolo Sibani (Odense-DK) Michelangelo Grigni

More information

Centric Selection: a Way to Tune the Exploration/Exploitation Trade-off

Centric Selection: a Way to Tune the Exploration/Exploitation Trade-off : a Way to Tune the Exploration/Exploitation Trade-off David Simoncini, Sébastien Verel, Philippe Collard, Manuel Clergue Laboratory I3S University of Nice-Sophia Antipolis / CNRS France Montreal, July

More information

Representations of All Solutions of Boolean Programming Problems

Representations of All Solutions of Boolean Programming Problems Representations of All Solutions of Boolean Programming Problems Utz-Uwe Haus and Carla Michini Institute for Operations Research Department of Mathematics ETH Zurich Rämistr. 101, 8092 Zürich, Switzerland

More information

Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis

Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis Juan Aparicio 1 Domingo Giménez 2 Martín González 1 José J. López-Espín 1 Jesús T. Pastor 1 1 Miguel Hernández

More information

Metaheuristics. 2.3 Local Search 2.4 Simulated annealing. Adrian Horga

Metaheuristics. 2.3 Local Search 2.4 Simulated annealing. Adrian Horga Metaheuristics 2.3 Local Search 2.4 Simulated annealing Adrian Horga 1 2.3 Local Search 2 Local Search Other names: Hill climbing Descent Iterative improvement General S-Metaheuristics Old and simple method

More information

Bounded Approximation Algorithms

Bounded Approximation Algorithms Bounded Approximation Algorithms Sometimes we can handle NP problems with polynomial time algorithms which are guaranteed to return a solution within some specific bound of the optimal solution within

More information

Behaviour of the UMDA c algorithm with truncation selection on monotone functions

Behaviour of the UMDA c algorithm with truncation selection on monotone functions Mannheim Business School Dept. of Logistics Technical Report 01/2005 Behaviour of the UMDA c algorithm with truncation selection on monotone functions Jörn Grahl, Stefan Minner, Franz Rothlauf Technical

More information

P and NP. Inge Li Gørtz. Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides

P and NP. Inge Li Gørtz. Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides P and NP Inge Li Gørtz Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides 1 Overview Problem classification Tractable Intractable Reductions Tools for classifying problems

More information

Local and Online search algorithms

Local and Online search algorithms Local and Online search algorithms Chapter 4 Chapter 4 1 Outline Local search algorithms Hill-climbing Simulated annealing Genetic algorithms Searching with non-deterministic actions Searching with partially/no

More information

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Yong Wang and Zhi-Zhong Liu School of Information Science and Engineering Central South University ywang@csu.edu.cn

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #23 Limits of Computing UC Berkeley EECS Sr Lecturer SOE Dan Researchers at CMU have built a system which searches the Web for images constantly and tries to decide

More information

A Fast Heuristic for GO and MINLP

A Fast Heuristic for GO and MINLP A Fast Heuristic for GO and MINLP John W. Chinneck, M. Shafique, Systems and Computer Engineering Carleton University, Ottawa, Canada Introduction Goal: Find a good quality GO/MINLP solution quickly. Trade

More information

1-D Optimization. Lab 16. Overview of Line Search Algorithms. Derivative versus Derivative-Free Methods

1-D Optimization. Lab 16. Overview of Line Search Algorithms. Derivative versus Derivative-Free Methods Lab 16 1-D Optimization Lab Objective: Many high-dimensional optimization algorithms rely on onedimensional optimization methods. In this lab, we implement four line search algorithms for optimizing scalar-valued

More information

CSC 8301 Design & Analysis of Algorithms: Lower Bounds

CSC 8301 Design & Analysis of Algorithms: Lower Bounds CSC 8301 Design & Analysis of Algorithms: Lower Bounds Professor Henry Carter Fall 2016 Recap Iterative improvement algorithms take a feasible solution and iteratively improve it until optimized Simplex

More information

A.I.: Beyond Classical Search

A.I.: Beyond Classical Search A.I.: Beyond Classical Search Random Sampling Trivial Algorithms Generate a state randomly Random Walk Randomly pick a neighbor of the current state Both algorithms asymptotically complete. Overview Previously

More information

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples Lecture 23 Computational Complexity 6.006 Fall 2011 Lecture 23: Computational Complexity Lecture Overview P, EXP, R Most problems are uncomputable NP Hardness & completeness Reductions Definitions: P =

More information

ground state degeneracy ground state energy

ground state degeneracy ground state energy Searching Ground States in Ising Spin Glass Systems Steven Homer Computer Science Department Boston University Boston, MA 02215 Marcus Peinado German National Research Center for Information Technology

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

On the Space Complexity of Parameterized Problems

On the Space Complexity of Parameterized Problems On the Space Complexity of Parameterized Problems Michael Elberfeld Christoph Stockhusen Till Tantau Institute for Theoretical Computer Science Universität zu Lübeck D-23538 Lübeck, Germany {elberfeld,stockhus,tantau}@tcs.uni-luebeck.de

More information

Evolutionary computation

Evolutionary computation Evolutionary computation Andrea Roli andrea.roli@unibo.it DEIS Alma Mater Studiorum Università di Bologna Evolutionary computation p. 1 Evolutionary Computation Evolutionary computation p. 2 Evolutionary

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

Computational statistics

Computational statistics Computational statistics Combinatorial optimization Thierry Denœux February 2017 Thierry Denœux Computational statistics February 2017 1 / 37 Combinatorial optimization Assume we seek the maximum of f

More information

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Tractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?» Standard working definition: polynomial time» On an input

More information