tom.h.wilson Dept. Geology and Geography West Virginia University Tom Wilson, Department of Geology and Geography

Size: px
Start display at page:

Download "tom.h.wilson Dept. Geology and Geography West Virginia University Tom Wilson, Department of Geology and Geography"

Transcription

1 tom.h.wilson Dept. Geology and Geography West Virginia University

2 Heat flow problems to accompany the example in Chapter 9 Consider heat conduction through a thick glass window given two possible inside temperatures 65 o F and 72.2 o F and an outside temperature of 32 o F. In terms of degrees C this corresponds to temperatures of O C, o C and 0 o C. How much energy do you save? This problem is solved using a simple equation referred to as the heat conduction equation. qx K x See for additional discussion T

3 Some units We consider this problem in terms of the heat flow over the course of the day, where heat flow (q x ) is expressed in various units representing heat per unit area per time: for example, calories/(m 2 -s). 1 cal/s= W 1 joule = 0.74 ft-lb 1 joule =0.24 calories 1 Watt = 1 Joule/sec 1 calorie/sec = kw

4 Relating to the units 1 cal/s=3.086 ft-lbs/second If you lift about 3 pounds one foot in one second, then you ve expended 1 calorie (thermomechanical) of energy. Nutritional calories are about 1000 thermomechanical calories. So you would have burnt only 1/1000th a nutritional calorie! You can expend 1 nutritional calorie by carrying 100 lbs up 30 feet.

5 To solve this problem, we use the heat conduction equation: q x =-KT/x K (thermal conductivity) 2x10-3 cal/(cm-sec- o C) Assume x=0.5cm Then q x =0.07 cal/(cm 2 -sec) or cal/(cm 2 -sec) If the window has an area of 2m 2 Then the net heat flowing across the window is 1466 or 1786 cal/sec The lower temperature saves you 320 cal/sec

6 80,000 cal/sec 320 cal/sec corresponds to 2.82x10 7 cal/day There are cal per kwh so that this corresponds to about 32.8 kwh/day. A kwh goes for about 6.64 cents so $2.18/day. note this estimate depends on an accurate estimate of K, but, as you can see, it can add up!

7 The second question concerns a hot sill A hot sill intruded during Mesozoic time is now characterized by temperature from east-to-west that varies as X=40 km X=0 km T x x o

8 What is the derivative Using the conduction equation in differential form q x dt K dx You see you have to take a derivative to determine heat flow.

9 Calculate the temperature gradient dt d 2 0.5x 30x 10 dx dx Given K cal / ( cm sec) 3 o 6x10 cal / ( cm sec C) and that 1 heat flow unit = Calculate q x at x=0 and 40km. q x dt K dx

10 and substitute for x to get q You will get q x =-1.8 hfu at x=0 X=40 km X=0 km and q x =0.6 hfu at x=40 Heat flows out both ends of the sill.

11 Another simple example : assume the mantle and core have the same heat production rate as the crust What is the heat flow produced by the Earth in this case? Is it a good assumption? heat generation rate ~ M E Typical radiogenic heat production for granite is ~2x10-13 cal/(gm-sec) and that for basalt about 2x We use an average of about 1x10-13 for this problem. Given that the mass of the Earth is about 6x10 27 grams we get a heat generation rate of about 6.6x10 14 cal/sec. What is the heat flow per cm 2?

12 Heat flow per unit area To answer that, we need the total area of the Earth s surface in cm 2. The surface area of the Earth is about 5.1 x cm 2. which gives us a heat generation rate /cm 2 of about 12.9 x10-5 cal/(cm 2 -sec) or 129 hfu. The global average heat flow is about 1.5 hfu. We would have to conclude that the earth does not get much radiogenic heating from the mantle and core.

13 Lastly consider the cooling time for the Palisades intrusive sill In this example, we consider a granitic sill with initial temperature of ~750 o C and dimensions of 25km x 25km x 0.3km. In this problem, we approximate cooling time as 2 ~ L k Where L is the thickness of the sill and k is the thermal diffusivity.

14 Cooling time The thermal diffusivity k K C p K is the thermal conductivity introduced earlier is the density of the sill, and C p is the heat capacity of the granite. As with all these problems you have to look things up in a table of constants. In this case we are given that K/C p ~0.01 cm 2 /sec.

15 Cooling time 2 4 3x10 cm 2 For this case, we have L k cm / sec 10 9x10 sec Calculate the number of seconds per year to find that this sill will cool off in about 2850 years.

16 For Thursday Review problem 9.8. In this problem, we assume that heat is generated in the crust at the rate of 1kW/km 3 and that heat generation is confined to the crust (we ve confirmed this is a pretty good assumption). Radiogenic heating decreases with depth until, as we suspected, below the crust there is very little heat generated through radioactive decay (the thermal gradient or direction of heat flow is from hot to cold or vertically upward).

17 Problem 9.8 Heat generation rate in this problem is defined as a function distance from the base of the crust. Waltham uses y for this variable and expresses heat generation rate (Q) as Q y kw 20 km 3 Also review total natural strain discussion and the integration of discontinuous functions.

18 Q z kw 20 km 3 Where z is the distance in km from the base of the Earth s crust i. Determine the heat generation rate at 0, 10, 20, and 30 km from the base of the crust 0 kw 20 km kw km kw km kw 0.5 km ii. What is the heat generated in a in a small box-shaped volume z thick and 1km x 1km surface? Since V Az V zkm 3

19 The heat generated will be QV Qz kw This is a differential quantity so there is no need to integrate iii & iv. Heat generated in the vertical column In this case the sum extends n q Qi z over a large range of z, so However, integration is the way to go. q z z dz 20 0 z zdz i1

20 v. Determining the flow rate at the surface would require evaluation of z the definite integral q Qdz 0 q 2 z kW vi. To generate 100MW of power 100, 000kW 4444km 22.5kW km 2 2 An area about 67km on a side

21 L i e L, the elongation L i S 1 e, the stretch The total natural strain,, is the sum of an infinite number of infinitely small extensions In our example, this gives us the definite integral L L i f dl L ln( L ) ln( L) Lf ln Li f i ln L L L i f ln( S) L f Where S is the Stretch

22 Strain (or elongation) (e), stretch (S) and total natural strain () Elongation L Lf Li Lf e 1 S1 L L L i i i Total natural strain L L i f dl L ln( S) ln(1 e) expressed as a series expansion of ln(1+e) e e e e The six term approximation is accurate out to 5 decimal places!

23 Comparison of finite elongation vs. total natural strain Pretty close for relatively small strains.

24 Integrating discontinuous functions We can simplify the problem and still obtain a useful result. Approximate the average densities 11,000 kg/m 3 4,500 kg/m 3 M N i1 Area of sphere x r x density of shell Area of sphere x r = volume of shell N M 4r r i1 2 i i 2 M R 4 r dr 0

25 We can simplify the problem and still obtain a useful result. Approximate the average densities 11,000 kg/m 3 4,500 kg/m 3 2 M R 4 r dr r C r.11000dr 4 r.4500dr r r r r 3 3 The result 6.02 x kg is close to the generally accepted value of 5.97 x kg.

26 Volume of the earth an oblate spheroid r r 2 2 e 1 z In this equation r varies from r e, at the equator, to r=0 at the poles. z represents distance along the earth s rotation axis and varies from r p to r p. The equatorial radius is given as 6378km and the polar radius, as 6457km. 2 r 2 p Solve this integral before leaving today.

27 Problem 9.10 t t exp( x / X ) 0 In this problem, we return to the thickness/distance relationship for the bottomset bed. See self assessment problem. Problems 9.9 and 9.10 will be due next Tuesday

28 We ll go over these group problems next week as part of our review

29 These provide some additional practice with finding integrals

30 Another both indefinite and definite integrals

31 Have a look before Tuesday if time permits

32 We ll also have a look at an integration by substitution approach Take a look at this one for a minute t 8 3t dt A lot of the problems on the in-class worksheet are similar to this. To simplify these kinds of problems, you look for something that, when differentiated, supplies another term in the integrand.

33 t 8 3t dt In this problem, we can see that d 8 3t dt 3 9t which within a factor of 1/3 rd equals the leading term in the integrand the 3t 2. So the idea is that we define a new variable u du dt t, where 3 3 t du t dt 2 9 and 9

34 We also see that du t dt So we substitute and redefine the integral u83t 3 into du t 8 3t dt to get 1 1 du u u du 3 3 t dt

35 Now you have the much simpler integral to evaluate. You just need to use the power rule on this u du What would you get? u Substitute the expression defined as u(t) back in 5 4

36 Our result t Integration by substitution helps structure the process of finding a solution. Differentiate to verify.

37 1. Problems 9.9 and 9.10 are due next Tuesday 2. They will be returned and discussed next Thursday during the final review session 3. Start reviewing your notes with special emphasis on the material covered since the midterm.

tom.h.wilson Dept. Geology and Geography West Virginia University Tom Wilson, Department of Geology and Geography

tom.h.wilson Dept. Geology and Geography West Virginia University Tom Wilson, Department of Geology and Geography tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Graduation! Mark your calendars. For the day Strain Integration of discontinuous functions Acceleration due to

More information

Putting calculus concepts to work with some review

Putting calculus concepts to work with some review Geol 351 Geomath Putting calculus concepts to work with some review tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Don t forget - Excel problem 9.7 due today!

More information

tom.h.wilson Dept. Geology and Geography West Virginia University

tom.h.wilson Dept. Geology and Geography West Virginia University tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Objectives for the day 8.13 and 8.14 due next time In-class digital approach to differentiation including simple

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.3 Volumes by Cylindrical Shells Sec. 6.3: Volumes: Cylindrical Shell Method Cylindrical Shell Method dv = 2πrh thickness V = න a b 2πrh thickness Thickness

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.4 Work Definition of Work Situation There is an object whose motion is restricted to a straight line (1-dimensional motion) There is a force applied to

More information

A) 3.1 m/s B) 9.9 m/s C) 14 m/s D) 17 m/s E) 31 m/s

A) 3.1 m/s B) 9.9 m/s C) 14 m/s D) 17 m/s E) 31 m/s 1. A large tank, open at the top, is filled with water to a depth of 15 m. A spout located 10.0 m above the bottom of the tank is then opened as shown in the drawing. With what speed will water emerge

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126 Chapter 5: Thermochemistry Problems: 5.1-5.95, 5.97-98, 5.100, 5.106, 5.108, 5.118-5.119, 5.121, 5.126 Energy: Basic Concepts and Definitions energy: capacity to do work or to produce heat thermodynamics:

More information

Simple Thermal Isostasy

Simple Thermal Isostasy GS 388 Handout on Thermal Isostasy 1 SIMPLE THERMAL ISOSTASY...1 COOLING OF SUB-OCEANIC LITHOSPHERE...3 APPENDIX: BASIC HEAT FLOW EQUATION...9 Simple Thermal Isostasy This section develops the very simplest

More information

Computing Horsepower (HP) Lesson 8

Computing Horsepower (HP) Lesson 8 Computing Horsepower (HP) Lesson 8 Remember: Pretty Please My Dear Aunt Sally (From left to right; Parentheses; Power; Multiply; Divide; Add, Subtract) Today, we re going to find how to compute the one

More information

Problem Out of Score Problem Out of Score Total 45

Problem Out of Score Problem Out of Score Total 45 Midterm Exam #1 Math 11, Section 5 January 3, 15 Duration: 5 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 8 pages, including this cover sheet. No

More information

Physics 100 Lecture 5. Laws of Thermodynamics February 5, 2018

Physics 100 Lecture 5. Laws of Thermodynamics February 5, 2018 3 Physics 100 Lecture 5 Laws of Thermodynamics February 5, 2018 4 Class Quiz 2-3: A block of wood loses 100 J of gravitational potential energy as it slides down a ramp. If it has 90 J of kinetic energy

More information

d` = 1+( dy , which is part of the cone.

d` = 1+( dy , which is part of the cone. 7.5 Surface area When we did areas, the basic slices were rectangles, with A = h x or h y. When we did volumes of revolution, the basic slices came from revolving rectangles around an axis. Depending on

More information

Gravity Methods (VII) more wrap up

Gravity Methods (VII) more wrap up Environmental and Exploration Geophysics II Gravity Methods (VII) more wrap up tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV 0.4 0.35

More information

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology Agenda Today: HW Quiz, Thermal physics (i.e., heat) Thursday: Finish thermal physics, atomic structure (lots of review from chemistry!) Chapter 10, Problem 26 A boy reaches out of a window and tosses a

More information

Exponential Growth and Decay

Exponential Growth and Decay Exponential Growth and Decay 2-4-2005 In certain situations, the rate at which a thing grows or decreases is proportional to the amount present. When a substance undergoes radioactive decay, the release

More information

Intro to magnetic methods

Intro to magnetic methods Environmental and Exploration Geophysics I Intro to magnetic methods tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Items on the list Gravity

More information

Math 34B. Practice Exam, 3 hrs. March 15, 2012

Math 34B. Practice Exam, 3 hrs. March 15, 2012 Math 34B Practice Exam, 3 hrs March 15, 2012 9.3.4c Compute the indefinite integral: 10 x+9 dx = 9.3.4c Compute the indefinite integral: 10 x+9 dx = = 10 x 10 9 dx = 10 9 10 x dx = 10 9 e ln 10x dx 9.3.4c

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

Homework VII: Mantle Evolution and Heat Flow

Homework VII: Mantle Evolution and Heat Flow 1 Revised November 13, 1 EENS 634/434 The Earth Homework VII: Mantle Evolution and Heat Flow 1. Melting events in the mantle can cause fractionation of trace elements. For radiogenic isotopes this is important

More information

Basic Review continued

Basic Review continued Basic Review continued tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Previously Drew a correlation between basic mathematical representations

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Math 76 Practice Problems for Midterm II Solutions

Math 76 Practice Problems for Midterm II Solutions Math 76 Practice Problems for Midterm II Solutions 6.4-8. DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You may expect to

More information

Conservation of Energy 1 of 8

Conservation of Energy 1 of 8 Conservation of Energy 1 of 8 Conservation of Energy The important conclusions of this chapter are: If a system is isolated and there is no friction (no non-conservative forces), then KE + PE = constant

More information

Final Review session 2

Final Review session 2 Environmental and Exploration Geophysics I Final Review session 2 tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Reminders Turn in magnetics

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems Introduction, Page 1 Introduction to Mechanical Engineering Measurements Author: John M. Cimbala, Penn State University Latest revision, 19 August 011 Two Main Purposes of Measurements Engineering experimentation

More information

Geology geomathematics. Earthquakes log and exponential relationships

Geology geomathematics. Earthquakes log and exponential relationships Geology 351 - geomathematics Earthquakes log and exponential relationships tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Objectives for

More information

Math 142 (Summer 2018) Business Calculus 6.1 Notes

Math 142 (Summer 2018) Business Calculus 6.1 Notes Math 142 (Summer 2018) Business Calculus 6.1 Notes Antiderivatives Why? So far in the course we have studied derivatives. Differentiation is the process of going from a function f to its derivative f.

More information

Tells us the average translational kinetic energy of the particles

Tells us the average translational kinetic energy of the particles Temperature and Heat What is temperature? Kinetic Energy What is heat? Thermal Expansion Specific Heat Latent Heat and phase changes Unit 03, Slide 1 Temperature Tells us the average translational kinetic

More information

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer.

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer. Math 75B Practice Midterm III Solutions Chapter 6 Stewart) English system formulas: Metric system formulas: ft. = in. F = m a 58 ft. = mi. g = 9.8 m/s 6 oz. = lb. cm = m Weight of water: ω = 6.5 lb./ft.

More information

Geology Geomath. Practice with basic equation manipulation Using isostatic equilibrium relationships

Geology Geomath. Practice with basic equation manipulation Using isostatic equilibrium relationships Geology 351 - Geomath Practice with basic equation manipulation Using isostatic equilibrium relationships tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

11/13/2003 PHY Lecture 19 1

11/13/2003 PHY Lecture 19 1 Announcements 1. Schedule Chapter 19 macroscopic view of heat (today) Chapter 20 microscopic view of heat (Tuesday 11/18) Review Chapters 15-20 (Thursday 11/20) Exam 3 (Tuesday 11/25) 2. Physics colloquium

More information

Work- Work done W is defined as the dot product of force F and displacement s.

Work- Work done W is defined as the dot product of force F and displacement s. Work- Work done W is defined as the dot product of force F and displacement s. Here θ is the angle between and. Work done by the force is positive if the angle between force and displacement is acute (0

More information

Basic Review continued

Basic Review continued Basic Review continued tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Previously Drew a correlation between basic mathematical representations

More information

Math Ordinary Differential Equations Sample Test 3 Solutions

Math Ordinary Differential Equations Sample Test 3 Solutions Solve the following Math - Ordinary Differential Equations Sample Test Solutions (i x 2 y xy + 8y y(2 2 y (2 (ii x 2 y + xy + 4y y( 2 y ( (iii x 2 y xy + y y( 2 y ( (i The characteristic equation is m(m

More information

The First Law of Thermodynamics

The First Law of Thermodynamics The First Law of Thermodynamics Modern Physics August 31, 2016 1 Energy Conservation In this section, we will discuss the concepts of heat, internal energy, and work. In PHY 140, we had talked about conservation

More information

Watch:

Watch: Physics 106 Everyday Physics Fall 2013 Energy and Power Prelab Media links are provided in each section. If the link doesn t work, copy and paste URL into your browser window. Be patient with the ads you

More information

Midterm 2 UCLA: Math 3B, Fall 2017

Midterm 2 UCLA: Math 3B, Fall 2017 Midterm 2 UCLA: Math 3B, Fall 2017 Instructor: Noah White Date: 20 November, 2017 Version: practice This exam has 3 questions, for a total of 36 points. Please print your working and answers neatly. Write

More information

Units. specified to be meaningful. between different scales. - All physical quantities must have their units. - We will always used SI units.

Units. specified to be meaningful. between different scales. - All physical quantities must have their units. - We will always used SI units. Units - All physical quantities must have their units specified to be meaningful. - We will always used SI units. - We must be comfortable with conversions between different scales. 2 General View of the

More information

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes I. The concept of work, expansion and additional (useful) work. II. The concept of heat. III. Definition of internal energy and its molecular interpretation. I. Different forms of the first law of thermodynamics..

More information

Measurement Chapter 1.6-7

Measurement Chapter 1.6-7 Unit 1 Essential Skills Measurement Chapter 1.6-7 The Unit 1 Test will cover material from the following Chapters and Sections: 1.all 2.5-8 3.all 2 Two types of Data: When we make observations of matter,

More information

Math 107H Fall 2008 Course Log and Cumulative Homework List

Math 107H Fall 2008 Course Log and Cumulative Homework List Date: 8/25 Sections: 5.4 Math 107H Fall 2008 Course Log and Cumulative Homework List Log: Course policies. Review of Intermediate Value Theorem. The Mean Value Theorem for the Definite Integral and the

More information

Graded and supplementary homework, Math 2584, Section 4, Fall 2017

Graded and supplementary homework, Math 2584, Section 4, Fall 2017 Graded and supplementary homework, Math 2584, Section 4, Fall 2017 (AB 1) (a) Is y = cos(2x) a solution to the differential equation d2 y + 4y = 0? dx2 (b) Is y = e 2x a solution to the differential equation

More information

To determine the work and power required to walk and then run through one floor stairs. To determine the energy burned during that exercise

To determine the work and power required to walk and then run through one floor stairs. To determine the energy burned during that exercise Essentials of Physics: WORK AND POWER Purpose To determine the work and power required to walk and then run through one floor stairs. To determine the energy burned during that exercise Theory In this

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

Name. 6) f(x) = x Find the inverse of the given function. 1) f(x) = x + 5. Evaluate. 7) Let g(x) = 6x. Find g(3) 2) f(x) = -3x

Name. 6) f(x) = x Find the inverse of the given function. 1) f(x) = x + 5. Evaluate. 7) Let g(x) = 6x. Find g(3) 2) f(x) = -3x Exam 2 Preparation Ch 5 & 6 v01 There will be 25 questions on Exam 2. Fourteen questions from chapter 5 and eleven questions from chapter 6. No Book/No Notes/No Ipod/ No Phone/Yes Calculator/55 minutes

More information

Rate in Thermal Systems

Rate in Thermal Systems Rate in Thermal Systems Overview Rate in Thermal Systems 1 Fundamental Concepts What is the prime mover in the thermal system? temperature difference ( T) What does rate measure in the thermal system?

More information

tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV

tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV Equation Manipulation illustrated around the concept of Isostacy tom.h.wilson tom.wilson@geo.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Objectives for the day Hand

More information

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards P1 Quick Revision Questions Question 1... of 50 What type of energy is stored in a stretched elastic band? Answer 1... of 50 Elastic potential energy. Question 2... of 50 What type of energy is stored

More information

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per:

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Humans use energy for a variety of purposes, some that are necessary and some that are not. To address the questions

More information

Today is Thursday, February 8 th, 2018

Today is Thursday, February 8 th, 2018 In This Lesson: Measurement and Significant Figures (Lesson 3 of 6) Today is Thursday, February 8 th, 2018 Stuff You Need: Calculator Pre-Class: Get your calculators and get ready. Something else to do:

More information

Virginia Tech Math 1226 : Past CTE problems

Virginia Tech Math 1226 : Past CTE problems Virginia Tech Math 16 : Past CTE problems 1. It requires 1 in-pounds of work to stretch a spring from its natural length of 1 in to a length of 1 in. How much additional work (in inch-pounds) is done in

More information

Physical Science Chapter 5 Cont2. Temperature & Heat

Physical Science Chapter 5 Cont2. Temperature & Heat Physical Science Chapter 5 Cont2 Temperature & Heat What are we going to study? Temperature Heat Specific Heat and Latent Heat Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics

More information

Geology Geomathematics. Introduction to differential calculus part 2. tom.h.wilson

Geology Geomathematics. Introduction to differential calculus part 2. tom.h.wilson Geology 351 - Geomathematics Introduction to differential calculus part 2 tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Last time Basic differentiation rules:

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math 6-3/6 3 7 These problems are intended to help you study for the final However, you shouldn t assume that each problem on this handout corresponds to a problem on the

More information

Exam solutions are posted on the class website: Expect to return graded exams Friday.

Exam solutions are posted on the class website:   Expect to return graded exams Friday. Exam solutions are posted on the class website: http://faculty.washington.edu/storm/11c/ Expect to return graded exams Friday. Homework assignment lighter than usual. Was posted Monday afternoon on Tycho.

More information

Thermal Process Control Lap 4 Thermal Energy. Notes:

Thermal Process Control Lap 4 Thermal Energy. Notes: Thermal Process Control Lap 4 Thermal Energy Notes: 1) Temperature Measurement a) Define temperature i) A measure of the amount of heat contained in a solid, liquid, or gas ii) Result of molecular motion

More information

AP PHYSICS 2 WHS-CH-14 Heat Show all your work, equations used, and box in your answers! 1 108kg

AP PHYSICS 2 WHS-CH-14 Heat Show all your work, equations used, and box in your answers! 1 108kg AP PHYSICS 2 WHS-CH-4 Heat Show all your work, equations used, and box in your answers! James Prescott Joule (88 889) James Prescott Joule studied the nature of heat, and discovered its relationship to

More information

Physics 101: Lecture 25 Heat

Physics 101: Lecture 25 Heat Final Physics 101: Lecture 25 Heat Today s lecture will cover Textbook Chapter 14.1-14.5 Physics 101: Lecture 25, Pg 1 Internal Energy Energy of all molecules including Random motion of individual molecules»

More information

Period 1: Review of Physics 103

Period 1: Review of Physics 103 Period 1: Review of Physics 103 1.1 Ratios and per How can ratios be used for problem solving? 1.2 Efficiency How are ratios used to calculate efficiency? 1.3 Exponents and Scientific Notation How is scientific

More information

1. Make your own chart from the following table: P, bars and V, cubic meters 15 bars initial

1. Make your own chart from the following table: P, bars and V, cubic meters 15 bars initial The above diagram clearly shows that the initial steps perform less work than the final steps. The sum of the work contributions is the total work. The total work increases as the size of the calculation

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Growth and Decay Models

Growth and Decay Models Growth and Decay Models --08 In certain situations, the rate at which a thing grows or decreases is proportional to the amount present. When a sustance undergoes radioactive decay, the release of decay

More information

Displacement and Total Distance Traveled

Displacement and Total Distance Traveled Displacement and Total Distance Traveled We have gone over these concepts before. Displacement: This is the distance a particle has moved within a certain time - To find this you simply subtract its position

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below.

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. MAC 23. Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. (x, y) y = 3 x + 4 a. x = 6 b. x = 4 c. x = 2 d. x = 5 e. x = 3 2. Consider the area of the

More information

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall Physics 231 Topic 13: Heat Alex Brown Dec 1, 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept test timed (50 min))

More information

Forms of Energy. Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms

Forms of Energy. Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms Forms of Energy Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms Work: defined as the product of a force (F) times times a displacement acting

More information

Midterm 2 practice 3 UCLA: Math 3B, Fall 2018

Midterm 2 practice 3 UCLA: Math 3B, Fall 2018 Midterm 2 practice 3 UCLA: Math 3B, Fall 2018 Instructor: Noah White Date: November, 2018 Version: practice This exam has 3 questions, for a total of 36 points. Please print your working and answers neatly.

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Ch 100: Fundamentals for Chemistry

Ch 100: Fundamentals for Chemistry Ch 100: Fundamentals for Chemistry Chapter 4: Properties of Matter Lecture Notes Physical & Chemical Properties Physical Properties are the characteristics of matter that can be changed without changing

More information

The Princeton Review AP Calculus BC Practice Test 2

The Princeton Review AP Calculus BC Practice Test 2 0 The Princeton Review AP Calculus BC Practice Test CALCULUS BC SECTION I, Part A Time 55 Minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each

More information

FIRST MIDTERM - REVIEW PROBLEMS

FIRST MIDTERM - REVIEW PROBLEMS Physics 10 Spring 009 George Williams FIRST MIDTERM - REVIEW PROBLEMS A data sheet is provided at the end. Problems labeled [Ch. 4] are relevant to the second midterm. 1. Convert 747 m to feet. Convert

More information

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan PHYS 100 Discussion Session 6 Newton s Second & Third Laws Week 07 The Plan This week we use Newton s Third Law ( F A on B = F B on A ) to relate the forces between two different objects. We can use this

More information

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013 MAT 271 Recitation Sections 7.1 and 7.2 Lindsey K. Gamard, ASU SoMSS 30 August 2013 Agenda Today s agenda: 1. Review 2. Review Section 7.2 (Trigonometric Integrals) 3. (If time) Start homework in pairs

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

MA 412 Complex Analysis Final Exam

MA 412 Complex Analysis Final Exam MA 4 Complex Analysis Final Exam Summer II Session, August 9, 00.. Find all the values of ( 8i) /3. Sketch the solutions. Answer: We start by writing 8i in polar form and then we ll compute the cubic root:

More information

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T)

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T) Physics 111 Lecture 35 (Walker: 16.1-3) Thermal Physics I: Temperature Thermal Expansion April 29, 2009 Lecture 35 1/26 Temperature (T) Temperature (T) is a measure of how hot or cold something is Temperature

More information

Lecture 6 Examples and Problems

Lecture 6 Examples and Problems Lecture 6 Examples and Problems Heat capacity of solids & liquids Thermal diffusion Thermal conductivity Irreversibility Hot Cold Random Walk and Particle Diffusion Counting and Probability Microstates

More information

Ï ( ) Ì ÓÔ. Math 2413 FRsu11. Short Answer. 1. Complete the table and use the result to estimate the limit. lim x 3. x 2 16x+ 39

Ï ( ) Ì ÓÔ. Math 2413 FRsu11. Short Answer. 1. Complete the table and use the result to estimate the limit. lim x 3. x 2 16x+ 39 Math 43 FRsu Short Answer. Complete the table and use the result to estimate the it. x 3 x 3 x 6x+ 39. Let f x x.9.99.999 3.00 3.0 3. f(x) Ï ( ) Ô = x + 5, x Ì ÓÔ., x = Determine the following it. (Hint:

More information

Solar and Renewable Energies

Solar and Renewable Energies Physics 162: Solar and Renewable Energies February 16, 2010 Prof. Raghuveer Parthasarathy raghu@uoregon.edu Winter 2010 Lecture 12: Announcements Reading: Wolfson Chapter 4 Homework: Problem Set 6, due

More information

MULTIVARIABLE CALCULUS

MULTIVARIABLE CALCULUS MULTIVARIABLE CALCULUS Summer Assignment Welcome to Multivariable Calculus, Multivariable Calculus is a course commonly taken by second and third year college students. The general concept is to take the

More information

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam Math 122 Fall 2008 Handout 15: Review Problems for the Cumulative Final Exam The topics that will be covered on Final Exam are as follows. Integration formulas. U-substitution. Integration by parts. Integration

More information

Topic #4 ENERGY & MATTER OVERVIEW

Topic #4 ENERGY & MATTER OVERVIEW Topic #4 ENERGY & MATTER OVERVIEW OBJECTIVES: To review basic physical concepts of energy and matter and some key ways in which they interact. CLASS NOTES: pp 21-25 Science shows us that the visible world

More information

Learning Plan 4 Chapter 9

Learning Plan 4 Chapter 9 Learning Plan 4 Chapter 9 Question The population of a country reached 309.5 million people. The total area is 3.25 million square miles. What is the population density for the country? Round to the nearest

More information

FINAL REVIEW FALL 2017

FINAL REVIEW FALL 2017 FINAL REVIEW FALL 7 Solutions to the following problems are found in the notes on my website. Lesson & : Integration by Substitution Ex. Evaluate 3x (x 3 + 6) 6 dx. Ex. Evaluate dt. + 4t Ex 3. Evaluate

More information

Department of Mathematical 1 Limits. 1.1 Basic Factoring Example. x 1 x 2 1. lim

Department of Mathematical 1 Limits. 1.1 Basic Factoring Example. x 1 x 2 1. lim Contents 1 Limits 2 1.1 Basic Factoring Example...................................... 2 1.2 One-Sided Limit........................................... 3 1.3 Squeeze Theorem..........................................

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

Math 2413 General Review for Calculus Last Updated 02/23/2016

Math 2413 General Review for Calculus Last Updated 02/23/2016 Math 243 General Review for Calculus Last Updated 02/23/206 Find the average velocity of the function over the given interval.. y = 6x 3-5x 2-8, [-8, ] Find the slope of the curve for the given value of

More information

Introduction to Mass Transfer

Introduction to Mass Transfer Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or

More information

6.5 Work and Fluid Forces

6.5 Work and Fluid Forces 6.5 Work and Fluid Forces Work Work=Force Distance Work Work=Force Distance Units Force Distance Work Newton meter Joule (J) pound foot foot-pound (ft lb) Work Work=Force Distance Units Force Distance

More information

Physics 218 Lecture 13

Physics 218 Lecture 13 Physics 218 Lecture 13 Dr. David Toback Physics 218, Lecture XIII 1 Checklist for Today Things due for Last Thursday: Read Chapters 7, 8 & 9 Things that were due Last Monday: Chap 5&6 turned in on WebCT

More information