Modelling populations under fluctuating selection

Size: px
Start display at page:

Download "Modelling populations under fluctuating selection"

Transcription

1 Modelling populations under fluctuating selection Alison Etheridge With Aleksander Klimek (Oxford) and Niloy Biswas (Harvard)

2 The simplest imaginable model of inheritance A population of fixed size, N, evolving in discrete generations. Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. N=10 The past

3 The simplest imaginable model of inheritance A population of fixed size, N, evolving in discrete generations. Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. t t/n, N N=10 The past

4 The simplest imaginable model of inheritance A population of fixed size, N, evolving in discrete generations. Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. t t/n, N N=10 The past Kingman 1982

5 Forwards in time? t t/n, N Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. Two types a and A. p(t) = proportion of type a. δt = 1/N.

6 Forwards in time? t t/n, N Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. Two types a and A. p(t) = proportion of type a. δt = 1/N. Forwards in time E[ p] = 0 (neutrality) E[( p) 2 ] = δtp(1 p) E[( p) 3 ] = O(δt) 2 dp t = p t(1 p t)dw t Genetic drift

7 Forwards in time? t t/n, N Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. Two types a and A. p(t) = proportion of type a. δt = 1/N. Forwards in time E[ p] = 0 (neutrality) E[( p) 2 ] = δtp(1 p) E[( p) 3 ] = O(δt) 2 dp t = p t(1 p t)dw t Backwards in time MRCA Coalesent time Wright Fisher time Genetic drift Kingman s coalescent

8 Forwards in time? t t/n, N Each individual inherits its genetic type from a parent chosen uniformly at random from the previous generation. Two types a and A. p(t) = proportion of type a. δt = 1/N. Forwards in time E[ p] = 0 (neutrality) E[( p) 2 ] = δtp(1 p) E[( p) 3 ] = O(δt) 2 dp t = p t(1 p t)dw t Backwards in time MRCA Coalesent time Wright Fisher time dp τ = Genetic drift 1 N e p τ (1 p τ )dw τ, Kingman s coalescent Coalescence rate 1 N e ( ) k 2

9 Universality N e = 25,000,000 N e = 20,000 (Europe), < 50,000 (Whole world) N e < 100 N e = 2,000,000 Images: Escherichia coli by Rocky Mountain Laboratories NIAID; and Drosophila melanogaster -side (aka) by André Karwath, Flickr-moses namkung-the Crowd for DMB 1, SpottedSalamander by Camazine at en.wikipedia, all via Wikimedia Commons.

10 Selection Relative fitness types a and A are 1+s : 1. If proportion of type a parents is p, each offspring (independently) type a with probability (1+s)p 1+sp = (1+s)p{1 sp}+o(s2 ) = p+sp(1 p)+o(s 2 ). E[ p] = δtnsp(1 p) (selection) E[( p) 2 ] = δtp(1 p)+o(sδt) E[( p) 3 ] = O(δt) 2 If Ns s, dp t = sp(1 p)dt+ p t (1 p t )dw t

11 Rapidly fluctuating environments Gillespie: If fitnesses do depend on the state of the environment, as they surely must, then they must just as assuredly change in both time and space, driven by temporal and spatial fluctuations in the environment.

12 Fluctuating selection Environment state Z { 1,+1}, Z Z at Poisson rate 1/2. Relative fitness types a and A are 1+Zs : 1. If proportion of type a parents is p, each offspring (independently) type a with probability (1+Zs)p 1+Zsp = (1+Zs)p{1 Zsp}+O(s2 ) = p+zsp(1 p)+o(s 2 ). Assume s N is O(1), so selection much stronger than before. dp = Z Nsp(1 p)dt+ p(1 p)dw

13 The Kurtz trick dp = Z Nsp(1 p)dt+ p(1 p)dw Frequency type a characterised by a martingale problem. f(p t,z t ) t 0 t 0 ( L}{{} neu p(1 p)fpp is a martingale. Lf(p s,z s )ds = f(p t,z t ) N L sel }{{} +N L}{{} env )f(p s,z s )ds szp(1 p)f p E π[f(z)] f(z)

14 The Kurtz trick (cont.) Suppose f depends only on p. (f+ 1 N L sel f)(p t,z t ) t 0 (L neu f(p s,z s )+ 1 N L neu L sel f(p s,z s ) + NL sel f(p s,z s )+L sel L sel f(p s,z s )+ NL env L sel f(p s,z s ) ds }{{} NEπ[Zp(1 p)fp] NL sel f is a martingale. f(p t ) t 0 ( L neu f(p s,z s )+L sel L sel f(p s,z s ) ) ds

15 Limiting diffusion f(p t ) t 0 ( L neu f(p s )+L sel L sel f(p s,z s ) ) ds is a martingale (for all nice f). L sel L sel f(p,z) = L sel (Zsp(1 p)f p ) = Z 2 s 2( p 2 (1 p) 2 ) f pp +p(1 p)(1 2p)f p. Limiting diffusion satisfies dp = s 2 p(1 p)(1 2p)dt+ p(1 p)dbt 1 + 2sp(1 p)dbt 2, }{{}}{{}}{{} balancing selection genetic drift fluctuating environment where B 1, B 2 independent Brownian motions.

16 Space: the Wright-Malécot model How do correlations in genetic types decay with distance? Average one offspring per individual; location of each offspring independent Gaussian pick around position of parent t = 0

17 Space: the Wright-Malécot model How do correlations in genetic types decay with distance? Average one offspring per individual; location of each offspring independent Gaussian pick around position of parent t = 0 t = 10

18 Space: the Wright-Malécot model How do correlations in genetic types decay with distance? Average one offspring per individual; location of each offspring independent Gaussian pick around position of parent t = 10 t = 100

19 Space: the Wright-Malécot model How do correlations in genetic types decay with distance? Average one offspring per individual; location of each offspring independent Gaussian pick around position of parent t = 100 t = 1000

20 Space: the Wright-Malécot model The pain in the torus Felsenstein (1975) t = 100 t = 1000

21 The Λ-Fleming-Viot process Before writing down a spatial model, need a model in which significant proportion population can be replaced in each reproduction event. Donnelly & Kurtz (1999) State {ρ(t, ) M 1 (K),t 0}. Bertoin & Le Gall (2003) Poisson point process intensity dt u 2 Λ(du) individual sampled at random from population proportion u of population replaced by offspring of chosen individual ρ(t, ) = (1 u)ρ(t, )+uδ k.

22 The Λ-Fleming-Viot process 1 x u x x x 0 x x t x x time 1 u 0 t

23 The (neutral) spatial Λ-Fleming-Viot process State {ρ(t,x, ) M 1 (K),x R d,t 0}. Π Poisson point process rate dt dx ξ(dr,du) on [0, ) R d [0, ) [0,1]. Dynamics: for each (t,x,r,u) Π, x r

24 The (neutral) spatial Λ-Fleming-Viot process State {ρ(t,x, ) M 1 (K),x R d,t 0}. Π Poisson point process rate dt dx ξ(dr,du) on [0, ) R d [0, ) [0,1]. Dynamics: for each (t,x,r,u) Π, z U(B r (x)) x r z

25 The (neutral) spatial Λ-Fleming-Viot process State {ρ(t,x, ) M 1 (K),x R d,t 0}. Π Poisson point process rate dt dx ξ(dr,du) on [0, ) R d [0, ) [0,1]. Dynamics: for each (t,x,r,u) Π, z U(B r (x)) k ρ(t,z, ). x r z

26 The (neutral) spatial Λ-Fleming-Viot process State {ρ(t,x, ) M 1 (K),x R d,t 0}. Π Poisson point process rate dt dx ξ(dr,du) on [0, ) R d [0, ) [0,1]. Dynamics: for each (t,x,r,u) Π, z U(B r (x)) k ρ(t,z, ). For all y B r (x), x r ρ(t,y, ) = (1 u)ρ(t,y, )+uδ k. z

27 Incorporating (fluctuating) selection Specialise to K = {a,a}. w(t,x) proportion of type a at the point x at time t. Environment: Z(t, ) random field with P[Z(t,x) = 1] = P[Z(t,x) = 1] = 1 2, E[Z(t,x)Z(t,y)] = g 0 (x,y). At times t of Poisson Process Π env, sample independent copy of Z.

28 Dynamics of allele frequencies For each (t,x,r,u) Π, if w(t,x) = 1 B r (x) B r(x) w(t, y)dy, type K of parent of event is type a with probability otherwise it is type A. For all y B r (x), (1+sZ(t,x))w(t,x) 1+sZ(t,x)w(t,x) w(t,y) = (1 u)w(t,y)+uδ k=a.

29 Zooming out Interested in large scale phenomena, so e.g. shape of events is not important. For simplicity, radius and impact of events deterministic. Set u n = u n 1/3, s n = s n 2/3 α. w n (t,x) = w ( nt,n 1/3 x ), Z n (t,x) = Z ( n 2α t,n 1/3 x ). Correlations in environment such that lim g ( n n 1/3 x,n 1/3 y ) = g(x,y). n Space-time scaling for w is diffusive; if selection didn t fluctuate, would need α = 0; we assume long-range correlations in environment.

30 Theorem: scaling limit Suppose w n (0,x) w(0,x). Then w n w where dw = ( κ r u w +u 2 s 2 w(1 w)(1 2w) ) dt + 2usV r w(1 w)w(dt,dx) +1 d=1 uv r w(1 w)w(dt,dx), where W is a coloured noise with quadratic variation given by W(φ) t = t g(x,y)φ(x)φ(y)dxdy, R d R d and W is a space-time white noise. c.f. non-spatial case dp = s 2 p(1 p)(1 2p)dt+ p(1 p)db 1 t + 2sp(1 p)db 2 t.

31 Some remarks What we d really like is a way to model genealogical trees relating individuals in the populations. Under quite general conditions, there should be a stationary distribution in two dimensions: dp = s 2 p(1 p)(1 2p)dt+ 2αsp(1 p)db 2 t has a non-trivial stationary distribution as soon as α < 1. Without space, there is a branching and annihilating dual... Genetic drift disappears in d 2; if follow a rare mutant, recover superprocess in random environment of Mytnik 1996; more generally, can write down evolution of subset of a-individuals ( tracer dynamics ).

32 Experiments with an individual based model Population in discrete demes on a torus on Z. Two regions with completely anticorrelated environments. Two scenarios: (i) environment resampled on timescale on the order of generations, (ii) environment fixed.

Evolution in a spatial continuum

Evolution in a spatial continuum Evolution in a spatial continuum Drift, draft and structure Alison Etheridge University of Oxford Joint work with Nick Barton (Edinburgh) and Tom Kurtz (Wisconsin) New York, Sept. 2007 p.1 Kingman s Coalescent

More information

The mathematical challenge. Evolution in a spatial continuum. The mathematical challenge. Other recruits... The mathematical challenge

The mathematical challenge. Evolution in a spatial continuum. The mathematical challenge. Other recruits... The mathematical challenge The mathematical challenge What is the relative importance of mutation, selection, random drift and population subdivision for standing genetic variation? Evolution in a spatial continuum Al lison Etheridge

More information

The effects of a weak selection pressure in a spatially structured population

The effects of a weak selection pressure in a spatially structured population The effects of a weak selection pressure in a spatially structured population A.M. Etheridge, A. Véber and F. Yu CNRS - École Polytechnique Motivations Aim : Model the evolution of the genetic composition

More information

Some mathematical models from population genetics

Some mathematical models from population genetics Some mathematical models from population genetics 5: Muller s ratchet and the rate of adaptation Alison Etheridge University of Oxford joint work with Peter Pfaffelhuber (Vienna), Anton Wakolbinger (Frankfurt)

More information

The tree-valued Fleming-Viot process with mutation and selection

The tree-valued Fleming-Viot process with mutation and selection The tree-valued Fleming-Viot process with mutation and selection Peter Pfaffelhuber University of Freiburg Joint work with Andrej Depperschmidt and Andreas Greven Population genetic models Populations

More information

How robust are the predictions of the W-F Model?

How robust are the predictions of the W-F Model? How robust are the predictions of the W-F Model? As simplistic as the Wright-Fisher model may be, it accurately describes the behavior of many other models incorporating additional complexity. Many population

More information

The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion. Bob Griffiths University of Oxford

The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion. Bob Griffiths University of Oxford The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion Bob Griffiths University of Oxford A d-dimensional Λ-Fleming-Viot process {X(t)} t 0 representing frequencies of d types of individuals

More information

Dynamics of the evolving Bolthausen-Sznitman coalescent. by Jason Schweinsberg University of California at San Diego.

Dynamics of the evolving Bolthausen-Sznitman coalescent. by Jason Schweinsberg University of California at San Diego. Dynamics of the evolving Bolthausen-Sznitman coalescent by Jason Schweinsberg University of California at San Diego Outline of Talk 1. The Moran model and Kingman s coalescent 2. The evolving Kingman s

More information

Two viewpoints on measure valued processes

Two viewpoints on measure valued processes Two viewpoints on measure valued processes Olivier Hénard Université Paris-Est, Cermics Contents 1 The classical framework : from no particle to one particle 2 The lookdown framework : many particles.

More information

Introduction to self-similar growth-fragmentations

Introduction to self-similar growth-fragmentations Introduction to self-similar growth-fragmentations Quan Shi CIMAT, 11-15 December, 2017 Quan Shi Growth-Fragmentations CIMAT, 11-15 December, 2017 1 / 34 Literature Jean Bertoin, Compensated fragmentation

More information

Stochastic Demography, Coalescents, and Effective Population Size

Stochastic Demography, Coalescents, and Effective Population Size Demography Stochastic Demography, Coalescents, and Effective Population Size Steve Krone University of Idaho Department of Mathematics & IBEST Demographic effects bottlenecks, expansion, fluctuating population

More information

Measure-valued diffusions, general coalescents and population genetic inference 1

Measure-valued diffusions, general coalescents and population genetic inference 1 Measure-valued diffusions, general coalescents and population genetic inference 1 Matthias Birkner 2, Jochen Blath 3 Abstract: We review recent progress in the understanding of the interplay between population

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Diffusion Models in Population Genetics

Diffusion Models in Population Genetics Diffusion Models in Population Genetics Laura Kubatko kubatko.2@osu.edu MBI Workshop on Spatially-varying stochastic differential equations, with application to the biological sciences July 10, 2015 Laura

More information

The genealogy of branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego

The genealogy of branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego The genealogy of branching Brownian motion with absorption by Jason Schweinsberg University of California at San Diego (joint work with Julien Berestycki and Nathanaël Berestycki) Outline 1. A population

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Learning Session on Genealogies of Interacting Particle Systems

Learning Session on Genealogies of Interacting Particle Systems Learning Session on Genealogies of Interacting Particle Systems A.Depperschmidt, A.Greven University Erlangen-Nuremberg Singapore, 31 July - 4 August 2017 Tree-valued Markov processes Contents 1 Introduction

More information

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego Yaglom-type limit theorems for branching Brownian motion with absorption by Jason Schweinsberg University of California San Diego (with Julien Berestycki, Nathanaël Berestycki, Pascal Maillard) Outline

More information

Intensive Course on Population Genetics. Ville Mustonen

Intensive Course on Population Genetics. Ville Mustonen Intensive Course on Population Genetics Ville Mustonen Population genetics: The study of the distribution of inherited variation among a group of organisms of the same species [Oxford Dictionary of Biology]

More information

Genetic Variation in Finite Populations

Genetic Variation in Finite Populations Genetic Variation in Finite Populations The amount of genetic variation found in a population is influenced by two opposing forces: mutation and genetic drift. 1 Mutation tends to increase variation. 2

More information

Pathwise construction of tree-valued Fleming-Viot processes

Pathwise construction of tree-valued Fleming-Viot processes Pathwise construction of tree-valued Fleming-Viot processes Stephan Gufler November 9, 2018 arxiv:1404.3682v4 [math.pr] 27 Dec 2017 Abstract In a random complete and separable metric space that we call

More information

A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent

A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent Airam Blancas June 11, 017 Abstract Simple nested coalescent were introduced in [1] to model

More information

THE SPATIAL -FLEMING VIOT PROCESS ON A LARGE TORUS: GENEALOGIES IN THE PRESENCE OF RECOMBINATION

THE SPATIAL -FLEMING VIOT PROCESS ON A LARGE TORUS: GENEALOGIES IN THE PRESENCE OF RECOMBINATION The Annals of Applied Probability 2012, Vol. 22, No. 6, 2165 2209 DOI: 10.1214/12-AAP842 Institute of Mathematical Statistics, 2012 THE SPATIA -FEMING VIOT PROCESS ON A ARGE TORUS: GENEAOGIES IN THE PRESENCE

More information

Theoretical Population Biology

Theoretical Population Biology Theoretical Population Biology 80 (20) 80 99 Contents lists available at ScienceDirect Theoretical Population Biology journal homepage: www.elsevier.com/locate/tpb Generalized population models and the

More information

Population Genetics: a tutorial

Population Genetics: a tutorial : a tutorial Institute for Science and Technology Austria ThRaSh 2014 provides the basic mathematical foundation of evolutionary theory allows a better understanding of experiments allows the development

More information

Simulation methods for stochastic models in chemistry

Simulation methods for stochastic models in chemistry Simulation methods for stochastic models in chemistry David F. Anderson anderson@math.wisc.edu Department of Mathematics University of Wisconsin - Madison SIAM: Barcelona June 4th, 21 Overview 1. Notation

More information

Mathematical models in population genetics II

Mathematical models in population genetics II Mathematical models in population genetics II Anand Bhaskar Evolutionary Biology and Theory of Computing Bootcamp January 1, 014 Quick recap Large discrete-time randomly mating Wright-Fisher population

More information

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems Branching Brownian motion: extremal process and ergodic theorems Anton Bovier with Louis-Pierre Arguin and Nicola Kistler RCS&SM, Venezia, 06.05.2013 Plan 1 BBM 2 Maximum of BBM 3 The Lalley-Sellke conjecture

More information

Lecture 18 : Ewens sampling formula

Lecture 18 : Ewens sampling formula Lecture 8 : Ewens sampling formula MATH85K - Spring 00 Lecturer: Sebastien Roch References: [Dur08, Chapter.3]. Previous class In the previous lecture, we introduced Kingman s coalescent as a limit of

More information

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009 Gene Genealogies Coalescence Theory Annabelle Haudry Glasgow, July 2009 What could tell a gene genealogy? How much diversity in the population? Has the demographic size of the population changed? How?

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics Grundlagen der Bioinformatik, SoSe 14, D. Huson, May 18, 2014 67 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

Selection and Population Genetics

Selection and Population Genetics Selection and Population Genetics Evolution by natural selection can occur when three conditions are satisfied: Variation within populations - individuals have different traits (phenotypes). height and

More information

WXML Final Report: Chinese Restaurant Process

WXML Final Report: Chinese Restaurant Process WXML Final Report: Chinese Restaurant Process Dr. Noah Forman, Gerandy Brito, Alex Forney, Yiruey Chou, Chengning Li Spring 2017 1 Introduction The Chinese Restaurant Process (CRP) generates random partitions

More information

The Combinatorial Interpretation of Formulas in Coalescent Theory

The Combinatorial Interpretation of Formulas in Coalescent Theory The Combinatorial Interpretation of Formulas in Coalescent Theory John L. Spouge National Center for Biotechnology Information NLM, NIH, DHHS spouge@ncbi.nlm.nih.gov Bldg. A, Rm. N 0 NCBI, NLM, NIH Bethesda

More information

Critical Phenomena and Percolation Theory: II

Critical Phenomena and Percolation Theory: II Critical Phenomena and Percolation Theory: II Kim Christensen Complexity & Networks Group Imperial College London Joint CRM-Imperial College School and Workshop Complex Systems Barcelona 8-13 April 2013

More information

ANCESTRAL PROCESSES WITH SELECTION: BRANCHING AND MORAN MODELS

ANCESTRAL PROCESSES WITH SELECTION: BRANCHING AND MORAN MODELS **************************************** BANACH CENTER PUBLICATIONS, VOLUME ** INSTITUTE OF MATHEMATICS Figure POLISH ACADEMY OF SCIENCES WARSZAWA 2* ANCESTRAL PROCESSES WITH SELECTION: BRANCHING AND MORAN

More information

APM 541: Stochastic Modelling in Biology Diffusion Processes. Jay Taylor Fall Jay Taylor (ASU) APM 541 Fall / 61

APM 541: Stochastic Modelling in Biology Diffusion Processes. Jay Taylor Fall Jay Taylor (ASU) APM 541 Fall / 61 APM 541: Stochastic Modelling in Biology Diffusion Processes Jay Taylor Fall 2013 Jay Taylor (ASU) APM 541 Fall 2013 1 / 61 Brownian Motion Brownian Motion and Random Walks Let (ξ n : n 0) be a collection

More information

An Ergodic Theorem for Fleming-Viot Models in Random Environments 1

An Ergodic Theorem for Fleming-Viot Models in Random Environments 1 An Ergodic Theorem for Fleming-Viot Models in Random Environments 1 Arash Jamshidpey 2 216 Abstract The Fleming-Viot (FV) process is a measure-valued diffusion that models the evolution of type frequencies

More information

Problems on Evolutionary dynamics

Problems on Evolutionary dynamics Problems on Evolutionary dynamics Doctoral Programme in Physics José A. Cuesta Lausanne, June 10 13, 2014 Replication 1. Consider the Galton-Watson process defined by the offspring distribution p 0 =

More information

9.2 Branching random walk and branching Brownian motions

9.2 Branching random walk and branching Brownian motions 168 CHAPTER 9. SPATIALLY STRUCTURED MODELS 9.2 Branching random walk and branching Brownian motions Branching random walks and branching diffusions have a long history. A general theory of branching Markov

More information

arxiv: v1 [math.pr] 14 Jan 2019

arxiv: v1 [math.pr] 14 Jan 2019 Rare mutations in the spatial Lambda-Fleming-Viot model in a fluctuating environment and SuperBrownian Motion arxiv:191.4374v1 [math.pr 14 Jan 219 Jonathan Chetwynd-Diggle Aleksander Klimek Department

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics 70 Grundlagen der Bioinformatik, SoSe 11, D. Huson, May 19, 2011 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

DUALITY AND FIXATION IN Ξ-WRIGHT-FISHER PROCESSES WITH FREQUENCY-DEPENDENT SELECTION. By Adrián González Casanova and Dario Spanò

DUALITY AND FIXATION IN Ξ-WRIGHT-FISHER PROCESSES WITH FREQUENCY-DEPENDENT SELECTION. By Adrián González Casanova and Dario Spanò DUALITY AND FIXATION IN Ξ-WRIGHT-FISHER PROCESSES WITH FREQUENCY-DEPENDENT SELECTION By Adrián González Casanova and Dario Spanò Weierstrass Institute Berlin and University of Warwick A two-types, discrete-time

More information

Endowed with an Extra Sense : Mathematics and Evolution

Endowed with an Extra Sense : Mathematics and Evolution Endowed with an Extra Sense : Mathematics and Evolution Todd Parsons Laboratoire de Probabilités et Modèles Aléatoires - Université Pierre et Marie Curie Center for Interdisciplinary Research in Biology

More information

A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks

A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks Alea 6, 25 61 (2009) A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks Matthias Birkner, Jochen Blath, Martin Möhle, Matthias Steinrücken

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Quantitative trait evolution with mutations of large effect

Quantitative trait evolution with mutations of large effect Quantitative trait evolution with mutations of large effect May 1, 2014 Quantitative traits Traits that vary continuously in populations - Mass - Height - Bristle number (approx) Adaption - Low oxygen

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

LogFeller et Ray Knight

LogFeller et Ray Knight LogFeller et Ray Knight Etienne Pardoux joint work with V. Le and A. Wakolbinger Etienne Pardoux (Marseille) MANEGE, 18/1/1 1 / 16 Feller s branching diffusion with logistic growth We consider the diffusion

More information

RW in dynamic random environment generated by the reversal of discrete time contact process

RW in dynamic random environment generated by the reversal of discrete time contact process RW in dynamic random environment generated by the reversal of discrete time contact process Andrej Depperschmidt joint with Matthias Birkner, Jiří Černý and Nina Gantert Ulaanbaatar, 07/08/2015 Motivation

More information

Mathematical modelling of Population Genetics: Daniel Bichener

Mathematical modelling of Population Genetics: Daniel Bichener Mathematical modelling of Population Genetics: Daniel Bichener Contents 1 Introduction 3 2 Haploid Genetics 4 2.1 Allele Frequencies......................... 4 2.2 Natural Selection in Discrete Time...............

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Competing selective sweeps

Competing selective sweeps Competing selective sweeps Sebastian Bossert Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik und Physik der Albert-Ludwigs-Universität Freiburg im Breisgau Pr r t r rö r r t Pr

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Adaptive Multilevel Splitting Algorithm

A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Adaptive Multilevel Splitting Algorithm A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Algorithm F. Cérou 1,2 B. Delyon 2 A. Guyader 3 M. Rousset 1,2 1 Inria Rennes Bretagne Atlantique 2 IRMAR, Université de Rennes

More information

J. Stat. Mech. (2013) P01006

J. Stat. Mech. (2013) P01006 Journal of Statistical Mechanics: Theory and Experiment Genealogies in simple models of evolution Éric Brunet and Bernard Derrida Laboratoire de Physique Statistique, École ormale Supérieure, UPMC, Université

More information

π b = a π a P a,b = Q a,b δ + o(δ) = 1 + Q a,a δ + o(δ) = I 4 + Qδ + o(δ),

π b = a π a P a,b = Q a,b δ + o(δ) = 1 + Q a,a δ + o(δ) = I 4 + Qδ + o(δ), ABC estimation of the scaled effective population size. Geoff Nicholls, DTC 07/05/08 Refer to http://www.stats.ox.ac.uk/~nicholls/dtc/tt08/ for material. We will begin with a practical on ABC estimation

More information

M A. Consistency and intractable likelihood for jump diffusions and generalised coalescent processes. Jere Juhani Koskela. Thesis

M A. Consistency and intractable likelihood for jump diffusions and generalised coalescent processes. Jere Juhani Koskela. Thesis M A D O S C Consistency and intractable likelihood for jump diffusions and generalised coalescent processes by Jere Juhani Koskela Thesis Submitted for the degree of Doctor of Philosophy Mathematics Institute

More information

GENETICS. On the Fixation Process of a Beneficial Mutation in a Variable Environment

GENETICS. On the Fixation Process of a Beneficial Mutation in a Variable Environment GENETICS Supporting Information http://www.genetics.org/content/suppl/2/6/6/genetics..24297.dc On the Fixation Process of a Beneficial Mutation in a Variable Environment Hildegard Uecker and Joachim Hermisson

More information

Stochastic flows associated to coalescent processes

Stochastic flows associated to coalescent processes Stochastic flows associated to coalescent processes Jean Bertoin (1) and Jean-François Le Gall (2) (1) Laboratoire de Probabilités et Modèles Aléatoires and Institut universitaire de France, Université

More information

The total external length in the evolving Kingman coalescent. Götz Kersting and Iulia Stanciu. Goethe Universität, Frankfurt am Main

The total external length in the evolving Kingman coalescent. Götz Kersting and Iulia Stanciu. Goethe Universität, Frankfurt am Main The total external length in the evolving Kingman coalescent Götz Kersting and Iulia Stanciu Goethe Universität, Frankfurt am Main CIRM, Luminy June 11 15 2012 The evolving Kingman N-coalescent (N = 5):

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Demography April 10, 2015

Demography April 10, 2015 Demography April 0, 205 Effective Population Size The Wright-Fisher model makes a number of strong assumptions which are clearly violated in many populations. For example, it is unlikely that any population

More information

Frequency Spectra and Inference in Population Genetics

Frequency Spectra and Inference in Population Genetics Frequency Spectra and Inference in Population Genetics Although coalescent models have come to play a central role in population genetics, there are some situations where genealogies may not lead to efficient

More information

ON THE DIFFUSION OPERATOR IN POPULATION GENETICS

ON THE DIFFUSION OPERATOR IN POPULATION GENETICS J. Appl. Math. & Informatics Vol. 30(2012), No. 3-4, pp. 677-683 Website: http://www.kcam.biz ON THE DIFFUSION OPERATOR IN POPULATION GENETICS WON CHOI Abstract. W.Choi([1]) obtains a complete description

More information

Stochastic Loewner evolution with branching and the Dyson superprocess

Stochastic Loewner evolution with branching and the Dyson superprocess Stochastic Loewner evolution with branching and the Dyson superprocess Govind Menon (Brown University) Vivian Olsiewski Healey (Brown/University of Chicago) This talk is based on Vivian's Ph.D thesis (May

More information

A phase-type distribution approach to coalescent theory

A phase-type distribution approach to coalescent theory A phase-type distribution approach to coalescent theory Tuure Antonangeli Masteruppsats i matematisk statistik Master Thesis in Mathematical Statistics Masteruppsats 015:3 Matematisk statistik Maj 015

More information

Crump Mode Jagers processes with neutral Poissonian mutations

Crump Mode Jagers processes with neutral Poissonian mutations Crump Mode Jagers processes with neutral Poissonian mutations Nicolas Champagnat 1 Amaury Lambert 2 1 INRIA Nancy, équipe TOSCA 2 UPMC Univ Paris 06, Laboratoire de Probabilités et Modèles Aléatoires Paris,

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Surfing genes. On the fate of neutral mutations in a spreading population

Surfing genes. On the fate of neutral mutations in a spreading population Surfing genes On the fate of neutral mutations in a spreading population Oskar Hallatschek David Nelson Harvard University ohallats@physics.harvard.edu Genetic impact of range expansions Population expansions

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

ON THE TWO OLDEST FAMILIES FOR THE WRIGHT-FISHER PROCESS

ON THE TWO OLDEST FAMILIES FOR THE WRIGHT-FISHER PROCESS ON THE TWO OLDEST FAMILIES FOR THE WRIGHT-FISHER PROCESS JEAN-FRANÇOIS DELMAS, JEAN-STÉPHANE DHERSIN, AND ARNO SIRI-JEGOUSSE Abstract. We extend some of the results of Pfaffelhuber and Walkobinger on the

More information

The implications of neutral evolution for neutral ecology. Daniel Lawson Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen

The implications of neutral evolution for neutral ecology. Daniel Lawson Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen The implications of neutral evolution for neutral ecology Daniel Lawson Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen How is How is diversity Diversity maintained? maintained? Talk

More information

Non-equilibrium phase transitions

Non-equilibrium phase transitions Non-equilibrium phase transitions An Introduction Lecture III Haye Hinrichsen University of Würzburg, Germany March 2006 Third Lecture: Outline 1 Directed Percolation Scaling Theory Langevin Equation 2

More information

Population Genetics and Evolution III

Population Genetics and Evolution III Population Genetics and Evolution III The Mechanisms of Evolution: Drift São Paulo / January 2019 SMRI (Italy) luca@peliti.org 1 Drift 2 The Population Genetics Triad Sewall Wright Ronald A. Fisher Motoo

More information

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem Koichiro TAKAOKA Dept of Applied Physics, Tokyo Institute of Technology Abstract M Yor constructed a family

More information

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror Diffusion CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective) Continuum view of diffusion

More information

Computing likelihoods under Λ-coalescents

Computing likelihoods under Λ-coalescents Computing likelihoods under Λ-coalescents Matthias Birkner LMU Munich, Dept. Biology II Joint work with Jochen Blath and Matthias Steinrücken, TU Berlin New Mathematical Challenges from Molecular Biology,

More information

arxiv: v1 [math.pr] 18 Sep 2007

arxiv: v1 [math.pr] 18 Sep 2007 arxiv:0709.2775v [math.pr] 8 Sep 2007 How often does the ratchet click? Facts, heuristics, asymptotics. by A. Etheridge, P. Pfaffelhuber and A. Wakolbinger University of Oxford, Ludwig-Maximilians University

More information

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information

A comparison of two popular statistical methods for estimating the time to most recent common ancestor (TMRCA) from a sample of DNA sequences

A comparison of two popular statistical methods for estimating the time to most recent common ancestor (TMRCA) from a sample of DNA sequences Indian Academy of Sciences A comparison of two popular statistical methods for estimating the time to most recent common ancestor (TMRCA) from a sample of DNA sequences ANALABHA BASU and PARTHA P. MAJUMDER*

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

Random G -Expectations

Random G -Expectations Random G -Expectations Marcel Nutz ETH Zurich New advances in Backward SDEs for nancial engineering applications Tamerza, Tunisia, 28.10.2010 Marcel Nutz (ETH) Random G-Expectations 1 / 17 Outline 1 Random

More information

Continuous-state branching processes, extremal processes and super-individuals

Continuous-state branching processes, extremal processes and super-individuals Continuous-state branching processes, extremal processes and super-individuals Clément Foucart Université Paris 13 with Chunhua Ma Nankai University Workshop Berlin-Paris Berlin 02/11/2016 Introduction

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 12, 215 Averaging and homogenization workshop, Luminy. Fast-slow systems

More information

The Common Ancestor Process for a Wright-Fisher Diffusion

The Common Ancestor Process for a Wright-Fisher Diffusion E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Vol. 12 (27, Paper no. 28, pages 88 847. Journal URL http://www.math.washington.edu/~ejpecp/ The Common Ancestor Process for a Wright-Fisher

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Segregation versus mitotic recombination APPENDIX

Segregation versus mitotic recombination APPENDIX APPENDIX Waiting time until the first successful mutation The first time lag, T 1, is the waiting time until the first successful mutant appears, creating an Aa individual within a population composed

More information

AARMS Homework Exercises

AARMS Homework Exercises 1 For the gamma distribution, AARMS Homework Exercises (a) Show that the mgf is M(t) = (1 βt) α for t < 1/β (b) Use the mgf to find the mean and variance of the gamma distribution 2 A well-known inequality

More information

Modern Discrete Probability Branching processes

Modern Discrete Probability Branching processes Modern Discrete Probability IV - Branching processes Review Sébastien Roch UW Madison Mathematics November 15, 2014 1 Basic definitions 2 3 4 Galton-Watson branching processes I Definition A Galton-Watson

More information

Understanding Regressions with Observations Collected at High Frequency over Long Span

Understanding Regressions with Observations Collected at High Frequency over Long Span Understanding Regressions with Observations Collected at High Frequency over Long Span Yoosoon Chang Department of Economics, Indiana University Joon Y. Park Department of Economics, Indiana University

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Wright-Fisher Processes

Wright-Fisher Processes Chapter 5 Wright-Fisher Processes Figure 5.1: Fisher and Wright 5.1 Introductory remarks The BGW processes and birth and death processes we have studied in the previous chapters have the property that

More information

CONTINUUM-SITES STEPPING-STONE MODELS, COALESCING EXCHANGEABLE PARTITIONS AND RANDOM TREES

CONTINUUM-SITES STEPPING-STONE MODELS, COALESCING EXCHANGEABLE PARTITIONS AND RANDOM TREES The Annals of Probability 2000, Vol. 28, No. 3, 1063 1110 CONTINUUM-SITES STEPPING-STONE MODELS, COALESCING EXCHANGEABLE PARTITIONS AND RANDOM TREES By Peter Donnelly, 1 Steven N. Evans, 2 Klaus Fleischmann,

More information

BIRS workshop Sept 6 11, 2009

BIRS workshop Sept 6 11, 2009 Diploid biparental Moran model with large offspring numbers and recombination Bjarki Eldon New mathematical challenges from molecular biology and genetics BIRS workshop Sept 6, 2009 Mendel s Laws The First

More information

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde Gillespie s Algorithm and its Approximations Des Higham Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk The Three Lectures 1 Gillespie s algorithm and its relation

More information

Genealogical constructions of population models

Genealogical constructions of population models Genealogical constructions of population models Alison M. Etheridge Thomas G. Kurtz Department of Statistics Departments of Mathematics and Statistics Oxford University University of Wisconsin - Madison

More information

Wright-Fisher Models, Approximations, and Minimum Increments of Evolution

Wright-Fisher Models, Approximations, and Minimum Increments of Evolution Wright-Fisher Models, Approximations, and Minimum Increments of Evolution William H. Press The University of Texas at Austin January 10, 2011 1 Introduction Wright-Fisher models [1] are idealized models

More information