Diffusion Models in Population Genetics

Size: px
Start display at page:

Download "Diffusion Models in Population Genetics"

Transcription

1 Diffusion Models in Population Genetics Laura Kubatko MBI Workshop on Spatially-varying stochastic differential equations, with application to the biological sciences July 10, 2015 Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

2 Population Genetics Population genetics: Study of genetic variation within a population Assume that a gene has two alleles, call them A and a Population is composed of N individuals who have two copies of each gene so possible genotypes are: The population evolves over time AA Aa aa We are interested in the composition of the population at generation t Need a model for how a generation is derived from the previous generation Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

3 Wright-Fisher Model Assumptions: Population of 2N gene copies Discrete, non-overlapping generations of equal size Parents of next generation of 2N genes are picked randomly with replacement from preceding generation (genetic differences have no fitness consequences) Probability of a specific parent for a gene in the next generation is 1 2N Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

4 Wright-Fisher Model Source: Popvizard, a python program to simulate evolution under the WF and other models, written by Peter Beerli pbeerli/popvizard.tar.gz Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

5 The Wright-Fisher Model View Wright-Fisher model as a discrete-time Markov process Let Y t = number of alleles of type A in population at generation t, 0 Y t 2N for t = 0,1,... Define p ij = P(Y t+1 = j Y t = i). Then, {( 2N ) j ( i 2N p ij = )j ( 2N i 2N )2N j, j = 0,1,...,2N 0, otherwise States 0 and 2N are absorbing states we can never leave these states Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

6 The Wright-Fisher Model Note that: E(Yt+1 Y t = i) = 2N( i 2N ) = i Var(Yt+1 Y t = i) = 2N( i 2N )(1 i 2N ) So the expected number of A alleles remains the same, but the actual number may vary between 0 and 2N Classical approach: Look at the limit as the population size N Kingman s Coalescent Process Widely used in population genetics and phylogenetics Difficult to extend to handle features of the evolutionary process, such as selection Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

7 Wright-Fisher Model as a Diffusion Process Define a diffusion process {X t } t 0 as a continuous-time Markov process with approximately Guassian increments over small time intervals and for which the following three conditions hold for small δt and X t = x: E(Xt+δt X t X t = x) = µ(t,x)δt +o(δt) E((Xt+δt X t) 2 X t = x) = σ 2 (t,x)δt +o(δt) E((Xt+δt X t) k X t = x) = 0 for k > 2 From Radu s slides, we had: dx t = S(X t )dt +σ(x t )dw t, where S(X t ) is the drift coefficient and σ(x t ) is the diffusion coefficient. For standard Brownian Motion, µ(t,x) = 0 and σ 2 (t,x) = 1. Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

8 Wright-Fisher Model as a Diffusion Process Let Y t be the number of A alleles in the population at generation t Let X t = proportion of A alleles in population at generation t; X t = Yt 2N Let X t represent the continuous-time process (eventually measure time in units of 2N generations, as before) Define Y t = Y t+1 Y t and X t = X t+1 X t Then E(Y t+1 X t = x) = 2Nx E( Y t X t = x) = 0 E[( Y t ) 2 X t = x)] = 2Nx(1 x) E( X t X t = x) = 0 = µ(t,x) = µ(x) E(( X t ) 2 X t = x) = x(1 x) 2N = σ 2 (t,x) = σ 2 (x) Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

9 Wright-Fisher Model as a Diffusion Process Now re-define Y t = Y t+ t Y t and X t = X t+ t X t, where t = 1 2N and let N, so that E(( X t) 2 X t ) = X t (1 X t ) t The corresponding SDE is dx t = X t (1 X t )dw t, X t [0,1] where W t is standard Brownian Motion (See Pardoux, 2009, for a rigorous proof) Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

10 The Wright-Fisher Model with Selection Model for selection: Suppose that allele A is superior to allele a so that p x = 2Nx(1+s) 2Nx(1+s)+(2N 2Nx) As before, let N and define s = β/(2n). E( Xt X t) (βx t(1 X t)) t E(( Xt) 2 X t) X t(1 X t) t The corresponding SDE is dx t = βx t (1 X t )dt + X t (1 X t )dw t, X t [0,1] Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

11 The Wright-Fisher Diffusion with Selection: Intuition Use the Euler Method (see Radu s lectures) to simulate from the WF Diffusion model X(t i+1 ) = X(t i )+βx(t i )(1 X(t i ))(t i+1 t i )+ t i+1 t i X(ti )(1 X(t i ))Z where Z N(0,1) Python code to simulate this: T = 0.05 Define 0 = t0 < t 1 < < t N 1 < t N = T, equally spaced Vary β Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

12 The Wright-Fisher Diffusion with Selection: Intuition β = 0, varying N Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

13 The Wright-Fisher Diffusion with Selection: Intuition N = 1000, vary β Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

14 Application: Inferring Selection From Genome-scale Data Diffusion models are currently becoming more widely used in analyzing genome-scale data. Example: Williamson, S. H. et al Simultaneous inference of selection and population growth from patterns of variation in the human genome. PNAS: 120(22): Data: NIEHS Environmental Genome Project web site ( edu) Sequenced 301 genes associated with variation in response to environmental exposure 90 individuals: 24 African Americans, 24 Asian Americans, 24 European Americans, 12 Mexican Americans, and 6 Native Americans Goal: Detect selection in different types of mutations; distinguish selection from other demographic factors, such as population size change Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

15 Application: Inferring Selection From Genome-scale Data Data are recorded as SNPs bases in the DNA sequence at which there is variation across individuals Example data: this would be Taxon Sequence (A) Human GCCGATGCCGATGCCGAA (B) Chimp GCCGTTGCCGTTGCCGTT (C ) Gorilla GCGGAAGCGGAAGCGGAA Taxon Sequence (A) Human CATCATCAA (B) Chimp CTTCTTCTT (C ) Gorilla GAAGAAGAA Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

16 Application: Inferring Selection From Genome-scale Data Example SNP data is Taxon Sequence (A) Human CATCATCAA (B) Chimp CTTCTTCTT (C ) Gorilla GAAGAAGAA Record this as the site frequency spectrum (SFS), denoted by the vector u, where entry u i = number of SNP sites with i copies of the derived allele For the example, we have (assuming that the ancestral state is that found in Gorilla), u = (4,5) If we let Human be ancestral, we d have u = (9,0) Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

17 Application: Inferring Selection From Genome-scale Data Idea of analysis: Write the likelihood function and obtain MLEs of the parameters of interest Likelihood function for a sample of K SNPs: L(β) = K Pr(i k,n k β) where Pr(i k,n k ) is the probability of that SNP k is at frequency i k nk k=1 Pr(i k,n k ) comes from the diffusion model how? Williamson et al. (2005): Use numerical methods to approximate the diffusion Today: use a naive sampling method based on the Euler approximation Ongoing work (with Radu Herbei and Jeff Gory): use exact sampling from the WF diffusion to implement a Bayesian version of the model Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

18 Application: Inferring Selection From Genome-scale Data Naive method: 1 Use the Euler method to simulate a path from the WF diffusion with selection parameter β, and record the final allele frequency, q. 2 For the q from step 1, simulate the data for a SNP by drawing Y Bin(2n,q). n is the number of people in the sample. 3 Repeat steps 1-2 a large number of times, say M (the larger, the better), to generate a set of observed Y values, Y 1,Y 2,,Y M. 4 Form the estimates ˆP i (β) = 1 M M m=1i(ym = i) The approximate likelihood is then K ˆL(β) = ˆP ik (β) k=1 Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

19 Application: Inferring Selection From Genome-scale Data Does it work? Simulate data for 15 people and 100 SNPs with various values of β and M β = 0.2 Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

20 Application: Inferring Selection From Genome-scale Data Does it work? Simulate data for 15 people and 100 SNPs with various values of β and M β = 2.0 Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

21 Application: Inferring Selection From Genome-scale Data Does it work? Simulate data for 15 people and 100 SNPs with various values of β and M β = 10.0 Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

22 Application: Inferring Selection From Genome-scale Data Does it work? Take the maximum value of the approximate likelihood as the MLE Repeat the simulation multiple times and look at properties of the MLEs True β Number of reps Mean MLE MSE Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

23 Conclusions Diffusion models are being increasingly used for data analysis in population genetics. Methods used for estimation are mostly based on numerical approximations, rather than on statistical techniques. Promising area of application as availability of whole-genome sequence data is increasing rapidly. Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

24 References Wakeley, J. (2009) Coalescent Theory: An Introduction. Robert and Company. Williamson, S. et al. (2005) Simultaneous inference of selection and population growth from patterns of variation in the human genome. PNAS 102(22): Gutenkunst, R. et al. (2009) Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. PLoS Genetics 5(10): e Pardoux, E. (2009). Probabilistic models of population genetics. pardoux/enseignement/cours genpop.pdf dadi: Diffusion Approximation for Demographic Inference. Thank you! Laura Kubatko Diffusion Models in Population Genetics July 10, / 24

Estimating Evolutionary Trees. Phylogenetic Methods

Estimating Evolutionary Trees. Phylogenetic Methods Estimating Evolutionary Trees v if the data are consistent with infinite sites then all methods should yield the same tree v it gets more complicated when there is homoplasy, i.e., parallel or convergent

More information

Frequency Spectra and Inference in Population Genetics

Frequency Spectra and Inference in Population Genetics Frequency Spectra and Inference in Population Genetics Although coalescent models have come to play a central role in population genetics, there are some situations where genealogies may not lead to efficient

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

Evolution in a spatial continuum

Evolution in a spatial continuum Evolution in a spatial continuum Drift, draft and structure Alison Etheridge University of Oxford Joint work with Nick Barton (Edinburgh) and Tom Kurtz (Wisconsin) New York, Sept. 2007 p.1 Kingman s Coalescent

More information

Genetic Drift in Human Evolution

Genetic Drift in Human Evolution Genetic Drift in Human Evolution (Part 2 of 2) 1 Ecology and Evolutionary Biology Center for Computational Molecular Biology Brown University Outline Introduction to genetic drift Modeling genetic drift

More information

Introduction to Advanced Population Genetics

Introduction to Advanced Population Genetics Introduction to Advanced Population Genetics Learning Objectives Describe the basic model of human evolutionary history Describe the key evolutionary forces How demography can influence the site frequency

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Course Organization Exam dates: Feb 19 March 1st Has everybody registered? Did you get the email with the exam schedule Summer seminar: Hot topics in Bioinformatics

More information

Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Information #

Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Information # Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Details of PRF Methodology In the Poisson Random Field PRF) model, it is assumed that non-synonymous mutations at a given gene are either

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Hidden Markov models in population genetics and evolutionary biology

Hidden Markov models in population genetics and evolutionary biology Hidden Markov models in population genetics and evolutionary biology Gerton Lunter Wellcome Trust Centre for Human Genetics Oxford, UK April 29, 2013 Topics for today Markov chains Hidden Markov models

More information

Mathematical models in population genetics II

Mathematical models in population genetics II Mathematical models in population genetics II Anand Bhaskar Evolutionary Biology and Theory of Computing Bootcamp January 1, 014 Quick recap Large discrete-time randomly mating Wright-Fisher population

More information

Challenges when applying stochastic models to reconstruct the demographic history of populations.

Challenges when applying stochastic models to reconstruct the demographic history of populations. Challenges when applying stochastic models to reconstruct the demographic history of populations. Willy Rodríguez Institut de Mathématiques de Toulouse October 11, 2017 Outline 1 Introduction 2 Inverse

More information

Population Structure

Population Structure Ch 4: Population Subdivision Population Structure v most natural populations exist across a landscape (or seascape) that is more or less divided into areas of suitable habitat v to the extent that populations

More information

Population Genetics: a tutorial

Population Genetics: a tutorial : a tutorial Institute for Science and Technology Austria ThRaSh 2014 provides the basic mathematical foundation of evolutionary theory allows a better understanding of experiments allows the development

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics Grundlagen der Bioinformatik, SoSe 14, D. Huson, May 18, 2014 67 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

How robust are the predictions of the W-F Model?

How robust are the predictions of the W-F Model? How robust are the predictions of the W-F Model? As simplistic as the Wright-Fisher model may be, it accurately describes the behavior of many other models incorporating additional complexity. Many population

More information

The mathematical challenge. Evolution in a spatial continuum. The mathematical challenge. Other recruits... The mathematical challenge

The mathematical challenge. Evolution in a spatial continuum. The mathematical challenge. Other recruits... The mathematical challenge The mathematical challenge What is the relative importance of mutation, selection, random drift and population subdivision for standing genetic variation? Evolution in a spatial continuum Al lison Etheridge

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

Endowed with an Extra Sense : Mathematics and Evolution

Endowed with an Extra Sense : Mathematics and Evolution Endowed with an Extra Sense : Mathematics and Evolution Todd Parsons Laboratoire de Probabilités et Modèles Aléatoires - Université Pierre et Marie Curie Center for Interdisciplinary Research in Biology

More information

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES INTRODUCTION CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES This worksheet complements the Click and Learn developed in conjunction with the 2011 Holiday Lectures on Science, Bones, Stones, and Genes:

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics 70 Grundlagen der Bioinformatik, SoSe 11, D. Huson, May 19, 2011 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

URN MODELS: the Ewens Sampling Lemma

URN MODELS: the Ewens Sampling Lemma Department of Computer Science Brown University, Providence sorin@cs.brown.edu October 3, 2014 1 2 3 4 Mutation Mutation: typical values for parameters Equilibrium Probability of fixation 5 6 Ewens Sampling

More information

BIRS workshop Sept 6 11, 2009

BIRS workshop Sept 6 11, 2009 Diploid biparental Moran model with large offspring numbers and recombination Bjarki Eldon New mathematical challenges from molecular biology and genetics BIRS workshop Sept 6, 2009 Mendel s Laws The First

More information

Some mathematical models from population genetics

Some mathematical models from population genetics Some mathematical models from population genetics 5: Muller s ratchet and the rate of adaptation Alison Etheridge University of Oxford joint work with Peter Pfaffelhuber (Vienna), Anton Wakolbinger (Frankfurt)

More information

Introduction to Algebraic Statistics

Introduction to Algebraic Statistics Introduction to Algebraic Statistics Seth Sullivant North Carolina State University January 5, 2017 Seth Sullivant (NCSU) Algebraic Statistics January 5, 2017 1 / 28 What is Algebraic Statistics? Observation

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Intensive Course on Population Genetics. Ville Mustonen

Intensive Course on Population Genetics. Ville Mustonen Intensive Course on Population Genetics Ville Mustonen Population genetics: The study of the distribution of inherited variation among a group of organisms of the same species [Oxford Dictionary of Biology]

More information

Statistical population genetics

Statistical population genetics Statistical population genetics Lecture 2: Wright-Fisher model Xavier Didelot Dept of Statistics, Univ of Oxford didelot@stats.ox.ac.uk Slide 21 of 161 Heterozygosity One measure of the diversity of a

More information

Robust demographic inference from genomic and SNP data

Robust demographic inference from genomic and SNP data Robust demographic inference from genomic and SNP data Laurent Excoffier Isabelle Duperret, Emilia Huerta-Sanchez, Matthieu Foll, Vitor Sousa, Isabel Alves Computational and Molecular Population Genetics

More information

Wright-Fisher Models, Approximations, and Minimum Increments of Evolution

Wright-Fisher Models, Approximations, and Minimum Increments of Evolution Wright-Fisher Models, Approximations, and Minimum Increments of Evolution William H. Press The University of Texas at Austin January 10, 2011 1 Introduction Wright-Fisher models [1] are idealized models

More information

Demography April 10, 2015

Demography April 10, 2015 Demography April 0, 205 Effective Population Size The Wright-Fisher model makes a number of strong assumptions which are clearly violated in many populations. For example, it is unlikely that any population

More information

DNA-based species delimitation

DNA-based species delimitation DNA-based species delimitation Phylogenetic species concept based on tree topologies Ø How to set species boundaries? Ø Automatic species delimitation? druhů? DNA barcoding Species boundaries recognized

More information

Modeling Evolution DAVID EPSTEIN CELEBRATION. John Milnor. Warwick University, July 14, Stony Brook University

Modeling Evolution DAVID EPSTEIN CELEBRATION. John Milnor. Warwick University, July 14, Stony Brook University Modeling Evolution John Milnor Stony Brook University DAVID EPSTEIN CELEBRATION Warwick University, July 14, 2007 A First Model for Evolution: The Phylogenetic Tree, U time V W X A B C D E F G 1500 1000

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Introduction to Natural Selection. Ryan Hernandez Tim O Connor

Introduction to Natural Selection. Ryan Hernandez Tim O Connor Introduction to Natural Selection Ryan Hernandez Tim O Connor 1 Goals Learn about the population genetics of natural selection How to write a simple simulation with natural selection 2 Basic Biology genome

More information

The problem Lineage model Examples. The lineage model

The problem Lineage model Examples. The lineage model The lineage model A Bayesian approach to inferring community structure and evolutionary history from whole-genome metagenomic data Jack O Brien Bowdoin College with Daniel Falush and Xavier Didelot Cambridge,

More information

Bioinformatics 2 - Lecture 4

Bioinformatics 2 - Lecture 4 Bioinformatics 2 - Lecture 4 Guido Sanguinetti School of Informatics University of Edinburgh February 14, 2011 Sequences Many data types are ordered, i.e. you can naturally say what is before and what

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Look-down model and Λ-Wright-Fisher SDE

Look-down model and Λ-Wright-Fisher SDE Look-down model and Λ-Wright-Fisher SDE B. Bah É. Pardoux CIRM April 17, 2012 B. Bah, É. Pardoux ( CIRM ) Marseille, 1 Febrier 2012 April 17, 2012 1 / 15 Introduction We consider a new version of the look-down

More information

Stochastic Demography, Coalescents, and Effective Population Size

Stochastic Demography, Coalescents, and Effective Population Size Demography Stochastic Demography, Coalescents, and Effective Population Size Steve Krone University of Idaho Department of Mathematics & IBEST Demographic effects bottlenecks, expansion, fluctuating population

More information

Supporting Information

Supporting Information Supporting Information Hammer et al. 10.1073/pnas.1109300108 SI Materials and Methods Two-Population Model. Estimating demographic parameters. For each pair of sub-saharan African populations we consider

More information

Coalescent based demographic inference. Daniel Wegmann University of Fribourg

Coalescent based demographic inference. Daniel Wegmann University of Fribourg Coalescent based demographic inference Daniel Wegmann University of Fribourg Introduction The current genetic diversity is the outcome of past evolutionary processes. Hence, we can use genetic diversity

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Lecture 18 : Ewens sampling formula

Lecture 18 : Ewens sampling formula Lecture 8 : Ewens sampling formula MATH85K - Spring 00 Lecturer: Sebastien Roch References: [Dur08, Chapter.3]. Previous class In the previous lecture, we introduced Kingman s coalescent as a limit of

More information

Modelling populations under fluctuating selection

Modelling populations under fluctuating selection Modelling populations under fluctuating selection Alison Etheridge With Aleksander Klimek (Oxford) and Niloy Biswas (Harvard) The simplest imaginable model of inheritance A population of fixed size, N,

More information

Quantitative trait evolution with mutations of large effect

Quantitative trait evolution with mutations of large effect Quantitative trait evolution with mutations of large effect May 1, 2014 Quantitative traits Traits that vary continuously in populations - Mass - Height - Bristle number (approx) Adaption - Low oxygen

More information

Learning ancestral genetic processes using nonparametric Bayesian models

Learning ancestral genetic processes using nonparametric Bayesian models Learning ancestral genetic processes using nonparametric Bayesian models Kyung-Ah Sohn October 31, 2011 Committee Members: Eric P. Xing, Chair Zoubin Ghahramani Russell Schwartz Kathryn Roeder Matthew

More information

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB Quantitative Genomics and Genetics BTRY 4830/6830; PBSB.5201.01 Lecture 18: Introduction to covariates, the QQ plot, and population structure II + minimal GWAS steps Jason Mezey jgm45@cornell.edu April

More information

Exact Simulation of Diffusions and Jump Diffusions

Exact Simulation of Diffusions and Jump Diffusions Exact Simulation of Diffusions and Jump Diffusions A work by: Prof. Gareth O. Roberts Dr. Alexandros Beskos Dr. Omiros Papaspiliopoulos Dr. Bruno Casella 28 th May, 2008 Content 1 Exact Algorithm Construction

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

O 3 O 4 O 5. q 3. q 4. Transition

O 3 O 4 O 5. q 3. q 4. Transition Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

More information

Lecture 22: Signatures of Selection and Introduction to Linkage Disequilibrium. November 12, 2012

Lecture 22: Signatures of Selection and Introduction to Linkage Disequilibrium. November 12, 2012 Lecture 22: Signatures of Selection and Introduction to Linkage Disequilibrium November 12, 2012 Last Time Sequence data and quantification of variation Infinite sites model Nucleotide diversity (π) Sequence-based

More information

The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion. Bob Griffiths University of Oxford

The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion. Bob Griffiths University of Oxford The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion Bob Griffiths University of Oxford A d-dimensional Λ-Fleming-Viot process {X(t)} t 0 representing frequencies of d types of individuals

More information

Problems on Evolutionary dynamics

Problems on Evolutionary dynamics Problems on Evolutionary dynamics Doctoral Programme in Physics José A. Cuesta Lausanne, June 10 13, 2014 Replication 1. Consider the Galton-Watson process defined by the offspring distribution p 0 =

More information

Taming the Beast Workshop

Taming the Beast Workshop Workshop and Chi Zhang June 28, 2016 1 / 19 Species tree Species tree the phylogeny representing the relationships among a group of species Figure adapted from [Rogers and Gibbs, 2014] Gene tree the phylogeny

More information

Bayesian Models for Phylogenetic Trees

Bayesian Models for Phylogenetic Trees Bayesian Models for Phylogenetic Trees Clarence Leung* 1 1 McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada ABSTRACT Introduction: Inferring genetic ancestry of different species

More information

Evolutionary dynamics of populations with genotype-phenotype map

Evolutionary dynamics of populations with genotype-phenotype map Evolutionary dynamics of populations with genotype-phenotype map Esther Ibáñez Marcelo, Tomas Alarcon Cor Biomat 2013: Mathematics of Planet Earth CENTRE DE RECERCA MATEMÀTICA 17-21 June 2013 Esther Ibáñez

More information

Modeling IBD for Pairs of Relatives. Biostatistics 666 Lecture 17

Modeling IBD for Pairs of Relatives. Biostatistics 666 Lecture 17 Modeling IBD for Pairs of Relatives Biostatistics 666 Lecture 7 Previously Linkage Analysis of Relative Pairs IBS Methods Compare observed and expected sharing IBD Methods Account for frequency of shared

More information

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009 Gene Genealogies Coalescence Theory Annabelle Haudry Glasgow, July 2009 What could tell a gene genealogy? How much diversity in the population? Has the demographic size of the population changed? How?

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Inférence en génétique des populations IV.

Inférence en génétique des populations IV. Inférence en génétique des populations IV. François Rousset & Raphaël Leblois M2 Biostatistiques 2015 2016 FR & RL Inférence en génétique des populations IV. M2 Biostatistiques 2015 2016 1 / 33 Modeling

More information

EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION

EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION Friday, July 27th, 11:00 EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION Karan Pattni karanp@liverpool.ac.uk University of Liverpool Joint work with Prof.

More information

Population genetics snippets for genepop

Population genetics snippets for genepop Population genetics snippets for genepop Peter Beerli August 0, 205 Contents 0.Basics 0.2Exact test 2 0.Fixation indices 4 0.4Isolation by Distance 5 0.5Further Reading 8 0.6References 8 0.7Disclaimer

More information

Lecture 11 Friday, October 21, 2011

Lecture 11 Friday, October 21, 2011 Lecture 11 Friday, October 21, 2011 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean system

More information

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation?

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation? October 12, 2009 Bioe 109 Fall 2009 Lecture 8 Microevolution 1 - selection The Hardy-Weinberg-Castle Equilibrium - consider a single locus with two alleles A 1 and A 2. - three genotypes are thus possible:

More information

Inventory Model (Karlin and Taylor, Sec. 2.3)

Inventory Model (Karlin and Taylor, Sec. 2.3) stochnotes091108 Page 1 Markov Chain Models and Basic Computations Thursday, September 11, 2008 11:50 AM Homework 1 is posted, due Monday, September 22. Two more examples. Inventory Model (Karlin and Taylor,

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

1.3 Forward Kolmogorov equation

1.3 Forward Kolmogorov equation 1.3 Forward Kolmogorov equation Let us again start with the Master equation, for a system where the states can be ordered along a line, such as the previous examples with population size n = 0, 1, 2,.

More information

Mathematical Population Genetics. Introduction to the Stochastic Theory. Lecture Notes. Guanajuato, March Warren J Ewens

Mathematical Population Genetics. Introduction to the Stochastic Theory. Lecture Notes. Guanajuato, March Warren J Ewens 1 Mathematical Population Genetics Introduction to the Stochastic Theory Lecture Notes Guanajuato, March 2009 Warren J Ewens 2 Preface These notes should, ideally, be read before the Guanajuato meeting

More information

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004,

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004, Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin- 1837

More information

Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. Research article.

Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. Research article. Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis David Bryant,*,1 Remco Bouckaert, 2 Joseph Felsenstein, 3 Noah A. Rosenberg, 4 and Arindam

More information

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB Quantitative Genomics and Genetics BTRY 4830/6830; PBSB.5201.01 Lecture16: Population structure and logistic regression I Jason Mezey jgm45@cornell.edu April 11, 2017 (T) 8:40-9:55 Announcements I April

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Bayesian inference for stochastic differential mixed effects models - initial steps

Bayesian inference for stochastic differential mixed effects models - initial steps Bayesian inference for stochastic differential ixed effects odels - initial steps Gavin Whitaker 2nd May 2012 Supervisors: RJB and AG Outline Mixed Effects Stochastic Differential Equations (SDEs) Bayesian

More information

Introduction to Wright-Fisher Simulations. Ryan Hernandez

Introduction to Wright-Fisher Simulations. Ryan Hernandez Introduction to Wright-Fisher Simulations Ryan Hernandez 1 Goals Simulate the standard neutral model, demographic effects, and natural selection Start with single sites, and build in multiple sites 2 Hardy-Weinberg

More information

Notes for MCTP Week 2, 2014

Notes for MCTP Week 2, 2014 Notes for MCTP Week 2, 2014 Lecture 1: Biological background Evolutionary biology and population genetics are highly interdisciplinary areas of research, with many contributions being made from mathematics,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 12 Dynamical Models CS/CNS/EE 155 Andreas Krause Homework 3 out tonight Start early!! Announcements Project milestones due today Please email to TAs 2 Parameter learning

More information

Populations in statistical genetics

Populations in statistical genetics Populations in statistical genetics What are they, and how can we infer them from whole genome data? Daniel Lawson Heilbronn Institute, University of Bristol www.paintmychromosomes.com Work with: January

More information

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles John Novembre and Montgomery Slatkin Supplementary Methods To

More information

ON COMPOUND POISSON POPULATION MODELS

ON COMPOUND POISSON POPULATION MODELS ON COMPOUND POISSON POPULATION MODELS Martin Möhle, University of Tübingen (joint work with Thierry Huillet, Université de Cergy-Pontoise) Workshop on Probability, Population Genetics and Evolution Centre

More information

STEM-hy: Species Tree Estimation using Maximum likelihood (with hybridization)

STEM-hy: Species Tree Estimation using Maximum likelihood (with hybridization) STEM-hy: Species Tree Estimation using Maximum likelihood (with hybridization) Laura Salter Kubatko Departments of Statistics and Evolution, Ecology, and Organismal Biology The Ohio State University kubatko.2@osu.edu

More information

Supporting information for Demographic history and rare allele sharing among human populations.

Supporting information for Demographic history and rare allele sharing among human populations. Supporting information for Demographic history and rare allele sharing among human populations. Simon Gravel, Brenna M. Henn, Ryan N. Gutenkunst, mit R. Indap, Gabor T. Marth, ndrew G. Clark, The 1 Genomes

More information

TMS165/MSA350 Stochastic Calculus, Lecture on Applications

TMS165/MSA350 Stochastic Calculus, Lecture on Applications TMS165/MSA35 Stochastic Calculus, Lecture on Applications In this lecture we demonstrate how statistical methods such as the maximum likelihood method likelihood ratio estimation can be applied to the

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Research Statement on Statistics Jun Zhang

Research Statement on Statistics Jun Zhang Research Statement on Statistics Jun Zhang (junzhang@galton.uchicago.edu) My interest on statistics generally includes machine learning and statistical genetics. My recent work focus on detection and interpretation

More information

Chapter 8: Introduction to Evolutionary Computation

Chapter 8: Introduction to Evolutionary Computation Computational Intelligence: Second Edition Contents Some Theories about Evolution Evolution is an optimization process: the aim is to improve the ability of an organism to survive in dynamically changing

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Computational statistics

Computational statistics Computational statistics Combinatorial optimization Thierry Denœux February 2017 Thierry Denœux Computational statistics February 2017 1 / 37 Combinatorial optimization Assume we seek the maximum of f

More information

Recovery of a recessive allele in a Mendelian diploid model

Recovery of a recessive allele in a Mendelian diploid model Recovery of a recessive allele in a Mendelian diploid model Loren Coquille joint work with A. Bovier and R. Neukirch (University of Bonn) Young Women in Probability and Analysis 2016, Bonn Outline 1 Introduction

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Evolution Problem Drill 10: Human Evolution

Evolution Problem Drill 10: Human Evolution Evolution Problem Drill 10: Human Evolution Question No. 1 of 10 Question 1. Which of the following statements is true regarding the human phylogenetic relationship with the African great apes? Question

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

The tree-valued Fleming-Viot process with mutation and selection

The tree-valued Fleming-Viot process with mutation and selection The tree-valued Fleming-Viot process with mutation and selection Peter Pfaffelhuber University of Freiburg Joint work with Andrej Depperschmidt and Andreas Greven Population genetic models Populations

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#7:(Mar-23-2010) Genome Wide Association Studies 1 The law of causality... is a relic of a bygone age, surviving, like the monarchy,

More information

WXML Final Report: Chinese Restaurant Process

WXML Final Report: Chinese Restaurant Process WXML Final Report: Chinese Restaurant Process Dr. Noah Forman, Gerandy Brito, Alex Forney, Yiruey Chou, Chengning Li Spring 2017 1 Introduction The Chinese Restaurant Process (CRP) generates random partitions

More information