Math 76 Practice Problems for Midterm II Solutions

Size: px
Start display at page:

Download "Math 76 Practice Problems for Midterm II Solutions"

Transcription

1 Math 76 Practice Problems for Midterm II Solutions DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You may expect to see problems on the test that are not exactly like problems you have seen before. Multiple Choice. Circle the letter of the best answer.. e ln x dx = a b c d This is an improper integral. We have e e ln x dx = lim ln x dx t + t = lim x ln x x e t + = lim e t ln t t t +e = lim t ln t + t t + = lim t ln t t + t using integration by parts Recall from Math 7 that this is an indeterminate form of type. So we use l Hôpital s Rule as follows: = lim ln t t + = lim t + t t = lim t + t = t. What expression best represents the area between x = y and x = y from y = to y =? a b c d y + y dy + y y dy + y + y dy y y dy + y y dy y + y dy y y dy

2 The region described is in two pieces, as shown. The two curves cross at y =. From y = to y =, x = y is on the right. From y = to y =, x = y is on the right. Therefore the area is = y y dy + y y dy + y y dy y + y dy.. The volume of the solid formed by rotating the region shown about the y-axis is a π b π c π d π π/4 π/4 π/4 π/4 y sin y cos y dy cos y sin y dy cos y sin y dy y cos y sin y dy x = sin y x = cos y Since the region is formed by functions of y and is being rotated about a vertical axis, we use the disk method: At any y between and π, the outer radius of the disk is R = cos y and the inner radius of the 4 disk is r = sin y. Therefore the volume is π π/4 π/4 cos y sin y dy cos y sin y dy. 4. The volume of the solid formed by rotating the region enclosed by the curves y = x, y = x, and x = about the line x = is a π b π x + x + x x x x dx dx c π d π x x x dx x x x dx The region being rotated is shown at right with the axis of rotation. It is the same region as in Work and Answer #. Since the region is formed from functions of x and is being rotated about a vertical axis, we use the shell method:

3 At any x between and, the height of the shell is h = x and the radius is r = x +. x Therefore the volume is π x + x x dx.. Lois Lane, whose mass is kg, is hanging from a -meter rope tied to a crane. Superman is at the top of the crane. In order to rescue Lois, he must pull the rope all the way up to the top of the crane. If the rope has a mass of kg, then the work Superman must do in order to rescue Lois is a,78 N b,78 J c 9,8 N d 9,8 J The sneaky way to determine the answer is to notice that The work done metric system is measured in Joules J, so the answer is either b or d. Lois Lane s weight is 9.8 = 49 N, so the work required to lift only her is 49 = 98 J, since the rope is m long. So the answer must be b since Superman also has to pull the rope up! But here s how to do the integral: The rope weighs 9.8 = 98 N, or 98 = 4.9 Newtons per meter. So if Superman has pulled up x meters of rope, the weight of the rope he has pulled up is 4.9x. Therefore the weight he is still pulling is x = 4.9 x Newtons, in addition to Lois s 49 N. The total work done, then, is W = 4.9 x + 49 dx = 4.9 = 4.9 = 4.9 x + dx = 4.94 x dx = 4.9 = 4.9 x x =, 78 J 6. A rectangular aquarium 4 ft. wide, 6 ft. long, and ft. high is full of water. If a pump is placed at the top of the tank, the work done in pumping half the water out is a 6.6 ft.-lb. b 6. ft.-lb. c 6.4 ft.-lb. d 6.48 ft.-lb. Using the formula W = ω the integral b x + P Ax dx and the weight of water ω = 6. lb./ft., we get W = 6. x + 4 dx,

4 since we are pumping water from a depth of ft. to a depth of ft. half the water in the tank. P = since the pump is at the top of the tank, and Ax = 6 4 = 4 at all depths x. Evaluating the above integral, we get 6. 4x dx = 6. x = 6. = 6. ft.-lb. 7. The length of the curve x = y y from y = to y = is a π b + y dy 9y 4 6y + dy c d + y + y dy y dy We have x = y, so x = 9y 4 6y +. Therefore the arc length is as given above. 8. A trough is filled with water. The ends of the trough are equilateral triangles with sides 8 m long and vertex at the bottom. The hydrostatic force on one end of the trough is a 98 b 98 y dy yy 8 dy c 98 8 d 96 8 yy dy The triangle is shown. Using the Pythagorean Theorem the height of the triangle is 4 m, so putting the origin at the bottom vertex of the triangle we have that the depth at y is dy = 4 y. Using similar triangles we also find that wy = y. So we have F = 98 4 y y dy = yy dy. 4 yy dy 8 m y water level 4 m One note: if you put the origin somewhere else your integral will look different, but you should still be able to wiggle it through algebra, substitution, or other means into something that matches the above. For instance, if we put the origin at the top of the triangle as at right, then dy = y and wy = 4 y, which simplifies to wy = 8 y. The integral still goes from to 4, as it turns out. Therefore we get F = 98 now the same as the answer in the multiple choice. 8 m y water level 4 m 8 4 y y dy = 98 4 y y dy, which is 4

5 9. The coordinates of the center of mass of the region enclosed by y = x, y = x 4, x = and x = are a.,. b.7, c, d,. x+ - - x - 4 A picture of the region is shown. It is a parallelogram. By inspection, we can see by a kind of skew symmetry that the coordinates must be as above. But we can also compute them using the formulas: the area of a parallelogram is the base times the height, so 4 = 8 or you can do the integral and x x 4 dx. So the coordinates are x = 8 = 8 = 8 x y = 8 = 6 xx x 4 dx x4 dx = 8 4x dx = 6 8 = 8 8 = x x 4 dx x x 8x + 6 dx = 8x 6 dx 6 = 6 4x 6x = =. 6. The nth term of the sequence {, 4,, 8,,...}, counting a = as the first term, is a a n = n b a n = 7n c a n = n 4 d a n = n + 7 This is an arithmetic sequence with a common difference of 7, so only b can be correct. Sure enough, when n =, a = 7n = 7 =.

6 Fill-In.. x dx =. We have t dx = lim x t = lim t x x dx t = lim t t + =.. If the region enclosed by the curves y = x +, y = and x = is rotated about the x-axis, the volume of the resulting solid is 9π. The region is shown at right. Since we are rotating a region formed from functions of x about a horizontal axis, it is easiest to use disks. The region goes from x = to x =. Also note that R = x + and r =. Thus we get y = x + y = x = V x + dx x + dx x + dx x + x + 9 = 9π This region can also be rewritten in terms of y and the problem solved using shells. See me for help if you want to go over this.. If the region enclosed by the curves y = x and y = x + is rotated about the line y =, the volume of the resulting solid is 8π. The region is shown at right. Since we are rotating a region formed from functions of x about a horizontal axis, it is easiest to use disks. To find where the curves intersect, we set them equal to each other and solve for x: y = y = - x y = x + x = x + x + x = x + x = x =, x = 6

7 Therefore the region goes from x = to x =. Also note that R = x = 4 x and r = x + = x +. Thus we get V 4 x x + dx 6 8x + x 4 x + 4x + 4 dx 4x 9x + x 4 dx x x x + x = 8π 4. If N of force are required to keep a spring stretched cm beyond its natural length, then the spring constant for the spring is k = N/m. We use Hooke s Law F x = kx. First we must convert cm to. = Therefore k = = N/m m. Then = k. Work and Answer. You must show all relevant work to receive full credit.. Find the area enclosed by the curves y = x, y = x, and x =. The region described is shown. It is the same region as in Multiple Choice #4. Notice that the curve is on top between x = and x x =. Therefore the area is x x dx = x x dx = x + x = x + x = + + = 8 8. a Use the disk method to find the volume of the solid formed by rotating the region enclosed by the curves x = y and x = y about the line y =. Since we are rotating about a horizontal axis, we will need to rewrite the curves in terms of x. The curves intersect at the points, and 4,, so we will only need the upper half of the parabola x = y. Therefore we can rewrite this as y = x the positive square root. 7

8 DISKS y = x SHELLS x = y y = - x x = y R = x + h = y - y r = - x + y = - r = y + y = - The region is shown above left, along with R and r. Thus the volume is V x + x + dx x + x + 4 x + x + 4 x + x / = 6π dx dx x x/ b Use the shell method to find the volume of the solid formed by rotating the region enclosed by the curves x = y and x = y about the line y =. Since we are rotating about a horizontal axis, we can leave the curves in terms of y. The curves intersect at the points, and 4,, as before. The region is shown above right, along with r and h. Thus the volume is V = π = π = π y + y y dy y + y y y dy y + y + y dy = π 4 y4 + y + y = π = π = 6π c Should the answers to a and b be the same? Why or why not? 8

9 In a and b we are rotating the same region about the same axis, so the resulting solids should be the same. Therefore the volumes should be equal.. A certain spring has a natural length of 8 in. If lb. of force is needed to keep the spring stretched to a length of 4 in., what is the work done in stretching it to 6 in.? This is a problem where the units are in the English system. However, the distance units are in inches, not feet. So the first thing to do is convert the distances to feet: we have 8 in. = ft. 4 in. = ft. 6 in. = ft. Next we use Hooke s Law F x = kx. We need to use the information in the problem to find k. The problem says that lb. of force are needed to stretch the spring = ft. remember that x in Hooke s Law is the number of feet beyond the natural length. So = k. Therefore k =. So the work done to stretch it to ft. =. ft. beyond the natural length is W =. x dx. = x =. =. =. ft.-lb. 4. A tank in the shape of a cylinder on its side is half full of water. A pump is at the top of the tank, as shown below. a Find the hydrostatic force on one of the circular sides of the tank. It is easiest to set up our coordinate system so that the line x = passes through the center of the circle, as shown. x x m 4 m - x The depth at x is dx = x. We also have wx = x using the Pythagorean Theorem; see the picture. Therefore the hydrostatic force is H.F. = 98 = 98 9 x x dx x x dx

10 Let u = x. Then du = x dx, and we get = 98 = 98 u/???? u du = 96 x / = 96 / / = 96 N b Set up, but do not evaluate, an integral for the work done in pumping all the water out of the tank. We set x = to be the initial water level, as shown above. The pump is m above that, so P = see the formula W = ω b x + P Ax dx on the formula list. Since we are in the metric system, ω = 98. Finally, the surface area Ax of the water at each depth x is a rectangle 4 m long and x m wide similar to part a; see the picture, so Ax = 8 x square meters. Therefore the work done is x - x x W = 98 = 78, 4 x + 8 x dx x + x dx J In case you are interested in evaluating the above integral it would be great practice!, here s the solution: First distribute the x + to get [ 78, 4 x ] x dx + x dx. For the first integral we use a u-substitution: let u = x. Then du = x dx. We also need to change the x-limits to u-limits. When x =, u = =, and when x =, u = =. Therefore we get x x dx = = u du u du = u/ = =. switching the limits and getting rid of the negative

11 For the second integral we can use geometry. circle of radius, so x dx = 4 π 4. x dx represents the area of 4 of a Therefore the final answer for the work done would be W = 78, 4 + π 4 J.. Find the length of the curve fx = ex + e x from x = to x =. We have f x = ex e x, so + f x = + 4 ex + e x = 4 ex + + e x I m skipping a couple of algebra steps here, which equals ex + e x. This is one of those fancy integrals where the middle term under the square root changes sign and ends up forming a perfect square again after the + part is added in. Therefore we have L = ex + e x dx = e x + e x dx = ex e x = e e = e e 6. Find the length of the curve x = y from y = to y =. We have x = y = y; therefore + x = + y, and the length of the curve is L = + y dy Using integral # in the tables this would be provided to you in the exam, or trigonometric substitution, we get = y + y + lny = + y = + ln + + ln + = + + ln + Remark. You may leave your answer as in the second to last line above, if you wish. As always, the rule for this class is simplify at your own risk.

12 7. Find the hydrostatic force on the wall shown. The fluid is New Blue Goo density kg/m. There are several ways to do this problem. But, there is really no principle of similar trapezoids like there is with similar triangles. We can, however, use similar triangles if we add a top to our trapezoid as shown. I have chosen to make the top of the triangle my origin. The first thing we need to do is figure out what? is. Using similar triangles, we have? + =?, so? =. Now using similar 6 triangles again we have wy = y? = y I m skipping some steps here. We also have dy = y 6 again using the top of the triangle as the origin. New Blue Goo level 4 m } m y 6 m }? } m Therefore the hydrostatic force is F = = = y y 6 dy 6 yy 6 dy y 6y dy = y y 6 6 = = = N 8. For the sequence {, 4, 8 9, 6 7,...}, a Find a formula for the n-th term a n of the sequence, assuming a =. We make the following observations: i The sequence is alternating, so there is a ξ in the formula. ii The numerators are proceeding by powers of, so there is a in the numerator of the formula. iii The denominators are proceeding by powers of, so there is a in the denominator of the formula. We have a = = +, so the formula for a n is a n = n n+ n b Circle the best answer. The sequence {a n } n= above converges diverges. lim a n = lim n n n =. So the sequence converges to.

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer.

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer. Math 75B Practice Midterm III Solutions Chapter 6 Stewart) English system formulas: Metric system formulas: ft. = in. F = m a 58 ft. = mi. g = 9.8 m/s 6 oz. = lb. cm = m Weight of water: ω = 6.5 lb./ft.

More information

For the intersections: cos x = 0 or sin x = 1 2

For the intersections: cos x = 0 or sin x = 1 2 Chapter 6 Set-up examples The purpose of this document is to demonstrate the work that will be required if you are asked to set-up integrals on an exam and/or quiz.. Areas () Set up, do not evaluate, any

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

Calculus II - Fall 2013

Calculus II - Fall 2013 Calculus II - Fall Midterm Exam II, November, In the following problems you are required to show all your work and provide the necessary explanations everywhere to get full credit.. Find the area between

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

Applications of Integration to Physics and Engineering

Applications of Integration to Physics and Engineering Applications of Integration to Physics and Engineering MATH 211, Calculus II J Robert Buchanan Department of Mathematics Spring 2018 Mass and Weight mass: quantity of matter (units: kg or g (metric) or

More information

MATH 1242 FINAL EXAM Spring,

MATH 1242 FINAL EXAM Spring, MATH 242 FINAL EXAM Spring, 200 Part I (MULTIPLE CHOICE, NO CALCULATORS).. Find 2 4x3 dx. (a) 28 (b) 5 (c) 0 (d) 36 (e) 7 2. Find 2 cos t dt. (a) 2 sin t + C (b) 2 sin t + C (c) 2 cos t + C (d) 2 cos t

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice

More information

6.5 Work and Fluid Forces

6.5 Work and Fluid Forces 6.5 Work and Fluid Forces Work Work=Force Distance Work Work=Force Distance Units Force Distance Work Newton meter Joule (J) pound foot foot-pound (ft lb) Work Work=Force Distance Units Force Distance

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Solutions to Assignment 7.6. sin. sin

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Solutions to Assignment 7.6. sin. sin Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Solutions to Assignment 7.6 Exercise We have [ 5x dx = 5 ] = 4.5 ft lb x Exercise We have ( π cos x dx = [ ( π ] sin π x = J. From x =

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral Section 6.1 More on Area a. Representative Rectangle b. Vertical Separation c. Example d. Integration with Respect to y e. Example Section 6.2 Volume by Parallel

More information

Math 1b Midterm I Solutions Tuesday, March 14, 2006

Math 1b Midterm I Solutions Tuesday, March 14, 2006 Math b Midterm I Solutions Tuesday, March, 6 March 5, 6. (6 points) Which of the following gives the area bounded on the left by the y-axis, on the right by the curve y = 3 arcsin x and above by y = 3π/?

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

Math Makeup Exam - 3/14/2018

Math Makeup Exam - 3/14/2018 Math 22 - Makeup Exam - 3/4/28 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all work.

More information

MATH141: Calculus II Exam #1 review 6/8/2017 Page 1

MATH141: Calculus II Exam #1 review 6/8/2017 Page 1 MATH: Calculus II Eam # review /8/7 Page No review sheet can cover everything that is potentially fair game for an eam, but I tried to hit on all of the topics with these questions, as well as show you

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 6.4, 6.5, 7. Fall 6 Problem 6.4. Sketch the region enclosed by x = 4 y +, x = 4y, and y =. Use the Shell Method to calculate the volume of rotation about the x-axis SOLUTION.

More information

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

MATH 162. Midterm Exam 1 - Solutions February 22, 2007 MATH 62 Midterm Exam - Solutions February 22, 27. (8 points) Evaluate the following integrals: (a) x sin(x 4 + 7) dx Solution: Let u = x 4 + 7, then du = 4x dx and x sin(x 4 + 7) dx = 4 sin(u) du = 4 [

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

Calculus I Sample Final exam

Calculus I Sample Final exam Calculus I Sample Final exam Solutions [] Compute the following integrals: a) b) 4 x ln x) Substituting u = ln x, 4 x ln x) = ln 4 ln u du = u ln 4 ln = ln ln 4 Taking common denominator, using properties

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

Department of Mathematical x 1 x 2 1

Department of Mathematical x 1 x 2 1 Contents Limits. Basic Factoring Eample....................................... One-Sided Limit........................................... 3.3 Squeeze Theorem.......................................... 4.4

More information

d` = 1+( dy , which is part of the cone.

d` = 1+( dy , which is part of the cone. 7.5 Surface area When we did areas, the basic slices were rectangles, with A = h x or h y. When we did volumes of revolution, the basic slices came from revolving rectangles around an axis. Depending on

More information

Virginia Tech Math 1226 : Past CTE problems

Virginia Tech Math 1226 : Past CTE problems Virginia Tech Math 16 : Past CTE problems 1. It requires 1 in-pounds of work to stretch a spring from its natural length of 1 in to a length of 1 in. How much additional work (in inch-pounds) is done in

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.3 Volumes by Cylindrical Shells Sec. 6.3: Volumes: Cylindrical Shell Method Cylindrical Shell Method dv = 2πrh thickness V = න a b 2πrh thickness Thickness

More information

foot (ft) inch (in) foot (ft) centimeters (cm) meters (m) Joule (J)

foot (ft) inch (in) foot (ft) centimeters (cm) meters (m) Joule (J) Math 176 Calculus Sec. 6.4: Work I. Work Done by a Constant Force A. Def n : If an object is moved a distance D in the direction of an applied constant force F, then the work W done by the force is defined

More information

Evaluate the following limit without using l Hopital s Rule. x x. = lim = (1)(1) = lim. = lim. = lim = (3 1) =

Evaluate the following limit without using l Hopital s Rule. x x. = lim = (1)(1) = lim. = lim. = lim = (3 1) = 5.4 1 Looking ahead. Example 1. Indeterminate Limits Evaluate the following limit without using l Hopital s Rule. Now try this one. lim x 0 sin3x tan4x lim x 3x x 2 +1 sin3x 4x = lim x 0 3x tan4x ( ) 3

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.4 Work Definition of Work Situation There is an object whose motion is restricted to a straight line (1-dimensional motion) There is a force applied to

More information

U.S. pound (lb) foot (ft) foot-pounds (ft-lb) pound (lb) inch (in) inch-pounds (in-lb) tons foot (ft) foot-tons (ft-ton)

U.S. pound (lb) foot (ft) foot-pounds (ft-lb) pound (lb) inch (in) inch-pounds (in-lb) tons foot (ft) foot-tons (ft-ton) Math 1206 Calculus Sec. 6.4: Work I. Work Done by a Constant Force A. Def n : If an object is moved a distance D in the direction of an applied constant force F, then the work W done by the force is defined

More information

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 25 B and C Midterm 2 Palmieri, Autumn 26 Your Name Your Signature Student ID # TA s Name and quiz section (circle): Cady Cruz Jacobs BA CB BB BC CA CC Turn off all cell phones, pagers, radios, mp3

More information

Have a Safe Winter Break

Have a Safe Winter Break SI: Math 122 Final December 8, 2015 EF: Name 1-2 /20 3-4 /20 5-6 /20 7-8 /20 9-10 /20 11-12 /20 13-14 /20 15-16 /20 17-18 /20 19-20 /20 Directions: Total / 200 1. No books, notes or Keshara in any word

More information

MA 114 Worksheet # 1: Improper Integrals

MA 114 Worksheet # 1: Improper Integrals MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

More information

MATH 152, SPRING 2017 COMMON EXAM I - VERSION A

MATH 152, SPRING 2017 COMMON EXAM I - VERSION A MATH 152, SPRING 2017 COMMON EXAM I - VERSION A LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited. 2. TURN OFF cell

More information

Department of Mathematical 1 Limits. 1.1 Basic Factoring Example. x 1 x 2 1. lim

Department of Mathematical 1 Limits. 1.1 Basic Factoring Example. x 1 x 2 1. lim Contents 1 Limits 2 1.1 Basic Factoring Example...................................... 2 1.2 One-Sided Limit........................................... 3 1.3 Squeeze Theorem..........................................

More information

Have a Safe and Happy Break

Have a Safe and Happy Break Math 121 Final EF: December 10, 2013 Name Directions: 1 /15 2 /15 3 /15 4 /15 5 /10 6 /10 7 /20 8 /15 9 /15 10 /10 11 /15 12 /20 13 /15 14 /10 Total /200 1. No book, notes, or ouiji boards. You may use

More information

Math Exam III - Spring

Math Exam III - Spring Math 3 - Exam III - Spring 8 This exam contains 5 multiple choice questions and hand graded questions. The multiple choice questions are worth 5 points each and the hand graded questions are worth a total

More information

Problem Out of Score Problem Out of Score Total 45

Problem Out of Score Problem Out of Score Total 45 Midterm Exam #1 Math 11, Section 5 January 3, 15 Duration: 5 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 8 pages, including this cover sheet. No

More information

Name: Class: Math 7B Date:

Name: Class: Math 7B Date: 1. Match the given differential equations to their families of solutions. 2. Match the given differential equations and the graphs of their solutions. PAGE 1 3. Match the differential equation with its

More information

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C.

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C. MA 6 FINAL EXAM PRACTICE PROBLEMS Spring. Find the angle between the vectors v = i + j + k and w = i + j k. cos 8 cos 5 cos D. cos 7 E. cos. Find a such that u = i j + ak and v = i + j + k are perpendicular.

More information

Work. 98N We must exert a force of 98N to raise the object. 98N 15m 1470Nm. One Newton- meter is called a Joule and the

Work. 98N We must exert a force of 98N to raise the object. 98N 15m 1470Nm. One Newton- meter is called a Joule and the ork Suppose an object is moving in one dimension either horizontally or vertically. Suppose a Force which is constant in magnitude and in the same direction as the object's motion acts on that object.

More information

MA 126 CALCULUS II Wednesday, December 14, 2016 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I

MA 126 CALCULUS II Wednesday, December 14, 2016 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I CALCULUS II, FINAL EXAM 1 MA 126 CALCULUS II Wednesday, December 14, 2016 Name (Print last name first):................................................ Student Signature:.........................................................

More information

Math 142, Final Exam, Fall 2006, Solutions

Math 142, Final Exam, Fall 2006, Solutions Math 4, Final Exam, Fall 6, Solutions There are problems. Each problem is worth points. SHOW your wor. Mae your wor be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE

More information

Math 1132 Practice Exam 1 Spring 2016

Math 1132 Practice Exam 1 Spring 2016 University of Connecticut Department of Mathematics Math 32 Practice Exam Spring 206 Name: Instructor Name: TA Name: Section: Discussion Section: Read This First! Please read each question carefully. Show

More information

Review Problems for Test 2

Review Problems for Test 2 Review Problems for Test Math 7 These problems are provided to help you study. The presence of a problem on this sheet does not imply that a similar problem will appear on the test. And the absence of

More information

Chapter 7 Applications of Integration

Chapter 7 Applications of Integration Chapter 7 Applications of Integration 7.1 Area of a Region Between Two Curves 7.2 Volume: The Disk Method 7.3 Volume: The Shell Method 7.5 Work 7.6 Moments, Centers of Mass, and Centroids 7.7 Fluid Pressure

More information

MAC 2311 Chapter 5 Review Materials Topics Include Areas Between Curves, Volumes (disks, washers, and shells), Work, and Average Value of a Function

MAC 2311 Chapter 5 Review Materials Topics Include Areas Between Curves, Volumes (disks, washers, and shells), Work, and Average Value of a Function MAC Chapter Review Materials Topics Include Areas Between Curves, Volumes (disks, washers, and shells), Work, and Average Value of a Function MULTIPLE CHOICE. Choose the one alternative that best completes

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to Math 7 REVIEW Part I: Problems Using the precise definition of the it, show that [Find the that works for any arbitrarily chosen positive and show that it works] Determine the that will most likely work

More information

Purdue University Study Guide for MA Credit Exam

Purdue University Study Guide for MA Credit Exam Purdue University Study Guide for MA 60 Credit Exam Students who pass the credit exam will gain credit in MA60. The credit exam is a twohour long exam with 5 multiple choice questions. No books or notes

More information

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin.

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin. MATHEMATICS 1571 Final Examination Review Problems 1. For the function f defined by f(x) = 2x 2 5x find the following: a) f(a + b) b) f(2x) 2f(x) 2. Find the domain of g if a) g(x) = x 2 3x 4 b) g(x) =

More information

Functions and their Graphs

Functions and their Graphs Chapter One Due Monday, December 12 Functions and their Graphs Functions Domain and Range Composition and Inverses Calculator Input and Output Transformations Quadratics Functions A function yields a specific

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Final Exam May, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

MATH 152, Spring 2019 COMMON EXAM I - VERSION A

MATH 152, Spring 2019 COMMON EXAM I - VERSION A MATH 15, Spring 19 COMMON EXAM I - VERSION A LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: ROW NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited.. TURN

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Math 125 Final Examination Spring 2015

Math 125 Final Examination Spring 2015 Math 125 Final Examination Spring 2015 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam is closed book. You may use one 8.5 11 sheet of handwritten notes (both sides

More information

Chapter 6 Notes, Stewart 8e

Chapter 6 Notes, Stewart 8e Contents 6. Area between curves........................................ 6.. Area between the curve and the -ais.......................... 6.. Overview of Area of a Region Between Two Curves...................

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green

Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green Name: 1. Calculators are allowed. 2. You must show work for full and partial credit unless otherwise noted. In particular, you must evaluate

More information

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam Math 122 Fall 2008 Handout 15: Review Problems for the Cumulative Final Exam The topics that will be covered on Final Exam are as follows. Integration formulas. U-substitution. Integration by parts. Integration

More information

Math 262 Exam 1 - Practice Problems. 1. Find the area between the given curves:

Math 262 Exam 1 - Practice Problems. 1. Find the area between the given curves: Mat 6 Exam - Practice Problems. Find te area between te given curves: (a) = x + and = x First notice tat tese curves intersect wen x + = x, or wen x x+ =. Tat is, wen (x )(x ) =, or wen x = and x =. Next,

More information

MA Spring 2013 Lecture Topics

MA Spring 2013 Lecture Topics LECTURE 1 Chapter 12.1 Coordinate Systems Chapter 12.2 Vectors MA 16200 Spring 2013 Lecture Topics Let a,b,c,d be constants. 1. Describe a right hand rectangular coordinate system. Plot point (a,b,c) inn

More information

Math 113 (Calculus II) Final Exam KEY

Math 113 (Calculus II) Final Exam KEY Math (Calculus II) Final Exam KEY Short Answer. Fill in the blank with the appropriate answer.. (0 points) a. Let y = f (x) for x [a, b]. Give the formula for the length of the curve formed by the b graph

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

5.6 Work. Common Units Force Distance Work newton (N) meter (m) joule (J) pound (lb) foot (ft) Conversion Factors

5.6 Work. Common Units Force Distance Work newton (N) meter (m) joule (J) pound (lb) foot (ft) Conversion Factors 5.6 Work Page 1 of 7 Definition of Work (Constant Force) If a constant force of magnitude is applied in the direction of motion of an object, and if that object moves a distance, then we define the work

More information

MTH 133 Solutions to Exam 1 Feb. 25th 2015

MTH 133 Solutions to Exam 1 Feb. 25th 2015 MTH 133 Solutions to Exam 1 Feb. 5th 15 Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic

More information

Math Exam 03 Review

Math Exam 03 Review Math 10350 Exam 03 Review 1. The statement: f(x) is increasing on a < x < b. is the same as: 1a. f (x) is on a < x < b. 2. The statement: f (x) is negative on a < x < b. is the same as: 2a. f(x) is on

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. --review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the area of the shaded region. ) f() = + - ) 0 0 (, 8) 0 (0, 0) - - - - - - -0

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics). Math 132. Practice Questions From Calculus II I. Topics Covered in Test I 0. State the following calculus rules (these are many of the key rules from Test 1 topics). (Trapezoidal Rule) b a f(x) dx (Fundamental

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

8.4 Density and 8.5 Work Group Work Target Practice

8.4 Density and 8.5 Work Group Work Target Practice 8.4 Density and 8.5 Work Group Work Target Practice 1. The density of oil in a circular oil slick on the surface of the ocean at a distance meters from the center of the slick is given by δ(r) = 5 1+r

More information

Math 116 Second Midterm March 19, 2012

Math 116 Second Midterm March 19, 2012 Math 6 Second Midterm March 9, 22 Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so. 2. This exam has pages including this cover. There are 9 problems. Note that

More information

Math 42: Fall 2015 Midterm 2 November 3, 2015

Math 42: Fall 2015 Midterm 2 November 3, 2015 Math 4: Fall 5 Midterm November 3, 5 NAME: Solutions Time: 8 minutes For each problem, you should write down all of your work carefully and legibly to receive full credit When asked to justify your answer,

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information

Sections 8.1 & 8.2 Areas and Volumes

Sections 8.1 & 8.2 Areas and Volumes Sections 8.1 & 8.2 Areas and Volumes Goal. Find the area between the functions y = f(x) and y = g(x) on the interval a x b. y=f(x) y=g(x) x = a x x x b=x 0 1 2 3 n y=f(x) y=g(x) a b Example 1. Find the

More information

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is MATH 6 FALL 6 FIRST EXAM SEPTEMBER 8, 6 SOLUTIONS ) ( points) The center and the radius of the sphere given by x + y + z = x + 3y are A) Center (, 3/, ) and radius 3/ B) Center (, 3/, ) and radius 3/ C)

More information

Study Guide for Benchmark #1 Window of Opportunity: March 4-11

Study Guide for Benchmark #1 Window of Opportunity: March 4-11 Study Guide for Benchmark #1 Window of Opportunity: March -11 Benchmark testing is the department s way of assuring that students have achieved minimum levels of computational skill. While partial credit

More information

MATH Exam 2-3/10/2017

MATH Exam 2-3/10/2017 MATH 1 - Exam - 3/10/017 Name: Section: Section Class Times Day Instructor Section Class Times Day Instructor 1 0:00 PM - 0:50 PM M T W F Daryl Lawrence Falco 11 11:00 AM - 11:50 AM M T W F Hwan Yong Lee

More information

NOT FOR SALE 6 APPLICATIONS OF INTEGRATION. 6.1 Areas Between Curves. Cengage Learning. All Rights Reserved. ( ) = 4 ln 1 = 45.

NOT FOR SALE 6 APPLICATIONS OF INTEGRATION. 6.1 Areas Between Curves. Cengage Learning. All Rights Reserved. ( ) = 4 ln 1 = 45. 6 APPLICATIONS OF INTEGRATION 6. Areas Between Curves... 4. 8 ( ) 8 8 4 4 ln ( ln 8) 4 ln 45 4 ln 8 ( ) ( ) ( ) + + + + + ( ) ( 4) ( +6) + ( 8 + 7) 9 5. ( ) + ( +) ( + ) + 4 6. ( sin ) +cos 8 8 + 7. The

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

Math 116 Practice for Exam 1

Math 116 Practice for Exam 1 Math 116 Practice for Exam 1 Generated September 3, 218 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 4 questions. Note that the problems are not of equal difficulty, so you may want to

More information

Math 116 First Midterm February 5, 2018

Math 116 First Midterm February 5, 2018 EXAM SOLUTIONS Math 6 First Midterm February 5, 8. Do not open this exam until you are told to do so.. Do not write your name anywhere on this exam. 3. This exam has 3 pages including this cover. Do not

More information

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points.

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points. CALCULUS II, FINAL EXAM 1 MA 126 - CALCULUS II Friday, December 09, 2011 Name (Print last name first):...................................................... Signature:........................................................................

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

Integration to Compute Volumes, Work. Goals: Volumes by Slicing Volumes by Cylindrical Shells Work

Integration to Compute Volumes, Work. Goals: Volumes by Slicing Volumes by Cylindrical Shells Work Week #8: Integration to Compute Volumes, Work Goals: Volumes by Slicing Volumes by Cylindrical Shells Work 1 Volumes by Slicing - 1 Volumes by Slicing In the integration problems considered in this section

More information

MATH 3A FINAL REVIEW

MATH 3A FINAL REVIEW MATH 3A FINAL REVIEW Guidelines to taking the nal exam You must show your work very clearly You will receive no credit if we do not understand what you are doing 2 You must cross out any incorrect work

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Displacement and Total Distance Traveled

Displacement and Total Distance Traveled Displacement and Total Distance Traveled We have gone over these concepts before. Displacement: This is the distance a particle has moved within a certain time - To find this you simply subtract its position

More information

MATH 152 Spring 2018 COMMON EXAM I - VERSION A

MATH 152 Spring 2018 COMMON EXAM I - VERSION A MATH 52 Spring 28 COMMON EXAM I - VERSION A LAST NAME: FIRST NAME: INSTRUCTOR: SECTION NUMBER: UIN: DIRECTIONS:. The use of a calculator, laptop or cell phone is prohibited. 2. TURN OFF cell phones and

More information

( afa, ( )) [ 12, ]. Math 226 Notes Section 7.4 ARC LENGTH AND SURFACES OF REVOLUTION

( afa, ( )) [ 12, ]. Math 226 Notes Section 7.4 ARC LENGTH AND SURFACES OF REVOLUTION Math 6 Notes Section 7.4 ARC LENGTH AND SURFACES OF REVOLUTION A curve is rectifiable if it has a finite arc length. It is sufficient that f be continuous on [ab, ] in order for f to be rectifiable between

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH SOME SOLUTIONS TO EXAM 1 Fall 018 Version A refers to the regular exam and Version B to the make-up 1. Version A. Find the center

More information

6 APPLICATIONS OF INTEGRATION

6 APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION 6. Areas Between Curves. A. A x x y y (y T y B) dx (x R x L ) dy + (). A (9 x ) (x +) dx ( x x ) dx x x x 6 + + 9 (x x ) x dx (x x ) dx x x 6 y (y ) dy (y / y +)dy y/ y +

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: CUID: Section: Fall 27 8., 8.2,. -.4 Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook,

More information

Math 175 Common Exam 2A Spring 2018

Math 175 Common Exam 2A Spring 2018 Math 175 Common Exam 2A Spring 2018 Part I: Short Form The first seven (7) pages are short answer. You don t need to show work. Partial credit will be rare and small. 1. (8 points) Suppose f(x) is a function

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information