Searching The Performance Surface

Size: px
Start display at page:

Download "Searching The Performance Surface"

Transcription

1 5 Searching The Performance Surface Assoc. Prof. Dr. Peerapol Yuvapoositanon Dept. of Electronic Engineering ASP-1

2 A Single Weight Filter From Ch 3 ASP-2

3 Cost Function J ASP-3

4 The Square Error Cost Function J J ()() w w R w w min opt T opt T ASP-4

5 Multiple Weight J J ()() w w R w w J min min opt T opt [ w w w w w w ] 0 opt,0 1 opt,1 L1 opt, L1 r (0, 0)(0,1)(2, r 0)(0, r 1) r L xx xx xx xx w w r (1, 0)(0, 0)(0,1) r r xx xx xx r (2, 0)(1, 0)(0, r 0) r w w xx xx xx w w L r ( L 1, 0)(0, 0) r xx xx T T 0 opt,0 1 opt,1 1 opt, L1 ASP-5

6 Single Weight For single-weight J J ()() w w R w w min opt J r (0, 0)() w w min xx 0 opt,0 2 () min xx opt J r w w T opt 2 T ASP-6

7 Single Weight From J J r w w () min xx opt 2 For single variable case, the eigenvalue is r xx J J w w min () opt 2 ASP-7

8 Find Wopt from intial w w opt w 0 ASP-8

9 Finding Derivatives J (() J w w w w min 2() w wopt 2 J w 2 2 Constant opt 2 ASP-9

10 Weight at k We d like to find w at k+1 from w at k w w () 1 k k k ASP-10

11 Gradient at k k J w 2() w ww k k w opt ASP-11

12 Substitute the gradient w 2() 1 w w w k k k opt w (1 2) 2) 1 w w k k opt ASP-12

13 w (1 2) w opt w (1 2) w opt w (1 2) 2 3 w 2 w opt ASP-13

14 The Recursive Gradient Search Algorithm We then arrive at* Initial w w (1 2)() k w w k opt 0 opt Step-size (* See derivation in class) Eigenvalue ASP-14

15 Stability Criterion Choice of Step size We arrive at for stability*, the step-size must be 1 0 (* See derivation in class) ASP-15

16 Example 1 Input signal: 2 E{()} x n 1 Desired signal: 2 E{()} d n 4 E{()()} d n x n 1 ASP-16

17 Example 1: One-weight 2 2 E{()} e n {(()()) E d n} y n 2 2 E{()} d n 2()()() d n y n y n d () n 2 E {()()} d n x n w {()} w E x n 4 2(1)(1) w w 2 w 2w 4 rdx 1 rxx 1 2 ASP-17

18 Example 1: One-weight Minimise J 2 e w 2 ( w 2w 4) w w 2w 2 Set to zero: 0 2w 2 opt wopt 1 ASP-18

19 Derivation From opt For Single Weight 1 w R r 2 1 w E {()} x n {()()} E d n x n opt 1 xx dx xx 1 ()() r r r 1 (1)(1) ASP-19

20 Example 1: One-weight w opt =1 ASP-20

21 Plot of w k for various step-sizes Overdamped Critically damped Underdamped ASP-21

22 Effect of r value Over damped Stable Under damped Critically damped 1 ASP-22

23 1-weight Leaning Curves ASP-23

24 Ch5_l.m % ch5_l.m plots weights % 20Feb2016 clear all set(0,'defaultaxesfontsize',20); set(0,'defaultlinelinewidth',3); lambdamax=1.5; % Eigenvalue lambda = lambdamax; w0=[5;5]; mutemp = [ ]; wopt= [-2;2]; N=10; W=[];JN=[];JS=[]; R=1; Jmin =0; J0 = Jmin +(w0-wopt)'* 1*(w0-wopt); R =[1 0.5;0.5 1]; Q=(1/sqrt(2))*[1 1;1-1]; L = [1.5 0;0.5]; v0=w0-wopt; vp0= w0-wopt; for j=1:length(mutemp) mu = mutemp(j); for k=1:n-1 % Newton's Method Jn(k) =Jmin +(1-2*mu)^(2*k)*( v0'* R * v0); % Steepest Descent Method % Put your code here end % Newton's Method Cost Jt=[J0;Jn(:)]; JN =[JN Jt]; % Steepest Descent Cost % Put your code here end figure(1) % Plot Newton's Method Cost clf len=0:n-1; plot(len,jn(:,1),'--',len,jn(:,2),'-',len,jn(:,3),'-.') legend('\mu=0.1 ','\mu=0.5','\mu=0.6') xlabel('$k$','interpreter','latex') ylabel('$j_k$','interpreter','latex') title('newtons Method') figure(2) clf % Plot Steepest Descent Cost % Put your code here ASP-24

25 Two-weight System ASP-25

26 Two-weight System ASP-26

27 Example 2 Two-weight System Input signal: Desired signal: ASP-27

28 ASP-28

29 Surface: Newton s Method w +w0 0 w 1 +2 w 0-2 w 1 +w w w 0 ASP-29

30 Surface: Steepest Descent w +w0 0 w 1 +2 w 0-2 w 1 +w w w 0 ASP-30

31 Assignment Download ch5_l.m Put your codes to generate plots of Newton s Method and Steepest Method. Discuss all the difference between the two methods, i.e., convergence rate, behaviour of the convergence etc. ASP-31

32 Cost: Newton s Method Newtons Method =0.1 =0.5 = ASP-32

33 Cost: Steepest Descent Steepest Descent =0.1 =0.5 = ASP-33

Ch4: Method of Steepest Descent

Ch4: Method of Steepest Descent Ch4: Method of Steepest Descent The method of steepest descent is recursive in the sense that starting from some initial (arbitrary) value for the tap-weight vector, it improves with the increased number

More information

Adaptive Filter Theory

Adaptive Filter Theory 0 Adaptive Filter heory Sung Ho Cho Hanyang University Seoul, Korea (Office) +8--0-0390 (Mobile) +8-10-541-5178 dragon@hanyang.ac.kr able of Contents 1 Wiener Filters Gradient Search by Steepest Descent

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

Computer exercise 1: Steepest descent

Computer exercise 1: Steepest descent 1 Computer exercise 1: Steepest descent In this computer exercise you will investigate the method of steepest descent using Matlab. The topics covered in this computer exercise are coupled with the material

More information

Scientific Computing II

Scientific Computing II Technische Universität München ST 008 Institut für Informatik Dr. Miriam Mehl Scientific Computing II Final Exam, July, 008 Iterative Solvers (3 pts + 4 extra pts, 60 min) a) Steepest Descent and Conjugate

More information

Adaptive Beamforming Algorithms

Adaptive Beamforming Algorithms S. R. Zinka srinivasa_zinka@daiict.ac.in October 29, 2014 Outline 1 Least Mean Squares 2 Sample Matrix Inversion 3 Recursive Least Squares 4 Accelerated Gradient Approach 5 Conjugate Gradient Method Outline

More information

Lecture 11. Scott Pauls 1 4/20/07. Dartmouth College. Math 23, Spring Scott Pauls. Last class. Today s material. Next class

Lecture 11. Scott Pauls 1 4/20/07. Dartmouth College. Math 23, Spring Scott Pauls. Last class. Today s material. Next class Lecture 11 1 1 Department of Mathematics Dartmouth College 4/20/07 Outline Material from last class Inhomogeneous equations Method of undetermined coefficients Variation of parameters Mass spring Consider

More information

SGN Advanced Signal Processing: Lecture 4 Gradient based adaptation: Steepest Descent Method

SGN Advanced Signal Processing: Lecture 4 Gradient based adaptation: Steepest Descent Method SGN 21006 Advanced Signal Processing: Lecture 4 Gradient based adaptation: Steepest Descent Method Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 20 Adaptive filtering:

More information

2.6 The optimum filtering solution is defined by the Wiener-Hopf equation

2.6 The optimum filtering solution is defined by the Wiener-Hopf equation .6 The optimum filtering solution is defined by the Wiener-opf equation w o p for which the minimum mean-square error equals J min σ d p w o () Combine Eqs. and () into a single relation: σ d p p 1 w o

More information

Data Mining (Mineria de Dades)

Data Mining (Mineria de Dades) Data Mining (Mineria de Dades) Lluís A. Belanche belanche@lsi.upc.edu Soft Computing Research Group Dept. de Llenguatges i Sistemes Informàtics (Software department) Universitat Politècnica de Catalunya

More information

Lecture 3: Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method

Lecture 3: Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method 1 Lecture 3: Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method Adaptive filtering: Problem statement Consider the family of variable parameter FIR filters, computing their

More information

26. Filtering. ECE 830, Spring 2014

26. Filtering. ECE 830, Spring 2014 26. Filtering ECE 830, Spring 2014 1 / 26 Wiener Filtering Wiener filtering is the application of LMMSE estimation to recovery of a signal in additive noise under wide sense sationarity assumptions. Problem

More information

Math 240: Spring/Mass Systems II

Math 240: Spring/Mass Systems II Math 240: Spring/Mass Systems II Ryan Blair University of Pennsylvania Monday, March 26, 2012 Ryan Blair (U Penn) Math 240: Spring/Mass Systems II Monday, March 26, 2012 1 / 12 Outline 1 Today s Goals

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

( ) 2 75( ) 3

( ) 2 75( ) 3 Chemistry 380.37 Dr. Jean M. Standard Homework Problem Set 3 Solutions 1. The part of a particular MM3-like force field that describes stretching energy for an O-H single bond is given by the following

More information

A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION

A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION Jordan Cheer and Stephen Daley Institute of Sound and Vibration Research,

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore

Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore Lecture - 13 Steepest Descent Method Hello, welcome back to this series

More information

Ch5: Least Mean-Square Adaptive Filtering

Ch5: Least Mean-Square Adaptive Filtering Ch5: Least Mean-Square Adaptive Filtering Introduction - approximating steepest-descent algorithm Least-mean-square algorithm Stability and performance of the LMS algorithm Robustness of the LMS algorithm

More information

Advanced Signal Processing Adaptive Estimation and Filtering

Advanced Signal Processing Adaptive Estimation and Filtering Advanced Signal Processing Adaptive Estimation and Filtering Danilo Mandic room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

Introduction to Unconstrained Optimization: Part 2

Introduction to Unconstrained Optimization: Part 2 Introduction to Unconstrained Optimization: Part 2 James Allison ME 555 January 29, 2007 Overview Recap Recap selected concepts from last time (with examples) Use of quadratic functions Tests for positive

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

Adaptive Filters. un [ ] yn [ ] w. yn n wun k. - Adaptive filter (FIR): yn n n w nun k. (1) Identification. Unknown System + (2) Inverse modeling

Adaptive Filters. un [ ] yn [ ] w. yn n wun k. - Adaptive filter (FIR): yn n n w nun k. (1) Identification. Unknown System + (2) Inverse modeling Adaptive Filters - Statistical digital signal processing: in many problems of interest, the signals exhibit some inherent variability plus additive noise we use probabilistic laws to model the statistical

More information

Image restoration: numerical optimisation

Image restoration: numerical optimisation Image restoration: numerical optimisation Short and partial presentation Jean-François Giovannelli Groupe Signal Image Laboratoire de l Intégration du Matériau au Système Univ. Bordeaux CNRS BINP / 6 Context

More information

Math Ordinary Differential Equations Sample Test 3 Solutions

Math Ordinary Differential Equations Sample Test 3 Solutions Solve the following Math - Ordinary Differential Equations Sample Test Solutions (i x 2 y xy + 8y y(2 2 y (2 (ii x 2 y + xy + 4y y( 2 y ( (iii x 2 y xy + y y( 2 y ( (i The characteristic equation is m(m

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Spring 2010 Emo Todorov (UW) AMATH/CSE 579, Spring 2010 Lecture 9 1 / 8 Gradient descent

More information

Lecture 11: October 2

Lecture 11: October 2 10-725: Optimization Fall 2012 Lecture 11: October 2 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Tongbo Huang, Shoou-I Yu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Math 240: Spring-mass Systems

Math 240: Spring-mass Systems Math 240: Spring-mass Systems Ryan Blair University of Pennsylvania Tuesday March 1, 2011 Ryan Blair (U Penn) Math 240: Spring-mass Systems Tuesday March 1, 2011 1 / 15 Outline 1 Review 2 Today s Goals

More information

V. Adaptive filtering Widrow-Hopf Learning Rule LMS and Adaline

V. Adaptive filtering Widrow-Hopf Learning Rule LMS and Adaline V. Adaptive filtering Widrow-Hopf Learning Rule LMS and Adaline Goals Introduce Wiener-Hopf (WH) equations Introduce application of the steepest descent method to the WH problem Approximation to the Least

More information

Trajectory-based optimization

Trajectory-based optimization Trajectory-based optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 1 / 13 Using

More information

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review ECE 680Modern Automatic Control p. 1/1 ECE 680 Modern Automatic Control Gradient and Newton s Methods A Review Stan Żak October 25, 2011 ECE 680Modern Automatic Control p. 2/1 Review of the Gradient Properties

More information

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems Free Vibration of Single-Degree-of-Freedom (SDOF) Systems Procedure in solving structural dynamics problems 1. Abstraction/modeling Idealize the actual structure to a simplified version, depending on the

More information

Optimization of Linear Systems of Constrained Configuration

Optimization of Linear Systems of Constrained Configuration Optimization of Linear Systems of Constrained Configuration Antony Jameson 1 October 1968 1 Abstract For the sake of simplicity it is often desirable to restrict the number of feedbacks in a controller.

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Machine Learning and Adaptive Systems. Lectures 3 & 4

Machine Learning and Adaptive Systems. Lectures 3 & 4 ECE656- Lectures 3 & 4, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2015 What is Learning? General Definition of Learning: Any change in the behavior or performance

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

AdaptiveFilters. GJRE-F Classification : FOR Code:

AdaptiveFilters. GJRE-F Classification : FOR Code: Global Journal of Researches in Engineering: F Electrical and Electronics Engineering Volume 14 Issue 7 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

SOLUTIONS to Exercises from Optimization

SOLUTIONS to Exercises from Optimization SOLUTIONS to Exercises from Optimization. Use the bisection method to find the root correct to 6 decimal places: 3x 3 + x 2 = x + 5 SOLUTION: For the root finding algorithm, we need to rewrite the equation

More information

Recursive Least Squares for an Entropy Regularized MSE Cost Function

Recursive Least Squares for an Entropy Regularized MSE Cost Function Recursive Least Squares for an Entropy Regularized MSE Cost Function Deniz Erdogmus, Yadunandana N. Rao, Jose C. Principe Oscar Fontenla-Romero, Amparo Alonso-Betanzos Electrical Eng. Dept., University

More information

Chapter 8 Gradient Methods

Chapter 8 Gradient Methods Chapter 8 Gradient Methods An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Introduction Recall that a level set of a function is the set of points satisfying for some constant. Thus, a point

More information

Adaptive Filtering Part II

Adaptive Filtering Part II Adaptive Filtering Part II In previous Lecture we saw that: Setting the gradient of cost function equal to zero, we obtain the optimum values of filter coefficients: (Wiener-Hopf equation) Adaptive Filtering,

More information

MATLAB files for test of Newton s method for 2 nonlinear equations with a solution at (...

MATLAB files for test of Newton s method for 2 nonlinear equations with a solution at (... MATLAB files for test of Newton s method for 2 nonlinear equations with a solution at (... Page 1 of 7 MATLAB files for test of Newton s method for 2 nonlinear equations with a solution at (3,4) This program

More information

Data Fitting and Uncertainty

Data Fitting and Uncertainty TiloStrutz Data Fitting and Uncertainty A practical introduction to weighted least squares and beyond With 124 figures, 23 tables and 71 test questions and examples VIEWEG+ TEUBNER IX Contents I Framework

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

VU Signal and Image Processing

VU Signal and Image Processing 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/18s/

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Unconstrained minimization

Unconstrained minimization CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions 1 Unconstrained

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

EE364a Homework 8 solutions

EE364a Homework 8 solutions EE364a, Winter 2007-08 Prof. S. Boyd EE364a Homework 8 solutions 9.8 Steepest descent method in l -norm. Explain how to find a steepest descent direction in the l -norm, and give a simple interpretation.

More information

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems Z. Akbari 1, R. Yousefpour 2, M. R. Peyghami 3 1 Department of Mathematics, K.N. Toosi University of Technology,

More information

Chapter 2 Fundamentals of Adaptive Filter Theory

Chapter 2 Fundamentals of Adaptive Filter Theory Chapter 2 Fundamentals of Adaptive Filter Theory In this chapter we will treat some fundamentals of the adaptive filtering theory highlighting the system identification problem We will introduce a signal

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

3.7 Spring Systems 253

3.7 Spring Systems 253 3.7 Spring Systems 253 The resulting amplification of vibration eventually becomes large enough to destroy the mechanical system. This is a manifestation of resonance discussed further in Section??. Exercises

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Ch6-Normalized Least Mean-Square Adaptive Filtering

Ch6-Normalized Least Mean-Square Adaptive Filtering Ch6-Normalized Least Mean-Square Adaptive Filtering LMS Filtering The update equation for the LMS algorithm is wˆ wˆ u ( n 1) ( n) ( n) e ( n) Step size Filter input which is derived from SD as an approximation

More information

CoE 3SK3 Computer Aided Engineering Tutorial: Unconstrained Optimization

CoE 3SK3 Computer Aided Engineering Tutorial: Unconstrained Optimization CoE 3SK3 Computer Aided Engineering Tutorial: Unconstrained Optimization Jie Cao caoj23@grads.ece.mcmaster.ca Department of Electrical and Computer Engineering McMaster University Feb. 2, 2010 Outline

More information

Lecture 10: September 26

Lecture 10: September 26 0-725: Optimization Fall 202 Lecture 0: September 26 Lecturer: Barnabas Poczos/Ryan Tibshirani Scribes: Yipei Wang, Zhiguang Huo Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

MODELLING A MASS / SPRING SYSTEM Free oscillations, Damping, Force oscillations (impulsive and sinusoidal)

MODELLING A MASS / SPRING SYSTEM Free oscillations, Damping, Force oscillations (impulsive and sinusoidal) DOING PHYSICS WITH MATLAB MODELLING A MASS / SPRING SYSTEM Free oscillations, Damping, Force oscillations (impulsive and sinusoidal) Download Directory: Matlab mscripts osc_harmonic01.m The script uses

More information

Contraction Mappings Consider the equation

Contraction Mappings Consider the equation Contraction Mappings Consider the equation x = cos x. If we plot the graphs of y = cos x and y = x, we see that they intersect at a unique point for x 0.7. This point is called a fixed point of the function

More information

Tsung-Ming Huang. Matrix Computation, 2016, NTNU

Tsung-Ming Huang. Matrix Computation, 2016, NTNU Tsung-Ming Huang Matrix Computation, 2016, NTNU 1 Plan Gradient method Conjugate gradient method Preconditioner 2 Gradient method 3 Theorem Ax = b, A : s.p.d Definition A : symmetric positive definite

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

Linear Least-Squares Based Methods for Neural Networks Learning

Linear Least-Squares Based Methods for Neural Networks Learning Linear Least-Squares Based Methods for Neural Networks Learning Oscar Fontenla-Romero 1, Deniz Erdogmus 2, JC Principe 2, Amparo Alonso-Betanzos 1, and Enrique Castillo 3 1 Laboratory for Research and

More information

7. Response Surface Methodology (Ch.10. Regression Modeling Ch. 11. Response Surface Methodology)

7. Response Surface Methodology (Ch.10. Regression Modeling Ch. 11. Response Surface Methodology) 7. Response Surface Methodology (Ch.10. Regression Modeling Ch. 11. Response Surface Methodology) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Introduction Response surface methodology,

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

Damped & forced oscillators

Damped & forced oscillators SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Damped & forced oscillators Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it Damped

More information

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Numerical computation II Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Reprojection error Reprojection error = Distance between the

More information

1 Controller Optimization according to the Modulus Optimum

1 Controller Optimization according to the Modulus Optimum Controller Optimization according to the Modulus Optimum w G K (s) F 0 (s) x The goal of applying a control loop usually is to get the control value x equal to the reference value w. x(t) w(t) X(s) W (s)

More information

arxiv: v1 [math.fa] 16 Jun 2011

arxiv: v1 [math.fa] 16 Jun 2011 arxiv:1106.3342v1 [math.fa] 16 Jun 2011 Gauge functions for convex cones B. F. Svaiter August 20, 2018 Abstract We analyze a class of sublinear functionals which characterize the interior and the exterior

More information

IV. Performance Optimization

IV. Performance Optimization IV. Performance Optmzaton A. Steepest descent algorthm defnton how to set up bounds on learnng rate mnmzaton n a lne (varyng learnng rate) momentum learnng examples B. Newton s method defnton Gauss-Newton

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

CHAPTER 4 ADAPTIVE FILTERS: LMS, NLMS AND RLS. 4.1 Adaptive Filter

CHAPTER 4 ADAPTIVE FILTERS: LMS, NLMS AND RLS. 4.1 Adaptive Filter CHAPTER 4 ADAPTIVE FILTERS: LMS, NLMS AND RLS 4.1 Adaptive Filter Generally in most of the live applications and in the environment information of related incoming information statistic is not available

More information

Introduction to unconstrained optimization - direct search methods

Introduction to unconstrained optimization - direct search methods Introduction to unconstrained optimization - direct search methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Structure of optimization methods Typically Constraint handling converts the

More information

Optimal and Adaptive Filtering

Optimal and Adaptive Filtering Optimal and Adaptive Filtering Murat Üney M.Uney@ed.ac.uk Institute for Digital Communications (IDCOM) 26/06/2017 Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 1 / 69 Table of Contents 1

More information

dy dt = ty, y(0) = 3. (1)

dy dt = ty, y(0) = 3. (1) 2. (10pts) Solve the given intial value problem (IVP): dy dt = ty, y(0) = 3. (1) 3. (10pts) A plot of f(y) =y(1 y)(2 y) of the right hand side of the differential equation dy/dt = f(y) is shown below.

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Course and Wavelets and Filter Banks

Course and Wavelets and Filter Banks Course 18.327 and 1.130 Wavelets and Filter Bans Numerical solution of PDEs: Galerin approximation; wavelet integrals (projection coefficients, moments and connection coefficients); convergence Numerical

More information

Tracking a Harmonic Oscillator using a webcam

Tracking a Harmonic Oscillator using a webcam Tracking a Harmonic Oscillator using a webcam Sohaib Shamim, Wasif Zia and Muhammad Sabieh Anwar LUMS School of Science and Engineering September 29, 2017 Version 2017-1 Is there any thing that in this

More information

Multiple Reference Active Noise Control by

Multiple Reference Active Noise Control by Multiple Reference Active Noise Control by Yifeng u hesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University in Partial fulfillment of the requirements for the degree of

More information

Convex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University

Convex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University Convex Optimization 9. Unconstrained minimization Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 40 Outline Unconstrained minimization

More information

FALL 2018 MATH 4211/6211 Optimization Homework 4

FALL 2018 MATH 4211/6211 Optimization Homework 4 FALL 2018 MATH 4211/6211 Optimization Homework 4 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS 1. Please write your name and student number clearly on the front page of the exam. 2. The exam is

More information

Instructor: Dr. Benjamin Thompson Lecture 8: 3 February 2009

Instructor: Dr. Benjamin Thompson Lecture 8: 3 February 2009 Instructor: Dr. Benjamin Thompson Lecture 8: 3 February 2009 Announcement Homework 3 due one week from today. Not so long ago in a classroom very very closeby Unconstrained Optimization The Method of Steepest

More information

Steepest Descent. Juan C. Meza 1. Lawrence Berkeley National Laboratory Berkeley, California 94720

Steepest Descent. Juan C. Meza 1. Lawrence Berkeley National Laboratory Berkeley, California 94720 Steepest Descent Juan C. Meza Lawrence Berkeley National Laboratory Berkeley, California 94720 Abstract The steepest descent method has a rich history and is one of the simplest and best known methods

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Feedback Control part 2

Feedback Control part 2 Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open- and closed-loop control Everything before chapter 7 are open-loop systems Transient response Design criteria Translate criteria

More information

CSE 250a. Assignment Noisy-OR model. Out: Tue Oct 26 Due: Tue Nov 2

CSE 250a. Assignment Noisy-OR model. Out: Tue Oct 26 Due: Tue Nov 2 CSE 250a. Assignment 4 Out: Tue Oct 26 Due: Tue Nov 2 4.1 Noisy-OR model X 1 X 2 X 3... X d Y For the belief network of binary random variables shown above, consider the noisy-or conditional probability

More information

Unit 7: Part 1: Sketching the Root Locus

Unit 7: Part 1: Sketching the Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland March 14, 2010 ENGI 5821 Unit 7: Root

More information

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C.

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Spall John Wiley and Sons, Inc., 2003 Preface... xiii 1. Stochastic Search

More information

Landscapes & Algorithms for Quantum Control

Landscapes & Algorithms for Quantum Control Dept of Applied Maths & Theoretical Physics University of Cambridge, UK April 15, 211 Control Landscapes: What do we really know? Kinematic control landscapes generally universally nice 1 Pure-state transfer

More information

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc.

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc. ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, 2015 1 Name: Solution Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully.

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

Lecture 15: Ordinary Differential Equations: Second Order

Lecture 15: Ordinary Differential Equations: Second Order Lecture 15: Ordinary Differential Equations: Second Order 1. Key points Simutaneous 1st order ODEs and linear stability analysis. 2nd order linear ODEs (homogeneous and inhomogeneous. Maple DEplot Eigenvectors

More information

Physics 351 Monday, January 22, 2018

Physics 351 Monday, January 22, 2018 Physics 351 Monday, January 22, 2018 Phys 351 Work on this while you wait for your classmates to arrive: Show that the moment of inertia of a uniform solid sphere rotating about a diameter is I = 2 5 MR2.

More information

Problem set 6 Math 207A, Fall 2011 Solutions. 1. A two-dimensional gradient system has the form

Problem set 6 Math 207A, Fall 2011 Solutions. 1. A two-dimensional gradient system has the form Problem set 6 Math 207A, Fall 2011 s 1 A two-dimensional gradient sstem has the form x t = W (x,, x t = W (x, where W (x, is a given function (a If W is a quadratic function W (x, = 1 2 ax2 + bx + 1 2

More information