IE 5531: Engineering Optimization I

Size: px
Start display at page:

Download "IE 5531: Engineering Optimization I"

Transcription

1 IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

2 Administrivia Lecture slides 4,5 posted PS 1 posted this evening Xi Chen's oce hours: Tuesdays 10:00-12:00, ME 1124, Table B Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

3 Today: The Simplex Method, continued Comment on convexity Tableaus Gauss-Jordan pivoting Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

4 Absolute values The problem minimize n i=1 c i x i s.t. Ax b is easy only if c 0 The distinction is that n i=1 c i x i is a convex function in x Minimizing a convex function is easy, as is maximizing a concave function, but minimizing a concave function is generally dicult Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

5 Basic feasible solution Consider a polyhedron dened by {x : Ax = b, x 0} where A is an m n matrix and b R n The corner points are all characterized by taking m linearly independent columns, denoted by the indices B (the basic set), from A, solving A B x B = b and setting all other variables x N to 0 If all entries x B 0, then x is called a basic feasible solution (BFS), equivalently a vertex or corner point Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

6 Neighboring basic solutions Two basic solutions are neighboring or adjacent if they dier by exactly one basic (or nonbasic) variable A basic feasible solution is optimal if no better neighboring feasible solution exists Given a basic set B, the simplex method looks at all neighboring BFS's and nds a better one, if it exists Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

7 LP canonical form A standard-form LP is said to be in canonical form at a basic feasible solution if the objective coecients to all the basic variables are zero the constraint matrix for the basic variables form an identity matrix (with some permutation if necessary) If the LP is in canonical form, then it's easy to tell if the current BFS is optimal Thus, given a basic set B, we want to transform the LP into canonical form Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

8 An equivalent LP Given a basic set B, we nd that an equivalent problem to {minimize x : Ax = b, x 0} is minimize r T x s.t. Āx = b x 0 where r B = 0, r N = c N A T N ) (A 1 T c B B, Ā = A 1 A, b = A 1 B B b Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

9 Optimality test If r N 0 (equivalently r 0) at a BFS with basic variable set B, then the BFS is an optimal basic solution and A B is an optimal basis Note that the alternative linear program is in canonical form, so we can tell if we're optimal or not Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

10 Example Consider the example minimize x 1 +2x 2 +3x 3 x 4 s.t. x 1 +x 3 =1 x 2 +x 4 =1 x 1 +x 2 +x 5 =1.5 x 1, x 2, x 3, x 4, x 5 0 We set B = {1, 2, 3} so that x = (0.5, 1, 0.5, 0, 0), since A B = ; A 1 = B and therefore r N = c N A T N optimal ( ) (A 1 T 6 c B B = 3 ) ; this is not Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

11 Simplex tableau While performing the simplex algorithm, we maintain a simplex tableau that organizes the intermediate canonical form data: B r T c T B b basis indices Ā b Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

12 Simplex tableau example The problem minimize x 1 2x 2 s.t. x 1 +x 3 = 1 x 2 + x 4 = 1 x 1 + x 2 +x 5 = 1.5 x 1,x 2, x 3,x 4, x 5 0 has the following tableau for B = {3, 4, 5}: B Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

13 Finding a better neighbor point If one of the indices of r is negative, our basic set is not optimal We make an eort to nd a better neighboring basic solution (that diers by the current basic solution by exactly one basic variable), as long as the reduced cost coecient of the entering variable is negative Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

14 Changing basis With B = {3, 4, 5}, B Try inserting variable x 1 into the basic set; the constraint says x1 + 1 x2 + 0 x3 + 1 x4 + 0 x5 = }{{} i.e. x 3 x 4 x 5 = x Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

15 Minimum ratio test The question is: how much can we increase x 1 while the current basic variable remain feasible (non-negative)? This is easy to gure out with the minimum ratio test (MRT): 1 Select the entering variable x e with reduced cost r e < 0 2 If Ā e 0 then the problem is unbounded 3 The MRT: What does θ represent? θ = min { bi Ā ie : Ā ie > 0 } Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

16 Minimum ratio test θ represents the largest amount that x e can be increased before one (or more) of the current basic variables x i becomes zero (and leaves the feasible set) Suppose that the minimum ratio is attained by one unique basic variable index o. Then x e is the entering basic variable and x o is the out-going basic variable: x o = b o ā oe θ = 0 x i = b i ā ie θ > 0 i 0 Thus the new basic set contains x e and drops x o Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

17 Tie breaking If the MRT does not give a single index, but instead a set of one or more, we choose one of these arbitrarily We say that the new basic feasible solution is degenerate because some of the basic variables x B just happen to be 0 We'll deal with this later; for now, we can just pretend that the degeneracies are actually ɛ > 0 and continue Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

18 The simplex algorithm Initialize the simplex algorithm with a feasible basic set B, so that x B 0. Let N be the remaining indices. Write the simplex tableau. 1 Test for termination. Find r e = min {r j } j N If r e 0, the solution is optimal. Otherwise, determine whether the column of Ā e contains a positive entry. If not, the objective function is unbounded below. Otherwise, let x e be the entering basic variable 2 Determine the outgoing variable. Use the MRT to determine the outgoing variable x o. 3 Update the basic set. Update B and A B and transform the problem to canonical form. Return to step 1. Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

19 Expanded simplex tableau B basis indices c ( ) A T A 1 T c B B c T b A 1 A B A 1 B b B A 1 B Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

20 Re-computing the tableau One arduous step in the preceding example is the re-computation of the tableau for every new basic set B We can bypass this step using Gauss-Jordan elimination, in much the same way as one solves a system of linear equations Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

21 Gauss-Jordan elimination Given a simplex tableau, an outgoing variable x o, and an entering variable x e, 1 Divide all the entries in the row corresponding to x o by element ā oe (the pivot element), so that ā oe 1. 2 For all i o, modify all other entries in the usual Gauss Jordan process: ā ij ā ij āoj ā oe ā ie 3 Modify the right-hand side and the objective function row in the same way. The above procedure allows us to nd the optimal basic set without computing A 1 at every step. B Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

22 Example Consider the problem (not in standard form) minimize 3x 1 + 4x 2 s.t. x 1 + x 2 4 2x 1 + x 2 5 x 1, x 2 0 We re-write this in standard form: minimize 3x 1 4x 2 s.t. x 1 +x 2 +x 3 =4 2x 1 +x 2 + x 4 =5 x 1, x 2, x 3, x 4 0 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

23 Example minimize 3x 1 4x 2 s.t. x 1 +x 2 +x 3 =4 2x 1 +x 2 + x 4 =5 x 1, x 2, x 3, x 4 0 The rst step is to choose a basic set B, and then build Ā = A 1 A B and so forth in the tableau. What's a good choice of B? Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

24 Example minimize 3x 1 4x 2 s.t. x 1 +x 2 +x 3 =4 2x 1 +x 2 + x 4 =5 x 1, x 2, x 3, x 4 0 The rst step is to choose a basic set B, and then build Ā = A 1 A B and so forth in the tableau. What's a good choice of B? If we set B = {3, 4}, then we nd that A B is just the identity matrix, so Ā = A! If we are given a problem of the form minimize x : Ax b, where b 0, this is always a good way to start Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

25 Tableau (I) B (II) (III) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

26 Tableau (I) B (II) (III) The canonical form shows us that this is not optimal. Pick x 1 as an entering basic variable Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

27 Tableau (I) B (II) (III) The canonical form shows us that this is not optimal. Pick x 1 as an entering basic variable Using MRT, we see that 4/1 < 5/2, so x 4 will leave the basic set Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

28 Tableau (I) B (II) (III) The canonical form shows us that this is not optimal. Pick x 1 as an entering basic variable Using MRT, we see that 4/1 < 5/2, so x 4 will leave the basic set Next, we do Gauss-Jordan elimination: 1 Divide (III) by 2 2 Add 3 (III) to (I) 3 Subtract (III) from (II) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

29 Tableau (I) B 0 5/2 0 3/2 15/2 (II) 3 0 1/2 1 1/2 3/2 (III) 1 1 1/2 0 1/2 5/2 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

30 Tableau (I) B 0 5/2 0 3/2 15/2 (II) 3 0 1/2 1 1/2 3/2 (III) 1 1 1/2 0 1/2 5/2 The canonical form shows us that this is not optimal. Pick x 2 as an entering basic variable Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

31 Tableau (I) B 0 5/2 0 3/2 15/2 (II) 3 0 1/2 1 1/2 3/2 (III) 1 1 1/2 0 1/2 5/2 The canonical form shows us that this is not optimal. Pick x 2 as an entering basic variable Using MRT, we see that 3/2 1/2 < 5/2 1/2, so x 3 will leave the basic set Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

32 Tableau (I) B 0 5/2 0 3/2 15/2 (II) 3 0 1/2 1 1/2 3/2 (III) 1 1 1/2 0 1/2 5/2 The canonical form shows us that this is not optimal. Pick x 2 as an entering basic variable Using MRT, we see that 3/2 1/2 < 5/2 1/2, so x 3 will leave the basic set Next, we do Gauss-Jordan elimination: 1 Multiply (II) by 2 2 Add (5/2) (III) to (I) 3 Subtract (1/2) (II) from (III) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

33 Tableau (I) B (II) (III) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

34 Tableau (I) B (II) (III) The canonical form shows us that this is not optimal. Pick x 4 as an entering basic variable Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

35 Tableau (I) B (II) (III) The canonical form shows us that this is not optimal. Pick x 4 as an entering basic variable Using MRT, we see that x 1 will leave the basic set (since 3/ ( 1) < 0) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

36 Tableau (I) B (II) (III) The canonical form shows us that this is not optimal. Pick x 4 as an entering basic variable Using MRT, we see that x 1 will leave the basic set (since 3/ ( 1) < 0) Next, we do Gauss-Jordan elimination: 1 Add (III) to (I) 2 Add (III) to (II) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

37 Tableau (I) B (II) (III) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

38 Tableau (I) B (II) (III) The canonical form shows us that this is optimal, so we're done The optimal basic set is B = {2, 4} and that x 2 = 4 and x 4 = 1 The objective function value is 16 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

39 Another example Consider the problem minimize 10x 1 12x 2 12x 3 s.t. x 1 + 2x 2 + 2x x 1 + x 2 + 2x x 1 + 2x 2 + x 3 20 x 1, x 2, x 3 0 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

40 Another example After introducing slack variables x 4, x 5, x 6 and setting B = {4, 5, 6}, the initial tableau is B Pivot at (say) x 1, so x 5 leaves (x 6 does too, but don't worry about that) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

41 Another example After exchanging B / / / / Pivot at (say) x 3 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

42 Another example After exchanging Pivot at x 2, x 6 leaves B / / / / Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

43 Another example After exchanging and we're done B /5 8/5 8/ /5 2/5 3/ /5 2/5 2/ /5 3/5 2/5 4 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, / 32

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

AM 121: Intro to Optimization Models and Methods Fall 2018

AM 121: Intro to Optimization Models and Methods Fall 2018 AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 5: The Simplex Method Yiling Chen Harvard SEAS Lesson Plan This lecture: Moving towards an algorithm for solving LPs Tableau. Adjacent

More information

The Simplex Method for Solving a Linear Program Prof. Stephen Graves

The Simplex Method for Solving a Linear Program Prof. Stephen Graves The Simplex Method for Solving a Linear Program Prof. Stephen Graves Observations from Geometry feasible region is a convex polyhedron an optimum occurs at a corner point possible algorithm - search over

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Lecture 2: The Simplex method

Lecture 2: The Simplex method Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

AM 121: Intro to Optimization

AM 121: Intro to Optimization AM 121: Intro to Optimization Models and Methods Lecture 6: Phase I, degeneracy, smallest subscript rule. Yiling Chen SEAS Lesson Plan Phase 1 (initialization) Degeneracy and cycling Smallest subscript

More information

Ω R n is called the constraint set or feasible set. x 1

Ω R n is called the constraint set or feasible set. x 1 1 Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize subject to f(x) x Ω Ω R n is called the constraint set or feasible set. any point x Ω is called a feasible point We

More information

Chapter 5 Linear Programming (LP)

Chapter 5 Linear Programming (LP) Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize f(x) subject to x R n is called the constraint set or feasible set. any point x is called a feasible point We consider

More information

Slide 1 Math 1520, Lecture 10

Slide 1 Math 1520, Lecture 10 Slide 1 Math 1520, Lecture 10 In this lecture, we study the simplex method which is a powerful method for solving maximization/minimization problems developed in the late 1940 s. It has been implemented

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Lecture 4: Algebra, Geometry, and Complexity of the Simplex Method. Reading: Sections 2.6.4, 3.5,

Lecture 4: Algebra, Geometry, and Complexity of the Simplex Method. Reading: Sections 2.6.4, 3.5, Lecture 4: Algebra, Geometry, and Complexity of the Simplex Method Reading: Sections 2.6.4, 3.5, 10.2 10.5 1 Summary of the Phase I/Phase II Simplex Method We write a typical simplex tableau as z x 1 x

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

3 The Simplex Method. 3.1 Basic Solutions

3 The Simplex Method. 3.1 Basic Solutions 3 The Simplex Method 3.1 Basic Solutions In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of the feasible set. This was not a coincidence. Consider an LP in general form,

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

ECE 307 Techniques for Engineering Decisions

ECE 307 Techniques for Engineering Decisions ECE 7 Techniques for Engineering Decisions Introduction to the Simple Algorithm George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign ECE 7 5 9 George

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

CO 602/CM 740: Fundamentals of Optimization Problem Set 4

CO 602/CM 740: Fundamentals of Optimization Problem Set 4 CO 602/CM 740: Fundamentals of Optimization Problem Set 4 H. Wolkowicz Fall 2014. Handed out: Wednesday 2014-Oct-15. Due: Wednesday 2014-Oct-22 in class before lecture starts. Contents 1 Unique Optimum

More information

Lecture 5 Simplex Method. September 2, 2009

Lecture 5 Simplex Method. September 2, 2009 Simplex Method September 2, 2009 Outline: Lecture 5 Re-cap blind search Simplex method in steps Simplex tableau Operations Research Methods 1 Determining an optimal solution by exhaustive search Lecture

More information

Example Bases and Basic Feasible Solutions 63 Let q = >: ; > and M = >: ;2 > and consider the LCP (q M). The class of ; ;2 complementary cones

Example Bases and Basic Feasible Solutions 63 Let q = >: ; > and M = >: ;2 > and consider the LCP (q M). The class of ; ;2 complementary cones Chapter 2 THE COMPLEMENTARY PIVOT ALGORITHM AND ITS EXTENSION TO FIXED POINT COMPUTING LCPs of order 2 can be solved by drawing all the complementary cones in the q q 2 - plane as discussed in Chapter.

More information

Developing an Algorithm for LP Preamble to Section 3 (Simplex Method)

Developing an Algorithm for LP Preamble to Section 3 (Simplex Method) Moving from BFS to BFS Developing an Algorithm for LP Preamble to Section (Simplex Method) We consider LP given in standard form and let x 0 be a BFS. Let B ; B ; :::; B m be the columns of A corresponding

More information

Math 273a: Optimization The Simplex method

Math 273a: Optimization The Simplex method Math 273a: Optimization The Simplex method Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 material taken from the textbook Chong-Zak, 4th Ed. Overview: idea and approach If a standard-form

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination 27th June 2005 Chapter 8: Finite Termination 1 The perturbation method Recap max c T x (P ) s.t. Ax = b x 0 Assumption: B is a feasible

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

Notes on Simplex Algorithm

Notes on Simplex Algorithm Notes on Simplex Algorithm CS 9 Staff October 8, 7 Until now, we have represented the problems geometrically, and solved by finding a corner and moving around Now we learn an algorithm to solve this without

More information

The augmented form of this LP is the following linear system of equations:

The augmented form of this LP is the following linear system of equations: 1 Consider the following LP given in standard form: max z = 5 x_1 + 2 x_2 Subject to 3 x_1 + 2 x_2 2400 x_2 800 2 x_1 1200 x_1, x_2 >= 0 The augmented form of this LP is the following linear system of

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices.

Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices. 2 JORDAN EXCHANGE REVIEW 1 Lecture Outline The following lecture covers Section 3.5 of the textbook [?] Review a labeled Jordan exchange with pivoting. Introduce the idea of a nondegenerate tableau and

More information

Simplex method(s) for solving LPs in standard form

Simplex method(s) for solving LPs in standard form Simplex method: outline I The Simplex Method is a family of algorithms for solving LPs in standard form (and their duals) I Goal: identify an optimal basis, as in Definition 3.3 I Versions we will consider:

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

Linear Programming and the Simplex method

Linear Programming and the Simplex method Linear Programming and the Simplex method Harald Enzinger, Michael Rath Signal Processing and Speech Communication Laboratory Jan 9, 2012 Harald Enzinger, Michael Rath Jan 9, 2012 page 1/37 Outline Introduction

More information

Operations Research Lecture 2: Linear Programming Simplex Method

Operations Research Lecture 2: Linear Programming Simplex Method Operations Research Lecture 2: Linear Programming Simplex Method Notes taken by Kaiquan Xu@Business School, Nanjing University Mar 10th 2016 1 Geometry of LP 1.1 Graphical Representation and Solution Example

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP:

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Dual Basic Solutions Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Observation 5.7. AbasisB yields min c T x max p T b s.t. A x = b s.t. p T A apple c T x 0 aprimalbasicsolutiongivenbyx

More information

Dr. Maddah ENMG 500 Engineering Management I 10/21/07

Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Computational Procedure of the Simplex Method The optimal solution of a general LP problem is obtained in the following steps: Step 1. Express the

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

Simplex Method in different guises

Simplex Method in different guises Simplex Method in different guises The Furniture problem Max 0x + 0x 2 + 20x, subject to x 0, 8x + x 2 + 2x 48, 4x + 2x 2 +.x 20, 2x +.x 2 +.x 8. Canonical form: slack variables s = (s, s 2, s ) 0. Constraints

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.2. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Basic Feasible Solutions Key to the Algebra of the The Simplex Algorithm

More information

February 17, Simplex Method Continued

February 17, Simplex Method Continued 15.053 February 17, 2005 Simplex Method Continued 1 Today s Lecture Review of the simplex algorithm. Formalizing the approach Alternative Optimal Solutions Obtaining an initial bfs Is the simplex algorithm

More information

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form 4.5 Simplex method min z = c T x s.v. Ax = b x 0 LP in standard form Examine a sequence of basic feasible solutions with non increasing objective function value until an optimal solution is reached or

More information

Math Models of OR: The Revised Simplex Method

Math Models of OR: The Revised Simplex Method Math Models of OR: The Revised Simplex Method John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell The Revised Simplex Method 1 / 25 Motivation Outline 1

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 5 Linear Programming and Convex Analysis Initial solution and particular cases Marco Cuturi Princeton ORF-5 Reminder: Tableaux At each iteration, a tableau for an LP in standard form keeps track of....................

More information

Linear programs Optimization Geoff Gordon Ryan Tibshirani

Linear programs Optimization Geoff Gordon Ryan Tibshirani Linear programs 10-725 Optimization Geoff Gordon Ryan Tibshirani Review: LPs LPs: m constraints, n vars A: R m n b: R m c: R n x: R n ineq form [min or max] c T x s.t. Ax b m n std form [min or max] c

More information

Gauss-Jordan Elimination for Solving Linear Equations Example: 1. Solve the following equations: (3)

Gauss-Jordan Elimination for Solving Linear Equations Example: 1. Solve the following equations: (3) The Simple Method Gauss-Jordan Elimination for Solving Linear Equations Eample: Gauss-Jordan Elimination Solve the following equations: + + + + = 4 = = () () () - In the first step of the procedure, we

More information

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods ORF 307: Lecture 2 Linear Programming: Chapter 2 Simplex Methods Robert Vanderbei February 8, 2018 Slides last edited on February 8, 2018 http://www.princeton.edu/ rvdb Simplex Method for LP An Example.

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 14: Unconstrained optimization Prof. John Gunnar Carlsson October 27, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 27, 2010 1

More information

Week_4: simplex method II

Week_4: simplex method II Week_4: simplex method II 1 1.introduction LPs in which all the constraints are ( ) with nonnegative right-hand sides offer a convenient all-slack starting basic feasible solution. Models involving (=)

More information

4.5 Simplex method. LP in standard form: min z = c T x s.t. Ax = b

4.5 Simplex method. LP in standard form: min z = c T x s.t. Ax = b 4.5 Simplex method LP in standard form: min z = c T x s.t. Ax = b x 0 George Dantzig (1914-2005) Examine a sequence of basic feasible solutions with non increasing objective function values until an optimal

More information

Contents. 4.5 The(Primal)SimplexMethod NumericalExamplesoftheSimplexMethod

Contents. 4.5 The(Primal)SimplexMethod NumericalExamplesoftheSimplexMethod Contents 4 The Simplex Method for Solving LPs 149 4.1 Transformations to be Carried Out On an LP Model Before Applying the Simplex Method On It... 151 4.2 Definitions of Various Types of Basic Vectors

More information

Simplex Method for LP (II)

Simplex Method for LP (II) Simplex Method for LP (II) Xiaoxi Li Wuhan University Sept. 27, 2017 (week 4) Operations Research (Li, X.) Simplex Method for LP (II) Sept. 27, 2017 (week 4) 1 / 31 Organization of this lecture Contents:

More information

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Linear programming Linear programming. Optimize a linear function subject to linear inequalities. (P) max c j x j n j= n s. t. a ij x j = b i i m j= x j 0 j n (P) max c T x s. t. Ax = b Lecture slides

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Lecture slides by Kevin Wayne

Lecture slides by Kevin Wayne LINEAR PROGRAMMING I a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM Linear programming

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization Spring 2017 CO 250 Course Notes TABLE OF CONTENTS richardwu.ca CO 250 Course Notes Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4, 2018 Table

More information

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4,

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4, LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR OCH KOMBINATORISK OPTIMERING 2018-03-16 1. a) The rst thing to do is to rewrite the problem so that the right hand side of all constraints are positive.

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 522 Linear Programming and Convex Analysis The Simplex Method Marco Cuturi Princeton ORF-522 1 Reminder: Basic Feasible Solutions, Extreme points, Optima Some important theorems last time for standard

More information

Special cases of linear programming

Special cases of linear programming Special cases of linear programming Infeasible solution Multiple solution (infinitely many solution) Unbounded solution Degenerated solution Notes on the Simplex tableau 1. The intersection of any basic

More information

LP. Lecture 3. Chapter 3: degeneracy. degeneracy example cycling the lexicographic method other pivot rules the fundamental theorem of LP

LP. Lecture 3. Chapter 3: degeneracy. degeneracy example cycling the lexicographic method other pivot rules the fundamental theorem of LP LP. Lecture 3. Chapter 3: degeneracy. degeneracy example cycling the lexicographic method other pivot rules the fundamental theorem of LP 1 / 23 Repetition the simplex algorithm: sequence of pivots starting

More information

The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

More information

3. THE SIMPLEX ALGORITHM

3. THE SIMPLEX ALGORITHM Optimization. THE SIMPLEX ALGORITHM DPK Easter Term. Introduction We know that, if a linear programming problem has a finite optimal solution, it has an optimal solution at a basic feasible solution (b.f.s.).

More information

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming January 26, 2018 1 / 38 Liability/asset cash-flow matching problem Recall the formulation of the problem: max w c 1 + p 1 e 1 = 150

More information

The Simplex Algorithm

The Simplex Algorithm 8.433 Combinatorial Optimization The Simplex Algorithm October 6, 8 Lecturer: Santosh Vempala We proved the following: Lemma (Farkas). Let A R m n, b R m. Exactly one of the following conditions is true:.

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12 Today s class Constrained optimization Linear programming 1 Midterm Exam 1 Count: 26 Average: 73.2 Median: 72.5 Maximum: 100.0 Minimum: 45.0 Standard Deviation: 17.13 Numerical Methods Fall 2011 2 Optimization

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO350 Linear Programming Chapter 6: The Simplex Method 8th June 2005 Chapter 6: The Simplex Method 1 Minimization Problem ( 6.5) We can solve minimization problems by transforming it into a maximization

More information

Farkas Lemma, Dual Simplex and Sensitivity Analysis

Farkas Lemma, Dual Simplex and Sensitivity Analysis Summer 2011 Optimization I Lecture 10 Farkas Lemma, Dual Simplex and Sensitivity Analysis 1 Farkas Lemma Theorem 1. Let A R m n, b R m. Then exactly one of the following two alternatives is true: (i) x

More information

Part III: A Simplex pivot

Part III: A Simplex pivot MA 3280 Lecture 31 - More on The Simplex Method Friday, April 25, 2014. Objectives: Analyze Simplex examples. We were working on the Simplex tableau The matrix form of this system of equations is called

More information

In Chapters 3 and 4 we introduced linear programming

In Chapters 3 and 4 we introduced linear programming SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

Linear Programming. Linear Programming I. Lecture 1. Linear Programming. Linear Programming

Linear Programming. Linear Programming I. Lecture 1. Linear Programming. Linear Programming Linear Programming Linear Programming Lecture Linear programming. Optimize a linear function subject to linear inequalities. (P) max " c j x j n j= n s. t. " a ij x j = b i # i # m j= x j 0 # j # n (P)

More information

Lecture 2: The Simplex method. 1. Repetition of the geometrical simplex method. 2. Linear programming problems on standard form.

Lecture 2: The Simplex method. 1. Repetition of the geometrical simplex method. 2. Linear programming problems on standard form. Lecture 2: The Simplex method. Repetition of the geometrical simplex method. 2. Linear programming problems on standard form. 3. The Simplex algorithm. 4. How to find an initial basic solution. Lecture

More information

Chapter 4 The Simplex Algorithm Part II

Chapter 4 The Simplex Algorithm Part II Chapter 4 The Simple Algorithm Part II Based on Introduction to Mathematical Programming: Operations Research, Volume 4th edition, by Wayne L Winston and Munirpallam Venkataramanan Lewis Ntaimo L Ntaimo

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 03 Simplex Algorithm Lecture 15 Infeasibility In this class, we

More information

IE 400 Principles of Engineering Management. The Simplex Algorithm-I: Set 3

IE 400 Principles of Engineering Management. The Simplex Algorithm-I: Set 3 IE 4 Principles of Engineering Management The Simple Algorithm-I: Set 3 So far, we have studied how to solve two-variable LP problems graphically. However, most real life problems have more than two variables!

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO50 Linear Programming Chapter 6: The Simplex Method rd June 2005 Chapter 6: The Simplex Method 1 Recap Suppose A is an m-by-n matrix with rank m. max. c T x (P ) s.t. Ax = b x 0 On Wednesday, we learned

More information

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination 22th June 2005 Chapter 8: Finite Termination Recap On Monday, we established In the absence of degeneracy, the simplex method will

More information

Fundamental Theorems of Optimization

Fundamental Theorems of Optimization Fundamental Theorems of Optimization 1 Fundamental Theorems of Math Prog. Maximizing a concave function over a convex set. Maximizing a convex function over a closed bounded convex set. 2 Maximizing Concave

More information

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1 The Graphical Method & Algebraic Technique for Solving LP s Métodos Cuantitativos M. En C. Eduardo Bustos Farías The Graphical Method for Solving LP s If LP models have only two variables, they can be

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 7 February 7th Overview In the previous lectures we saw applications of duality to game theory and later to learning theory. In this lecture

More information

The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b.

The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. Build initial tableau. z c T 0 0 A b The Simplex Method Standard

More information