ground state degeneracy ground state energy

Size: px
Start display at page:

Download "ground state degeneracy ground state energy"

Transcription

1 Searching Ground States in Ising Spin Glass Systems Steven Homer Computer Science Department Boston University Boston, MA Marcus Peinado German National Research Center for Information Technology (GMD) Scientic Computation and Algorithms Institute (SCAI) D Sankt Augustin, Germany Abstract We present an application of the MaxCut problem in statistical physics. We design a branch-and-bound algorithm for MaxCut and use it to nd all ground states in three dimensional Ising spin glass systems. Keywords: Ising spin glass systems, brand-and-bound, MaxCut, ground state magnetization, statistical physics 1 Introduction Given a weighted undirected graph G = (V; E), a set S V of vertices denes the cut (S; V n S). The size of the cut is the sum of P the weights w ij of all edges which connect a vertex in S with a vertex in V n S, i.e. cut(s) = i2s;j2v ns w ij. The MaxCut problem is the problem of nding a cut of maximum size in the input graph G. The MaxCut problem is one of the classical NP complete problems. As such, it has been thoroughly studied. The ground state structure of Ising spin glass systems has attracted much attention in statistical physics. Analytical as well as numerical attempts to solve large Ising spin glass systems have proved to be quite dicult. An explanation for those diculties was provided by Barahona [1] who proved for some of the most actively studied Ising systems that nding their ground states is NP-hard. In this paper, we describe a branch-and-bound algorithm for the MaxCut problem. By means of a well known reduction between MaxCut and the problem of nding ground states in Ising spin glass systems, we use it to solve a class of small Ising systems. In particular, we enumerate all ground states of systems. Although this size is smaller than the systems usually studied by means of Monte Carlo simulations, the approach described here has the advantage not only of guaranteeing that the result is indeed a ground state but even of nding all ground states of the system. Similar approaches have been reported by Barahona [2] who studies two dimensional systems with a somewhat dierent edge distribution and Klotz and Kobe [7], [6] who study the properties of systems. 1

2 2 The MaxCut Algorithm Branch and bound is a more sophisticated version of exhaustive tree search. With the help of a known feasible solution (lower bound LB) and an upper bound UB on the solution sizes in a subtree, the search of entire subtrees can be omitted if UB < LB. The following is a generic version of the branch and bound algorithm used in this paper. Branch&Bound(cut; i): IF i = 0 AND cutsize(cut) LB THEN output(cut) LB=cutsize(cut) IF i > 0 AND upperbound(cut; i) > LB THEN Branch&Bound(cut [ fig; i? 1) Branch&Bound(cut; i? 1) For simplicity of notation, it is assumed that V = f1; : : : ; ng. The initial call to the algorithm is Branch&Bound(fng; n? 1). If the comparison of the upper and lower bounds is omitted, the algorithm performs an exhaustive search. It remains to specify how the bounds are computed. Any reasonable method which provides a suboptimal solution (e.g. any heuristic) can be used to obtain the (hopefully large) initial lower bound. The method of computing the upper bound is more critical as a dierent { hopefully tight { upper bound is needed in each recursive call. This section describes an upper bound for MaxCut based on a positive semidenite (PSD) relaxation. Given an undirected weighted graph (G; w), where G = (V; E) and w = (w ij ) i;j2v is the matrix of edge weights, dene the matrix A as A ij =( wij if i 6= j v i if i = j where v i 2 IR + 0 (i 2 V ) are non-negative real variables. Thus, except for the diagonal, A is the weight matrix w of G. As G is undirected (w ij = w ji ), A is symmetric. It is easy to see that the (v i ) i2v can always be chosen such that A is positive semidenite. If A is positive semidenite, there exists a lower triangular n n matrix M such that MM T = A. Let m i be the i-th row of M. Then A ij = hm i ; m j i. With this, MaxCut can be formulated and relaxed as follows: XX * max w ij = max X X + m i ; m j SV SV i2s i2s j2s min A is P SD j2 S Pi2V m i ; 2 Pi2V m i 2 = 1 2 X i<j w ij min X A is P SD i2v kv i k 2 For the relaxation step note that for any y 2 IR n the function f y : IR n! IR; f y (x) = hx; y? xi is maximized at x = y=2. Thus, the upper bound on MaxCut can be found by solving the positive semidenite programming problem min X i2v kv i k 2 A is P SD (1) As strong duality can be shown to hold between (1) and the relaxation used by Goemans and Williamson in [5], this upper bound is guaranteed to be within a factor of 1=0:878 of the maximum cut if all w ij are non-negative. 2

3 Branch&Bound(cut; i; d): IF i = 0 AND cutsize(cut) LB THEN LB= cutsize(cut) output(cut) IF i > 0 THEN m i?1 := m i?1 + m i IF M 2 =4 < d THEN Branch&Bound(cut [ fig; i? 1; d? M 2 =4) i?1 i?1 i?1 i?1 m i?1 := m i?1? m i m i?1 := m i?1? m i IF M 2 i?1 i?1 =4 < d THEN Branch&Bound(cut; i? 1; d? M 2 i?1 i?1 =4) m i?1 := m i?1 + m i Figure 1: The branch and bound algorithm 2.1 Implementation Issues The upper bound derived so far applies in itself only to the rst call to Branch&Bound. Each recursive call of Branch&Bound corresponds to a set of constraints on the cut. The two kinds of constraints are that two vertices i, j have to be on the same side of the cut (denoted by i j) or on dierent sides of the cut (denoted by i 6 j). The upper bound for each recursive call should be tight enough to reect these constraints. This means that in any recursive call, the upper bound should not be much larger than the largest solution permitted by the corresponding set of constraints. We use a method of eciently deriving the upper bound in each recursive call from previously computed upper bounds, similar to the one used in [9]. The resulting algorithm is shown in Figure 1. The details are omitted due to space limitations. Although the PSD upper bound is fairly tight and eliminates a very large fraction of the search space, it still leads to unreasonably long running times for Ising graphs. However, it is possible to decrease the running time by several orders of magnitude by introducing an additional local bound. Let l (left) and r (right) be the two sets into which a given cut partitions the vertex set V. In any recursive call of Branch&Bound, each vertex can be classied as belonging to either l (left), r (right), or u (undecided). A call to Branch&Bound(S; i; d) can make two recursive calls: one assigning vertex i to l and one assigning i to r. Given i, let w l = P j2l w ij, w r = P j2r w ij, and w u = P j2u jw ijj. Clearly, a cut with i 2 l cannot be optimal if w l > w r + w u. Similarly, the possibility i 2 u can be ignored if w r > w l + w u. It is only slightly more complicated to extend these statements to the case of equality, i.e. w l = w r + w u. If w u > 0, there is only one possibility how i 2 l could lead to an optimal cut: all j 2 u with w ij > 0 have to be in r and all j 2 u with w ij < 0 have to be in l. However, under this condition, the side of i is irrelevant as it does not change the cut size. Therefore, the recursive call for i 2 l does not have to be made as any optimal solution it might nd can be obtained from an optimal solution in which i 2 r, by changing the side of i. By symmetry, the same argument holds for i 2 r given w r = w l + w u and w u > 0. If w l = w r + w u and w u = 0, i.e. w l = w r, the side of i is irrelevant and making either one of the two recursive calls is sucient. 3

4 Summarizing, whenever a vertex is to be assigned to a side of the cut, we only explore this possibility if w l < w r + w u or w l = w r for assignments to l w r < w l + w u for assignments to r hold for the vertex itself and for all its neighbors. Any optimal cuts which are lost, are later recovered by changing the sides of single vertices in the optimal cuts. The running time of the algorithm depends heavily on the input graph. For the inputs, we have observed running times between one and 24 hours on an SGI Indy workstation. We were able to solve within three weeks the 300 Ising systems on which the following results are based by using the idle CPU cycles on a network of ten such workstations. 3 Results Our goal was to examine the ground state structure of three dimensional 555 EA Ising systems with periodic boundary conditions. In order to facilitate comparisons with previous work (e.g. [4], [7]), we chose the bond distribution as follows. The bonds had values 1. The systems were generated uniformly at random such that the number of +1 and?1 bonds diers by at most one. Normally these numbers are chosen to be equal but as the number of bonds in our systems is odd, they have to dier by one. These systems correspond to graphs as described above. We began by generating 300 systems from this distribution and determining all their ground states using our algorithm and the well known reduction between MaxCut and the problem of nding ground states (e.g. [3]). We have obtained the following average ground state energy per spin: E 0 =n =?1:759; where E0 is the ground state energy of the system and n is the number of spins. Note, that we are averaging over exact quantities and that the only uncertainty comes from the fact that we are averaging over a small sample. This number appears to be consistent with those obtained in [7], [4]. Indeed, it appears that Monte Carlo methods can estimate the energy reasonably well, for systems sizes of up to However, our exact method provides much more detailed information about the ground states. Extending the observations of Klotz and Kobe [7] to systems, we note that the con- gurations of minimum energy can be partitioned into clusters. A cluster is dened as follows: Consider a graph whose vertices are the minimum energy congurations. Let there be an edge between two congurations if they dier in only one spin. Then the clusters are the connected components of this graph. The existence of large clusters is an artifact of the discrete 1 bond distribution. Therefore, we treat each cluster as one ground state. Figure 2 plots the number of minimum energy congurations of each system (degeneracy) vs. the ground state energy. The wide variation in the degeneracy among dierent systems which had already been observed in [7] for the case has become even more pronounced. It is not totally clear how justied it is to identify clusters with ground states as we are trying to extrapolate the results from our small nite systems to the thermodynamic limit where the ground states (if more than one exists) would be separated by innitely high `energy walls' [8]. While we did not try to measure the height of the energy walls between the clusters we found, we 4

5 ground state degeneracy ground state energy Figure 2: The ground state energies and degeneracies (log scale) of the 100 random systems we solved. did investigate the robustness of the clusters by displaying measures for the coherence within each cluster and for the distance between dierent clusters. Consider the correlation C(; ) = h; i=n (2) between two congurations and. We have measured the average correlation between congurations of the same cluster and between congurations of dierent clusters A and B (C AB ). The results are displayed in Figure 3 (left). Assuming that the clusters can indeed be interpreted as ground states, these quantities are related to the order parameter of Parisi [8] as P 2A P2B C(; ) 1 C AB nx 0 = = i X 1 i jaj jbj jaj jbj A =n = nx m A i mb i =n X 2A where m A i is the average magnetization of spin i in cluster A. The last expression is the same as expression (7) in [8] which is the denition of the Parisi order parameter q. Figure 3 (left) shows the autocorrelation distribution highly concentrated close to 1 whereas the correlations between pairs of clusters are fairly atly distributed falling o toward zero between 0.8 and 1. This indicates that each cluster is fairly coherent and that dierent clusters are well separated in the sense that the average correlation between congurations of the same cluster is much higher than the average correlation between congurations which belong to dierent clusters. Figure 3 (right) displays the distribution of the number of clusters (ground states) per system. As the systems are symmetric by a global spin ip, the clusters appear in pairs of two. In the gure, these pairs are counted as one cluster. It has been observed by Klotz and Kobe [7] that even systems have more than one pair of ground states. We observe that with the step from to systems, the average number of ground states increases. About two thirds 5 2B i=1

6 correlation autocorrelation ground state degeneracy ground state energy Figure 3: Left: The distributions of the autocorrelations of clusters and of the correlations between pairs of clusters. Right: Distribution of the number of clusters per system. of the systems have more than one pair of ground states. The average number of pairs of clusters in a system is 4:1. While this number in itself could not possibly be judged as evidence that the number of ground states will become innite in the thermodynamic limit, it indicates that, at least in the the small systems studied here, there is usually not a unique ground state. References [1] F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics A, 15:3241{3255, [2] F. Barahona. Ground-state magnetization of Ising spin glasses. Physical Review B, 49(18):12864{12867, [3] F. Barahona, M. Grotschel, M. Junger, and G. Reinelt. An application of combinatorial optimization to statistical optimization and circuit layout design. Operations Research, 36(3):493{ 513, [4] B. Berg, U. Hansmann, and T. Celik. Groundstate properties of the 3d Ising spin glass. Los Alamos National Laboratory Preprint Server: cond-mat/ [5] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfyability problems using semidenite programming. Submitted to J. ACM. Preliminary version in Proc. 26th ACM Symposium on the Theory of Computing [6] T. Klotz and S. Kobe. Exact low-energy landscape and relaxation phenomena in ISING spin glasses. Los Alamos National Laboratory Preprint Server: cond-mat/ [7] T. Klotz and S. Kobe. Valley structures in the spase space of a nite 3d Ising spin glass with i interactions. Journal of Physics A, 27:L95{L100, [8] G. Parisi. Order parameter for spin glasses. Physical Review Letters, 50(24):1946{1948, [9] S. Poljak and F. Rendl. Solving the max-cut problem using eigenvalues. Technical Report OR, Universitat Bonn,

Monte Carlo Simulation of the 2D Ising model

Monte Carlo Simulation of the 2D Ising model Monte Carlo Simulation of the 2D Ising model Emanuel Schmidt, F44 April 6, 2 Introduction Monte Carlo methods are a powerful tool to solve problems numerically which are dicult to be handled analytically.

More information

Ensemble equivalence for non-extensive thermostatistics

Ensemble equivalence for non-extensive thermostatistics Physica A 305 (2002) 52 57 www.elsevier.com/locate/physa Ensemble equivalence for non-extensive thermostatistics Raul Toral a;, Rafael Salazar b a Instituto Mediterraneo de Estudios Avanzados (IMEDEA),

More information

Studying Spin Glasses via Combinatorial Optimization

Studying Spin Glasses via Combinatorial Optimization Studying Spin Glasses via Combinatorial Optimization Frauke Liers Emmy Noether Junior Research Group, Department of Computer Science, University of Cologne Dec 11 th, 2007 What we are interested in...

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 567: Mathematical Techniques in Data Science Clustering II Dominique Guillot Departments

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

A STRENGTHENED SDP RELAXATION. via a. SECOND LIFTING for the MAX-CUT PROBLEM. July 15, University of Waterloo. Abstract

A STRENGTHENED SDP RELAXATION. via a. SECOND LIFTING for the MAX-CUT PROBLEM. July 15, University of Waterloo. Abstract A STRENGTHENED SDP RELAXATION via a SECOND LIFTING for the MAX-CUT PROBLEM Miguel Anjos Henry Wolkowicz y July 15, 1999 University of Waterloo Department of Combinatorics and Optimization Waterloo, Ontario

More information

1 Introduction Duality transformations have provided a useful tool for investigating many theories both in the continuum and on the lattice. The term

1 Introduction Duality transformations have provided a useful tool for investigating many theories both in the continuum and on the lattice. The term SWAT/102 U(1) Lattice Gauge theory and its Dual P. K. Coyle a, I. G. Halliday b and P. Suranyi c a Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel. b Department ofphysics,

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

Branching Rules for Minimum Congestion Multi- Commodity Flow Problems

Branching Rules for Minimum Congestion Multi- Commodity Flow Problems Clemson University TigerPrints All Theses Theses 8-2012 Branching Rules for Minimum Congestion Multi- Commodity Flow Problems Cameron Megaw Clemson University, cmegaw@clemson.edu Follow this and additional

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.85J / 8.5J Advanced Algorithms Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.5/6.85 Advanced Algorithms

More information

Some remarks on the Shannon capacity of odd cycles Bruno Codenotti Ivan Gerace y Giovanni Resta z Abstract We tackle the problem of estimating the Sha

Some remarks on the Shannon capacity of odd cycles Bruno Codenotti Ivan Gerace y Giovanni Resta z Abstract We tackle the problem of estimating the Sha Some remarks on the Shannon capacity of odd cycles Bruno Codenotti Ivan Gerace y Giovanni Resta z Abstract We tackle the problem of estimating the Shannon capacity of cycles of odd length. We present some

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

Minimal enumerations of subsets of a nite set and the middle level problem

Minimal enumerations of subsets of a nite set and the middle level problem Discrete Applied Mathematics 114 (2001) 109 114 Minimal enumerations of subsets of a nite set and the middle level problem A.A. Evdokimov, A.L. Perezhogin 1 Sobolev Institute of Mathematics, Novosibirsk

More information

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts? A. A. Ageev and M. I. Sviridenko Sobolev Institute of Mathematics pr. Koptyuga 4, 630090, Novosibirsk, Russia fageev,svirg@math.nsc.ru

More information

percentage of problems with ( 1 lb/ub ) <= x percentage of problems with ( 1 lb/ub ) <= x n= n=8 n= n=32 n= log10( x )

percentage of problems with ( 1 lb/ub ) <= x percentage of problems with ( 1 lb/ub ) <= x n= n=8 n= n=32 n= log10( x ) Soft vs. Hard Bounds in Probabilistic Robustness Analysis Xiaoyun Zhu Yun Huang John Doyle California Institute of Technology, Pasadena, CA 925 Abstract The relationship between soft vs. hard bounds and

More information

Improved Approximation Algorithms for Maximum Cut and. David P. Williamson z. IBM Watson. Abstract

Improved Approximation Algorithms for Maximum Cut and. David P. Williamson z. IBM Watson. Abstract Copyright 1995 by the Association for Computing Machinery,Inc. Permission to make digital or hard copies of part or all of thiswork for personal or classroom use is granted without fee providedthat copies

More information

Brazilian Journal of Physics, vol. 27, no. 4, december, with Aperiodic Interactions. Instituto de Fsica, Universidade de S~ao Paulo

Brazilian Journal of Physics, vol. 27, no. 4, december, with Aperiodic Interactions. Instituto de Fsica, Universidade de S~ao Paulo Brazilian Journal of Physics, vol. 27, no. 4, december, 1997 567 Critical Behavior of an Ising Model with periodic Interactions S. T. R. Pinho, T.. S. Haddad, S. R. Salinas Instituto de Fsica, Universidade

More information

1 Introduction A one-dimensional burst error of length t is a set of errors that are conned to t consecutive locations [14]. In this paper, we general

1 Introduction A one-dimensional burst error of length t is a set of errors that are conned to t consecutive locations [14]. In this paper, we general Interleaving Schemes for Multidimensional Cluster Errors Mario Blaum IBM Research Division 650 Harry Road San Jose, CA 9510, USA blaum@almaden.ibm.com Jehoshua Bruck California Institute of Technology

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

Optimization Methods. Lecture 23: Semidenite Optimization

Optimization Methods. Lecture 23: Semidenite Optimization 5.93 Optimization Methods Lecture 23: Semidenite Optimization Outline. Preliminaries Slide 2. SDO 3. Duality 4. SDO Modeling Power 5. Barrier lgorithm for SDO 2 Preliminaries symmetric matrix is positive

More information

Robust linear optimization under general norms

Robust linear optimization under general norms Operations Research Letters 3 (004) 50 56 Operations Research Letters www.elsevier.com/locate/dsw Robust linear optimization under general norms Dimitris Bertsimas a; ;, Dessislava Pachamanova b, Melvyn

More information

1. Introduction. Trees are interesting objects in many areas of mathematics and physics. They appear not only in combinatorics but also in algebra, in

1. Introduction. Trees are interesting objects in many areas of mathematics and physics. They appear not only in combinatorics but also in algebra, in POLYNOMIAL INVARIANTS FOR TREES. A STATISTICAL MECHANICS APPROACH. Roberto Conti (1), Pierluigi Contucci (2);(3), Corrado Falcolini (1) Abstract We introduce two \polynomial invariants" for rooted trees

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II Spectral clustering: overview MATH 567: Mathematical Techniques in Data Science Clustering II Dominique uillot Departments of Mathematical Sciences University of Delaware Overview of spectral clustering:

More information

A Parallel Approximation Algorithm. for. Positive Linear Programming. mal values for the primal and dual problems are

A Parallel Approximation Algorithm. for. Positive Linear Programming. mal values for the primal and dual problems are A Parallel Approximation Algorithm for Positive Linear Programming Michael Luby Noam Nisan y Abstract We introduce a fast parallel approximation algorithm for the positive linear programming optimization

More information

The Non-existence of Finite Projective Planes of. Order 10. C. W. H. Lam, L. Thiel, and S. Swiercz. 15 January, 1989

The Non-existence of Finite Projective Planes of. Order 10. C. W. H. Lam, L. Thiel, and S. Swiercz. 15 January, 1989 The Non-existence of Finite Projective Planes of Order 10 C. W. H. Lam, L. Thiel, and S. Swiercz 15 January, 1989 Dedicated to the memory of Herbert J. Ryser Abstract This note reports the result of a

More information

Upper and Lower Bounds on the Number of Faults. a System Can Withstand Without Repairs. Cambridge, MA 02139

Upper and Lower Bounds on the Number of Faults. a System Can Withstand Without Repairs. Cambridge, MA 02139 Upper and Lower Bounds on the Number of Faults a System Can Withstand Without Repairs Michel Goemans y Nancy Lynch z Isaac Saias x Laboratory for Computer Science Massachusetts Institute of Technology

More information

Lecture 14 - P v.s. NP 1

Lecture 14 - P v.s. NP 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 27, 2018 Lecture 14 - P v.s. NP 1 In this lecture we start Unit 3 on NP-hardness and approximation

More information

A Continuation Approach Using NCP Function for Solving Max-Cut Problem

A Continuation Approach Using NCP Function for Solving Max-Cut Problem A Continuation Approach Using NCP Function for Solving Max-Cut Problem Xu Fengmin Xu Chengxian Ren Jiuquan Abstract A continuous approach using NCP function for approximating the solution of the max-cut

More information

Lecture 13 March 7, 2017

Lecture 13 March 7, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 13 March 7, 2017 Scribe: Hongyao Ma Today PTAS/FPTAS/FPRAS examples PTAS: knapsack FPTAS: knapsack FPRAS: DNF counting Approximation

More information

Dual Monte Carlo and Cluster Algorithms. N. Kawashima and J.E. Gubernatis. Abstract. theory and not from the usual viewpoint of a particular model.

Dual Monte Carlo and Cluster Algorithms. N. Kawashima and J.E. Gubernatis. Abstract. theory and not from the usual viewpoint of a particular model. Phys. Rev. E, to appear. LA-UR-94-6 Dual Monte Carlo and Cluster Algorithms N. Kawashima and J.E. Gubernatis Center for Nonlinear Studies and Theoretical Division Los Alamos National Laboratory, Los Alamos,

More information

Chapter 1. Comparison-Sorting and Selecting in. Totally Monotone Matrices. totally monotone matrices can be found in [4], [5], [9],

Chapter 1. Comparison-Sorting and Selecting in. Totally Monotone Matrices. totally monotone matrices can be found in [4], [5], [9], Chapter 1 Comparison-Sorting and Selecting in Totally Monotone Matrices Noga Alon Yossi Azar y Abstract An mn matrix A is called totally monotone if for all i 1 < i 2 and j 1 < j 2, A[i 1; j 1] > A[i 1;

More information

Renormalization Group analysis of 2D Ising model

Renormalization Group analysis of 2D Ising model Renormalization Group analysis of D Ising model Amir Bar January 7, 013 1 Introduction In this tutorial we will see explicitly how RG can be used to probe the phase diagram of d > 1 systems, focusing as

More information

A NEW SECOND-ORDER CONE PROGRAMMING RELAXATION FOR MAX-CUT PROBLEMS

A NEW SECOND-ORDER CONE PROGRAMMING RELAXATION FOR MAX-CUT PROBLEMS Journal of the Operations Research Society of Japan 2003, Vol. 46, No. 2, 164-177 2003 The Operations Research Society of Japan A NEW SECOND-ORDER CONE PROGRAMMING RELAXATION FOR MAX-CUT PROBLEMS Masakazu

More information

G : Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into

G : Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into G25.2651: Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into thermal contact. By thermal contact, we mean that the

More information

2 Exercises 1. The following represent graphs of functions from the real numbers R to R. Decide which are one-to-one, which are onto, which are neithe

2 Exercises 1. The following represent graphs of functions from the real numbers R to R. Decide which are one-to-one, which are onto, which are neithe Infinity and Counting 1 Peter Trapa September 28, 2005 There are 10 kinds of people in the world: those who understand binary, and those who don't. Welcome to the rst installment of the 2005 Utah Math

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

Learning About Spin Glasses Enzo Marinari (Cagliari, Italy) I thank the organizers... I am thrilled since... (Realistic) Spin Glasses: a debated, inte

Learning About Spin Glasses Enzo Marinari (Cagliari, Italy) I thank the organizers... I am thrilled since... (Realistic) Spin Glasses: a debated, inte Learning About Spin Glasses Enzo Marinari (Cagliari, Italy) I thank the organizers... I am thrilled since... (Realistic) Spin Glasses: a debated, interesting issue. Mainly work with: Giorgio Parisi, Federico

More information

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon Department of Physics, Princeton University Graduate Preliminary Examination Part II Friday, May 10, 2013 9:00 am - 12:00 noon Answer TWO out of the THREE questions in Section A (Quantum Mechanics) and

More information

Abstract. This paper discusses polynomial-time reductions from Hamiltonian Circuit (HC),

Abstract. This paper discusses polynomial-time reductions from Hamiltonian Circuit (HC), SAT-Variable Complexity of Hard Combinatorial Problems Kazuo Iwama and Shuichi Miyazaki Department of Computer Science and Communication Engineering Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812,

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Example Bases and Basic Feasible Solutions 63 Let q = >: ; > and M = >: ;2 > and consider the LCP (q M). The class of ; ;2 complementary cones

Example Bases and Basic Feasible Solutions 63 Let q = >: ; > and M = >: ;2 > and consider the LCP (q M). The class of ; ;2 complementary cones Chapter 2 THE COMPLEMENTARY PIVOT ALGORITHM AND ITS EXTENSION TO FIXED POINT COMPUTING LCPs of order 2 can be solved by drawing all the complementary cones in the q q 2 - plane as discussed in Chapter.

More information

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit Paul Dupuis Division of Applied Mathematics Brown University IPAM (J. Doll, M. Snarski,

More information

116 XIV. Reducing Product Representations

116 XIV. Reducing Product Representations 116 XIV. Reducing Product Representations XIV. Reducing Product Representations In Chapter X we began the consideration of nding the irreducible components of a product representation. The procedure for

More information

MINIMUM DIAMETER COVERING PROBLEMS. May 20, 1997

MINIMUM DIAMETER COVERING PROBLEMS. May 20, 1997 MINIMUM DIAMETER COVERING PROBLEMS Esther M. Arkin y and Refael Hassin z May 20, 1997 Abstract A set V and a collection of (possibly non-disjoint) subsets are given. Also given is a real matrix describing

More information

and B. Taglienti (b) (a): Dipartimento di Fisica and Infn, Universita di Cagliari (c): Dipartimento di Fisica and Infn, Universita di Roma La Sapienza

and B. Taglienti (b) (a): Dipartimento di Fisica and Infn, Universita di Cagliari (c): Dipartimento di Fisica and Infn, Universita di Roma La Sapienza Glue Ball Masses and the Chameleon Gauge E. Marinari (a),m.l.paciello (b),g.parisi (c) and B. Taglienti (b) (a): Dipartimento di Fisica and Infn, Universita di Cagliari Via Ospedale 72, 09100 Cagliari

More information

The super line graph L 2

The super line graph L 2 Discrete Mathematics 206 (1999) 51 61 www.elsevier.com/locate/disc The super line graph L 2 Jay S. Bagga a;, Lowell W. Beineke b, Badri N. Varma c a Department of Computer Science, College of Science and

More information

Constrained Leja points and the numerical solution of the constrained energy problem

Constrained Leja points and the numerical solution of the constrained energy problem Journal of Computational and Applied Mathematics 131 (2001) 427 444 www.elsevier.nl/locate/cam Constrained Leja points and the numerical solution of the constrained energy problem Dan I. Coroian, Peter

More information

University ofpennsylvania. Philadelphia, PA Warren B. Powell. Department of Civil Engineering & Operations Research. Princeton University

University ofpennsylvania. Philadelphia, PA Warren B. Powell. Department of Civil Engineering & Operations Research. Princeton University A Column Generation Based Decomposition Algorithm for a Parallel Machine Just-In-Time Scheduling Problem Zhi-Long Chen Department of Systems Engineering University ofpennsylvania Philadelphia, PA 19104-6315

More information

Nader H. Bshouty Lisa Higham Jolanta Warpechowska-Gruca. Canada. (

Nader H. Bshouty Lisa Higham Jolanta Warpechowska-Gruca. Canada. ( Meeting Times of Random Walks on Graphs Nader H. Bshouty Lisa Higham Jolanta Warpechowska-Gruca Computer Science University of Calgary Calgary, AB, T2N 1N4 Canada (e-mail: fbshouty,higham,jolantag@cpsc.ucalgary.ca)

More information

460 HOLGER DETTE AND WILLIAM J STUDDEN order to examine how a given design behaves in the model g` with respect to the D-optimality criterion one uses

460 HOLGER DETTE AND WILLIAM J STUDDEN order to examine how a given design behaves in the model g` with respect to the D-optimality criterion one uses Statistica Sinica 5(1995), 459-473 OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION WHEN THE DEGREE IS NOT KNOWN Holger Dette and William J Studden Technische Universitat Dresden and Purdue University Abstract:

More information

c(t) t (T-0.21) Figure 14: Finite-time scaling eq.(23) for the open case. Good scaling is obtained with

c(t) t (T-0.21) Figure 14: Finite-time scaling eq.(23) for the open case. Good scaling is obtained with 1 0.8 0.6 c(t) 0.4 0.2 0 0.001 0.01 0.1 1 10 t (T-0.21) 2 Figure 14: Finite-time scaling eq.(23) for the open case. Good scaling is obtained with T G 0:21 0:02 and 2. 32 1 0.8 0.6 c(t) 0.4 0.2 0 0.01 0.1

More information

1 Introduction Semidenite programming (SDP) has been an active research area following the seminal work of Nesterov and Nemirovski [9] see also Alizad

1 Introduction Semidenite programming (SDP) has been an active research area following the seminal work of Nesterov and Nemirovski [9] see also Alizad Quadratic Maximization and Semidenite Relaxation Shuzhong Zhang Econometric Institute Erasmus University P.O. Box 1738 3000 DR Rotterdam The Netherlands email: zhang@few.eur.nl fax: +31-10-408916 August,

More information

Lecture 15 - NP Completeness 1

Lecture 15 - NP Completeness 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 29, 2018 Lecture 15 - NP Completeness 1 In the last lecture we discussed how to provide

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

On dependent randomized rounding algorithms

On dependent randomized rounding algorithms Operations Research Letters 24 (1999) 105 114 www.elsevier.com/locate/orms On dependent randomized rounding algorithms Dimitris Bertsimas a;, Chungpiaw Teo b, Rakesh Vohra c a Sloan School of Management

More information

Finding Succinct. Ordered Minimal Perfect. Hash Functions. Steven S. Seiden 3 Daniel S. Hirschberg 3. September 22, Abstract

Finding Succinct. Ordered Minimal Perfect. Hash Functions. Steven S. Seiden 3 Daniel S. Hirschberg 3. September 22, Abstract Finding Succinct Ordered Minimal Perfect Hash Functions Steven S. Seiden 3 Daniel S. Hirschberg 3 September 22, 1994 Abstract An ordered minimal perfect hash table is one in which no collisions occur among

More information

In: Proc. BENELEARN-98, 8th Belgian-Dutch Conference on Machine Learning, pp 9-46, 998 Linear Quadratic Regulation using Reinforcement Learning Stephan ten Hagen? and Ben Krose Department of Mathematics,

More information

An exact approach to early/tardy scheduling with release dates

An exact approach to early/tardy scheduling with release dates Computers & Operations Research 32 (2005) 2905 2917 www.elsevier.com/locate/dsw An exact approach to early/tardy scheduling with release dates Jorge M.S. Valente, Rui A.F.S. Alves Faculdade de Economia,

More information

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing Kernel PCA Pattern Reconstruction via Approximate Pre-Images Bernhard Scholkopf, Sebastian Mika, Alex Smola, Gunnar Ratsch, & Klaus-Robert Muller GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany fbs,

More information

1 Introduction It will be convenient to use the inx operators a b and a b to stand for maximum (least upper bound) and minimum (greatest lower bound)

1 Introduction It will be convenient to use the inx operators a b and a b to stand for maximum (least upper bound) and minimum (greatest lower bound) Cycle times and xed points of min-max functions Jeremy Gunawardena, Department of Computer Science, Stanford University, Stanford, CA 94305, USA. jeremy@cs.stanford.edu October 11, 1993 to appear in the

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Ecient testing of large graphs. Abstract. to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or

Ecient testing of large graphs. Abstract. to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or Ecient testing of large graphs Noga Alon y Eldar Fischer z Michael Krivelevich x Mario Szegedy { Abstract Let P be a property of graphs. An -test for P is a randomized algorithm which, given the ability

More information

Topological structures and phases. in U(1) gauge theory. Abstract. We show that topological properties of minimal Dirac sheets as well as of

Topological structures and phases. in U(1) gauge theory. Abstract. We show that topological properties of minimal Dirac sheets as well as of BUHEP-94-35 Decemer 1994 Topological structures and phases in U(1) gauge theory Werner Kerler a, Claudio Rei and Andreas Weer a a Fachereich Physik, Universitat Marurg, D-35032 Marurg, Germany Department

More information

Three-dimensional Stable Matching Problems. Cheng Ng and Daniel S. Hirschberg. Department of Information and Computer Science

Three-dimensional Stable Matching Problems. Cheng Ng and Daniel S. Hirschberg. Department of Information and Computer Science Three-dimensional Stable Matching Problems Cheng Ng and Daniel S Hirschberg Department of Information and Computer Science University of California, Irvine Irvine, CA 92717 Abstract The stable marriage

More information

chem-ph/ Feb 95

chem-ph/ Feb 95 LU-TP 9- October 99 Sequence Dependence of Self-Interacting Random Chains Anders Irback and Holm Schwarze chem-ph/9 Feb 9 Department of Theoretical Physics, University of Lund Solvegatan A, S- Lund, Sweden

More information

On the Complexity of Budgeted Maximum Path Coverage on Trees

On the Complexity of Budgeted Maximum Path Coverage on Trees On the Complexity of Budgeted Maximum Path Coverage on Trees H.-C. Wirth An instance of the budgeted maximum coverage problem is given by a set of weighted ground elements and a cost weighted family of

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analysis Handout 1 Luca Trevisan October 3, 017 Scribed by Maxim Rabinovich Lecture 1 In which we begin to prove that the SDP relaxation exactly recovers communities

More information

Potts And XY, Together At Last

Potts And XY, Together At Last Potts And XY, Together At Last Daniel Kolodrubetz Massachusetts Institute of Technology, Center for Theoretical Physics (Dated: May 16, 212) We investigate the behavior of an XY model coupled multiplicatively

More information

Algebraic approach to exact algorithms, Part III: Polynomials over nite elds of characteristic two

Algebraic approach to exact algorithms, Part III: Polynomials over nite elds of characteristic two Algebraic approach to exact algorithms, Part III: Polynomials over nite elds of characteristic two Šukasz Kowalik University of Warsaw ADFOCS, Saarbrücken, August 2013 Šukasz Kowalik (UW) Algebraic approach...

More information

Nordhaus-Gaddum Theorems for k-decompositions

Nordhaus-Gaddum Theorems for k-decompositions Nordhaus-Gaddum Theorems for k-decompositions Western Michigan University October 12, 2011 A Motivating Problem Consider the following problem. An international round-robin sports tournament is held between

More information

Abstract. We show that a proper coloring of the diagram of an interval order I may require 1 +

Abstract. We show that a proper coloring of the diagram of an interval order I may require 1 + Colorings of Diagrams of Interval Orders and -Sequences of Sets STEFAN FELSNER 1 and WILLIAM T. TROTTER 1 Fachbereich Mathemati, TU-Berlin, Strae des 17. Juni 135, 1000 Berlin 1, Germany, partially supported

More information

Scheduling Adaptively Parallel Jobs. Bin Song. Submitted to the Department of Electrical Engineering and Computer Science. Master of Science.

Scheduling Adaptively Parallel Jobs. Bin Song. Submitted to the Department of Electrical Engineering and Computer Science. Master of Science. Scheduling Adaptively Parallel Jobs by Bin Song A. B. (Computer Science and Mathematics), Dartmouth College (996) Submitted to the Department of Electrical Engineering and Computer Science in partial fulllment

More information

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY APPLICATIONES MATHEMATICAE 23,2 (1995), pp. 151 167 G. SCHEITHAUER and J. TERNO (Dresden) A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY Abstract. Many numerical computations

More information

arxiv: v1 [math.oc] 5 Jun 2013

arxiv: v1 [math.oc] 5 Jun 2013 A note on QUBO instances defined on Chimera graphs Sanjeeb Dash IBM T. J. Watson Research Center arxiv:1306.1202v1 [math.oc] 5 Jun 2013 May 9, 2017 Abstract McGeogh and Wang (2013) recently obtained optimal

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ]

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ] On the number of circuits in random graphs Guilhem Semerjian [ joint work with Enzo Marinari and Rémi Monasson ] [ Europhys. Lett. 73, 8 (2006) ] and [ cond-mat/0603657 ] Orsay 13-04-2006 Outline of the

More information

LETTER TO THE EDITOR

LETTER TO THE EDITOR STATISTICS IN MEDICINE Statist. Med. 2004; 23:685 693 LETTER TO THE EDITOR Comment on: Condence limits for the ratio of two rates based on likelihood scores: non-iterative method by P. L. Graham, K. Mengersen

More information

for average case complexity 1 randomized reductions, an attempt to derive these notions from (more or less) rst

for average case complexity 1 randomized reductions, an attempt to derive these notions from (more or less) rst On the reduction theory for average case complexity 1 Andreas Blass 2 and Yuri Gurevich 3 Abstract. This is an attempt to simplify and justify the notions of deterministic and randomized reductions, an

More information

Brazilian Journal of Physics, vol. 26, no. 4, december, P. M.C.deOliveira,T.J.P.Penna. Instituto de Fsica, Universidade Federal Fluminense

Brazilian Journal of Physics, vol. 26, no. 4, december, P. M.C.deOliveira,T.J.P.Penna. Instituto de Fsica, Universidade Federal Fluminense Brazilian Journal of Physics, vol. 26, no. 4, december, 1996 677 Broad Histogram Method P. M.C.deOliveira,T.J.P.Penna Instituto de Fsica, Universidade Federal Fluminense Av. Litor^anea s/n, Boa Viagem,

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

CSE 190, Great ideas in algorithms: Pairwise independent hash functions

CSE 190, Great ideas in algorithms: Pairwise independent hash functions CSE 190, Great ideas in algorithms: Pairwise independent hash functions 1 Hash functions The goal of hash functions is to map elements from a large domain to a small one. Typically, to obtain the required

More information

Vandegriend & Culberson Section 6 we examine a graph class based on a generalization of the knight's tour problem. These graphs are signicantly harder

Vandegriend & Culberson Section 6 we examine a graph class based on a generalization of the knight's tour problem. These graphs are signicantly harder Journal of Articial Intelligence Research 9 (1998) 219-245 Submitted 3/98; published 11/98 The G n;m Phase Transition is Not Hard for the Hamiltonian Cycle Problem Basil Vandegriend Joseph Culberson Department

More information

Perfect-Balance Planar Clock. Routing with Minimal Path Length UCSC-CRL March 26, University of California, Santa Cruz

Perfect-Balance Planar Clock. Routing with Minimal Path Length UCSC-CRL March 26, University of California, Santa Cruz Perfect-Balance Planar Clock Routing with Minimal Path Length Qing Zhu Wayne W.M. Dai UCSC-CRL-93-17 supercedes UCSC-CRL-92-12 March 26, 1993 Board of Studies in Computer Engineering University of California,

More information

d)p () = A = Z x x p b Particle in a Box 3. electron is in a -dimensional well with innitely high sides and width An Which of following statements mus

d)p () = A = Z x x p b Particle in a Box 3. electron is in a -dimensional well with innitely high sides and width An Which of following statements mus 4 Spring 99 Problem Set Optional Problems Physics April, 999 Handout a) Show that (x; t) =Ae i(kx,!t) satises wave equation for a string: (x; t) @ = v @ (x; t) @t @x Show that same wave function (x; t)

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels

MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels 1/12 MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels Dominique Guillot Departments of Mathematical Sciences University of Delaware March 14, 2016 Separating sets:

More information

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation Bayesian Analysis of Network Data Model Selection and Evaluation of the Exponential Random Graph Model Dissertation Presented to the Faculty for Social Sciences, Economics, and Business Administration

More information

RANK-TWO RELAXATION HEURISTICS FOR MAX-CUT AND OTHER BINARY QUADRATIC PROGRAMS

RANK-TWO RELAXATION HEURISTICS FOR MAX-CUT AND OTHER BINARY QUADRATIC PROGRAMS RANK-TWO RELAXATION HEURISTICS FOR MAX-CUT AND OTHER BINARY QUADRATIC PROGRAMS SAMUEL BURER, RENATO D.C. MONTEIRO, AND YIN ZHANG Abstract. The Goemans-Williamson randomized algorithm guarantees a high-quality

More information

drastically limits the size of the problem that can be solved. Efficient algorithms for solving the maxcut SDP relaxation have recently been developed

drastically limits the size of the problem that can be solved. Efficient algorithms for solving the maxcut SDP relaxation have recently been developed A Projected Gradient Algorithm for Solving the Maxcut SDP Relaxation Λ Samuel Burer y Renato D.C. Monteiro z December 22, 1998 Revised: July 5, 2000 Abstract In this paper, we present a projected gradient

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, 2010

More information

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field J. Phys. A: Math. Gen. 30 (1997) L41 L47. Printed in the UK PII: S0305-4470(97)79383-1 LETTER TO THE EDITOR Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

More information

Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm. 2 Goemans-Williamson Approximation Algorithm for MAXCUT

Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm. 2 Goemans-Williamson Approximation Algorithm for MAXCUT CS 80: Introduction to Complexity Theory 0/03/03 Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm Instructor: Jin-Yi Cai Scribe: Christopher Hudzik, Sarah Knoop Overview First, we outline

More information

GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017)

GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017) GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017) C. Croitoru croitoru@info.uaic.ro FII November 12, 2017 1 / 33 OUTLINE Matchings Analytical Formulation of the Maximum Matching Problem Perfect Matchings

More information

Hierarchies of Probabilistic and. Abstract. A FIN-learning machine M receives successive values of the function

Hierarchies of Probabilistic and. Abstract. A FIN-learning machine M receives successive values of the function Hierarchies of Probabilistic and Team FIN-Learning 1 Andris Ambainis 2 Kalvis Apstis 3 Rusins Freivalds 4 Carl H. Smith 5 Abstract A FIN-learning machine M receives successive values of the function f

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

a cell is represented by a triple of non-negative integers). The next state of a cell is determined by the present states of the right part of the lef

a cell is represented by a triple of non-negative integers). The next state of a cell is determined by the present states of the right part of the lef MFCS'98 Satellite Workshop on Cellular Automata August 25, 27, 1998, Brno, Czech Republic Number-Conserving Reversible Cellular Automata and Their Computation-Universality Kenichi MORITA, and Katsunobu

More information

Convergence Complexity of Optimistic Rate Based Flow. Control Algorithms. Computer Science Department, Tel-Aviv University, Israel

Convergence Complexity of Optimistic Rate Based Flow. Control Algorithms. Computer Science Department, Tel-Aviv University, Israel Convergence Complexity of Optimistic Rate Based Flow Control Algorithms Yehuda Afek y Yishay Mansour z Zvi Ostfeld x Computer Science Department, Tel-Aviv University, Israel 69978. December 12, 1997 Abstract

More information

Rina Dechter and Irina Rish. Information and Computer Science. University of California, Irvine.

Rina Dechter and Irina Rish. Information and Computer Science. University of California, Irvine. Directional Resolution: The Davis-Putnam Procedure, Revisited 3 Rina Dechter and Irina Rish Information and Computer Science University of California, Irvine dechter@ics.uci.edu, irinar@ics.uci.edu Abstract

More information

Replica Field Theory for Deterministic Models (II): A Non-Random Spin Glass with Glassy Behavior

Replica Field Theory for Deterministic Models (II): A Non-Random Spin Glass with Glassy Behavior Syracuse University SURFACE Northeast Parallel Architecture Center College of Engineering and Computer Science 1994 Replica Field Theory for Deterministic Models (II): A Non-Random Spin Glass with Glassy

More information