Lecture 3: Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method

Size: px
Start display at page:

Download "Lecture 3: Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method"

Transcription

1 1 Lecture 3: Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method Adaptive filtering: Problem statement Consider the family of variable parameter FIR filters, computing their output according to y(n) = w 0 (n)u(n)+w 1 (n)u(n 1) + w M 1 (n)u(n M +1) = M 1 k=0 w k (n)u(n k) =w(n) T u(n), n =0, 1, 2,, where parameters w(n) are allowed to change at every time step, u(t) is the input signal, d(t) is the desired signal and {u(t) and d(t)} are jointly stationary Given the parameters w(n) =[w 0 (n),w 1 (n),w 2 (n),,w M 1 (n)] T, find an adaptation mechanism w(n + 1) = w(n) + δw(n), or written componentwise w 0 (n +1) = w 0 (n)+δw 0 (n) w 1 (n +1) = w 1 (n)+δw 1 (n) w M 1 (n +1) = w M 1 (n)+δw M 1 (n) such as the adaptation process converges to the parameters of the optimal Wiener filter, w(n +1) w o, no matter where the iterations are initialized (ie w(0))

2 Lecture 3 2 The key of adaptation process is the existence of an error between the output of the filter y(n) and the desired signal d(n): e(n) =d(n) y(n) =d(n) w(n) T u(n) If the parameter vector w(n) will be used at all time instants, the performance criterion will be (see last Lecture) J(n) =J w(n) = E[e(n)e(n)] = E[(d(n) w T (n)u(n))(d(n) u T (n)w(n))] = E[d 2 (n)] 2E[d(n)u T (n)]w(n)+w T (n)e[u(n)u T (n)]w(n) = σd 2 2p T w(n)+w T (n)rw(n) = σd 2 2 M 1 i=0 p( i)w i + M 1 l=0 M 1 i=0 w l w i R i,l (1)

3 Lecture 3 3 Expressions of the gradient vector

4 Lecture 3 4 The gradient of the criterion J(n) with respect to the parameters w(n) is w(n) J(n) = J(n) w 0 (n) J(n) w 1 (n) J(n) w M 1 (n) = 2p(0)+2 M 1 i=0 R 0,i w i (n) 2p( 1) + 2 M 1 i=0 R 1,i w i (n) 2p( M +1)+2 M 1 i=0 R 1,M 1 w i (n) = 2p +2Rw(n) (2) w(n) J(n) = 2Ed(n)u(n)+2 M 1 i=0 Eu(n)u(n i)w i (n) 2Ed(n)u(n 1) + 2 M 1 i=0 Eu(n 1)u(n i)w i (n) 2Ed(n)u(n M +1)+2 M 1 i=0 Eu(n M +1)u(n i)w i (n) = 2Eu(n) ( d(n) M 1 i=0 u(n i)w i (n) ) 2Eu(n 1) ( d(n) M 1 i=0 u(n i)w i (n) ) 2Eu(n M +1) ( d(n) M 1 i=0 u(n i)w i (n) )

5 Lecture 3 5 = 2E (u(n)e(n)) 2E (u(n 1)e(n)) 2E (u(n M +1)e(n)) = 2E u(n) u(n 1) u(n M +1) e(n) = 2Eu(n)e(n) (3) ((2) and (3) give the solution of exercise 7, page 229 [Haykin 2002]) Steepest descent algorithm w(n +1) = w(n) 1 2 µ w(n)j(n) = w(n)+µeu(n)e(n)

6 Lecture 3 6 SD ALGORITHM Steepest descent search algorithm for finding the Wiener FIR optimal filter

7 Lecture 3 7 Given the autocorrelation matrix R = Eu(n)u T (n) the cross-correlation vector p(n) = Eu(n)d(n) Initialize the algorithm with an arbitrary parameter vector w(0) Iterate for n =0, 1, 2, 3,,n max w(n +1)=w(n)+µ[p Rw(n)] Stop iterations if p Rw(n) < ε Designer degrees of freedom: µ, ε, n max

8 Lecture 3 8 Equivalent forms of the adaptation equations We have the following equivalent forms of adaptive equations, each showing one facet (or one interpretation) of the adaptation process 1 Solving p = Rw o for w o using iterative schemes: w(n +1)=w(n)+µ[p Rw(n)] 2 or componentwise w 0 (n +1)=w 0 (n)+µ(p(0) M 1 i=0 R 0,i w i (n)) w 1 (n +1)=w 1 (n)+µ(p( 1) M 1 i=0 R 1,i w i (n)) w M 1 (n +1)=w M 1 (n)+µ(p( M +1) M 1 i=0 R M 1,i w i (n)) 3 Error driven adaptation process (See Figure at page 6): w(n +1)=w(n)+µ[Ee(n)u(n)] 4 or componentwise w 0 (n +1)=w 0 (n)+µ(ee(n)u 0 (n)) w 1 (n +1)=w 1 (n)+µ(ee(n)u 1 (n)) w M 1 (n +1)=w M 1 (n)+µ(ee(n)u M 1 (n))

9 Lecture 3 9 Example: Running SD algorithm to solve for the Wiener filter derived in the example of Lecture 2 Rw = p; r u(0) r u (1) r u (1) r u (0) w 0 w 1 = Ed(n)u(n) Ed(n)u(n 1) with the solution We will use the Matlab code w 0 w 1 w 0 w 1 = = R_u=[11 05 ; % Define autocovariance matrix ]; p= [05271 ; ] % Define cross-correlation vector W=[-1;-1]; mu= 001; % Initial values for the adaptation algorithm Wt=W; % Wt will record the evolution of vector W for k=1:1000 % Iterate 1000 times the adaptation step W=W +mu*(p-r_u*w); % Adaptation Equation! Quite simple! Wt=[Wt W]; % Wt records the evolution of vector W end % Is W the Wiener Filter?

10 Lecture W_1 W_2 Criterion Surface and Adaptation process 10 1 W(2) Parameter error w(n) w_ W(1) n (iteration) Figure 1: Adaptation Step µ =001 Left: Adaptation process starts from an arbitary point w(0) = [ 1, 1] T markedwith a cross and converges to Wiener filter parameters w(0) = [ ] T ( x point, in the center of ellipses) Right The convergence rate is exponential (note the logarithmic scale for the parametric error) In 1000 iterations the parameter error reaches 10 3

11 Lecture W_1 W_2 Criterion Surface and Adaptation process W(2) Parameter error w(n) w_ W(1) n (iteration) Figure 2: Adaptation Step µ =1 Left: Stable oscillatory adaptation process starting from an arbitary point w(0) = [ 1, 1] T marked with a cross and convergence to Wiener filter parameters w(0) = [ ] T ( x point, in the center of ellipses) Right The convergence rate is exponential In about 70 iterations the parameter error reaches 10 16

12 Lecture 3 12 W_1 W_2 Criterion Surface and Adaptation process W(2) Parameter error w(n) w_ W(1) n (iteration) Figure 3: Adaptation Step µ =4 Left: Unstable oscillatory adaptation process starting from an arbitary point w(0) = [ 1, 1] T marked with a cross and divergence from Wiener filter parameters w(0) = [ ] T ( x point, in the center of ellipses) Right The divergence rate is exponential In about 400 iterations the parameter error reaches 10 30

13 Lecture W_1 W_2 Criterion Surface and Adaptation process W(2) Parameter error w(n) w_ W(1) n (iteration) Figure 4: Adaptation Step µ =0001 Left: Very slow adaptation process, starting from an arbitary point w(0) = [ 1, 1] T marked with a cross It will eventually converge to Wiener filter parameters w(0) = [ ] T ( x, point in the center of ellipses) Right The convergence rate is exponential (note the logarithmic scale for the parametric error) In 1000 iterations the parameter error reaches 07

14 Lecture 3 14 Stability of Steepest Descent algorithm Write the adaptation algorithm as w(n +1)=w(n)+µ[p Rw(n)] (4) But from Wiener-Hopf equation p = Rw o and therefore w(n +1)=w(n)+µ[Rw o Rw(n)] = w(n)+µr[w o w(n)] (5) Now subtract Wiener optimal parameters,w o, from both members w(n +1) w o = w(n) w o + µr[w o w(n)] = (I µr)[w(n) w o ] and introducing the vector c(n) =w(n) w o,wehave c(n +1)=(I µr)c(n) Let λ 1,λ 2,,λ M be the (real and positive) eigenvalues and let q 1,q 2,,q M be the (generally complex) eigenvectors of the matrix R, thus satisfying Rq i = λ i q i (6) Then the matrix Q =[q 1 q 2 q M ] can transform R to diagonal form Λ = diag(λ 1,λ 2,,λ M ) where the superscript H means complex conjugation and transposition R = QΛQ H (7) c(n +1)=(I µr)c(n) =(I µqλq H )c(n)

15 Lecture 3 15 Left- multiplying by Q H Q H c(n +1)=Q H (I µqλq H )c(n) =(Q H µq H QΛQ H )c(n) =(I µλ)q H c(n) We notate ν(n) the rotated and translated version of w(n) ν(n) =Q H c(n) =Q H (w(n) w o ) (8) and now we have ν(n +1)=(I µλ)ν(n) where the initial value ν(0) = Q H (w(0) w o ) We can write componentwise the recursions for ν(n) ν k (n +1)=(1 µλ k )ν k (n) k =1, 2,,M which can be solved easily to give ν k (n) =(1 µλ k ) n ν k (0) k =1, 2,,M For the stability of the algorithm 1 < 1 µλ k < 1 k =1, 2,,M or 0 <µ< 2 λ k k =1, 2,,M or 0 <µ< 2 λ max STABILITY CONDITION!

16 Lecture 3 16 where λ max is the maximum eigenvalue of autocovariance matrix R If the stability condition is respected, this will result in ν k (n) 0, ie w k (n) w ok when n, k =1, 2,,M Notating τ k = 1 log( 1 µλ k ),wehave 1 µλ k = exp( 1 τ k ) and therefore ν k (n) = 1 µλ k n ν k (0) = exp( n τ k ) ν k (0) which is a decreasing exponential, which needs approximately 4τ k steps to reduce ν k (0) to 2% of its value Thus, we have obtained * a condition of stability, * information about the transient behavior and speed of convergence of parameters ν k (n) We can transfer back to the original parameters the results of analysis: The matrix Q =[q 1 q 2 q M ] obeys Q H Q = QQ H = I and multiplying by Q the extreme terms of the equalities ν(n) =Q H c(n) =Q H (w(n) w o ) Qν(n) =w(n) w o

17 Lecture 3 17 w(n) =w o + Qν(n) =w o +[q 1 q 2 Writing componentwise the equality, we have q M ]ν(n) =w o + M q k ν k (n) k=1 w i (n) =w o,i + M q k,i ν k (0)(1 µλ k ) n k=1 The fastest rate of convergence is obtained for the eigenvalue λ k which gives the least term 1 µλ k, while the slowest rate of convergence results for the eigenvalue λ k which gives the largest term 1 µλ k If we limit µ such that 0 < 1 µλ k < 1, then 1 log(1 µλ max ) τ a Transient behavior of the Mean -squared error 1 log(1 µλ min ) In Lecture 2 we obtained the canonical form of the quadratic form which expresses the mean square error: where ν was defined as Taking into account that J w(n) = J wo + M λ i ν i 2 i=1 ν(n) =Q H c(n) =Q H (w(n) w o ) (9) ν k (n) =(1 µλ k ) n ν k (0) k =1, 2,,M

18 Lecture 3 18 we have finally The convergence J w(n) = J wo + M λ i (1 µλ i ) 2n ν i (0) 2 i=1 J w(n) J wo (10) takes place under the same conditions as parameter convergence, and the rate of convergence is bounded, similarly, by 1 2log(1 µλ max ) τ a 1 2log(1 µλ min ) (11)

SGN Advanced Signal Processing: Lecture 4 Gradient based adaptation: Steepest Descent Method

SGN Advanced Signal Processing: Lecture 4 Gradient based adaptation: Steepest Descent Method SGN 21006 Advanced Signal Processing: Lecture 4 Gradient based adaptation: Steepest Descent Method Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 20 Adaptive filtering:

More information

Ch4: Method of Steepest Descent

Ch4: Method of Steepest Descent Ch4: Method of Steepest Descent The method of steepest descent is recursive in the sense that starting from some initial (arbitrary) value for the tap-weight vector, it improves with the increased number

More information

Lecture 7: Linear Prediction

Lecture 7: Linear Prediction 1 Lecture 7: Linear Prediction Overview Dealing with three notions: PREDICTION, PREDICTOR, PREDICTION ERROR; FORWARD versus BACKWARD: Predicting the future versus (improper terminology) predicting the

More information

Computer exercise 1: Steepest descent

Computer exercise 1: Steepest descent 1 Computer exercise 1: Steepest descent In this computer exercise you will investigate the method of steepest descent using Matlab. The topics covered in this computer exercise are coupled with the material

More information

2.6 The optimum filtering solution is defined by the Wiener-Hopf equation

2.6 The optimum filtering solution is defined by the Wiener-Hopf equation .6 The optimum filtering solution is defined by the Wiener-opf equation w o p for which the minimum mean-square error equals J min σ d p w o () Combine Eqs. and () into a single relation: σ d p p 1 w o

More information

Lecture 6: Block Adaptive Filters and Frequency Domain Adaptive Filters

Lecture 6: Block Adaptive Filters and Frequency Domain Adaptive Filters 1 Lecture 6: Block Adaptive Filters and Frequency Domain Adaptive Filters Overview Block Adaptive Filters Iterating LMS under the assumption of small variations in w(n) Approximating the gradient by time

More information

Adaptive Filtering Part II

Adaptive Filtering Part II Adaptive Filtering Part II In previous Lecture we saw that: Setting the gradient of cost function equal to zero, we obtain the optimum values of filter coefficients: (Wiener-Hopf equation) Adaptive Filtering,

More information

LMS and eigenvalue spread 2. Lecture 3 1. LMS and eigenvalue spread 3. LMS and eigenvalue spread 4. χ(r) = λ max λ min. » 1 a. » b0 +b. b 0 a+b 1.

LMS and eigenvalue spread 2. Lecture 3 1. LMS and eigenvalue spread 3. LMS and eigenvalue spread 4. χ(r) = λ max λ min. » 1 a. » b0 +b. b 0 a+b 1. Lecture Lecture includes the following: Eigenvalue spread of R and its influence on the convergence speed for the LMS. Variants of the LMS: The Normalized LMS The Leaky LMS The Sign LMS The Echo Canceller

More information

Lecture Notes in Adaptive Filters

Lecture Notes in Adaptive Filters Lecture Notes in Adaptive Filters Second Edition Jesper Kjær Nielsen jkn@es.aau.dk Aalborg University Søren Holdt Jensen shj@es.aau.dk Aalborg University Last revised: September 19, 2012 Nielsen, Jesper

More information

ELEG-636: Statistical Signal Processing

ELEG-636: Statistical Signal Processing ELEG-636: Statistical Signal Processing Gonzalo R. Arce Department of Electrical and Computer Engineering University of Delaware Spring 2010 Gonzalo R. Arce (ECE, Univ. of Delaware) ELEG-636: Statistical

More information

Least Mean Square Filtering

Least Mean Square Filtering Least Mean Square Filtering U. B. Desai Slides tex-ed by Bhushan Least Mean Square(LMS) Algorithm Proposed by Widrow (1963) Advantage: Very Robust Only Disadvantage: It takes longer to converge where X(n)

More information

Adaptive Filters. un [ ] yn [ ] w. yn n wun k. - Adaptive filter (FIR): yn n n w nun k. (1) Identification. Unknown System + (2) Inverse modeling

Adaptive Filters. un [ ] yn [ ] w. yn n wun k. - Adaptive filter (FIR): yn n n w nun k. (1) Identification. Unknown System + (2) Inverse modeling Adaptive Filters - Statistical digital signal processing: in many problems of interest, the signals exhibit some inherent variability plus additive noise we use probabilistic laws to model the statistical

More information

CHAPTER 4 ADAPTIVE FILTERS: LMS, NLMS AND RLS. 4.1 Adaptive Filter

CHAPTER 4 ADAPTIVE FILTERS: LMS, NLMS AND RLS. 4.1 Adaptive Filter CHAPTER 4 ADAPTIVE FILTERS: LMS, NLMS AND RLS 4.1 Adaptive Filter Generally in most of the live applications and in the environment information of related incoming information statistic is not available

More information

ELEG-636: Statistical Signal Processing

ELEG-636: Statistical Signal Processing ELEG-636: Statistical Signal Processing Gonzalo R. Arce Department of Electrical and Computer Engineering University of Delaware Spring 2010 Gonzalo R. Arce (ECE, Univ. of Delaware) ELEG-636: Statistical

More information

Adaptive Filter Theory

Adaptive Filter Theory 0 Adaptive Filter heory Sung Ho Cho Hanyang University Seoul, Korea (Office) +8--0-0390 (Mobile) +8-10-541-5178 dragon@hanyang.ac.kr able of Contents 1 Wiener Filters Gradient Search by Steepest Descent

More information

Ch5: Least Mean-Square Adaptive Filtering

Ch5: Least Mean-Square Adaptive Filtering Ch5: Least Mean-Square Adaptive Filtering Introduction - approximating steepest-descent algorithm Least-mean-square algorithm Stability and performance of the LMS algorithm Robustness of the LMS algorithm

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

V. Adaptive filtering Widrow-Hopf Learning Rule LMS and Adaline

V. Adaptive filtering Widrow-Hopf Learning Rule LMS and Adaline V. Adaptive filtering Widrow-Hopf Learning Rule LMS and Adaline Goals Introduce Wiener-Hopf (WH) equations Introduce application of the steepest descent method to the WH problem Approximation to the Least

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Lecture 4 1. Block-based LMS 3. Block-based LMS 4. Standard LMS 2. bw(n + 1) = bw(n) + µu(n)e (n), bw(k + 1) = bw(k) + µ u(kl + i)e (kl + i),

Lecture 4 1. Block-based LMS 3. Block-based LMS 4. Standard LMS 2. bw(n + 1) = bw(n) + µu(n)e (n), bw(k + 1) = bw(k) + µ u(kl + i)e (kl + i), Standard LMS 2 Lecture 4 1 Lecture 4 contains descriptions of Block-based LMS (7.1) (edition 3: 1.1) u(n) u(n) y(n) = ŵ T (n)u(n) Datavektor 1 1 y(n) M 1 ŵ(n) M 1 ŵ(n + 1) µ Frequency Domain LMS (FDAF,

More information

26. Filtering. ECE 830, Spring 2014

26. Filtering. ECE 830, Spring 2014 26. Filtering ECE 830, Spring 2014 1 / 26 Wiener Filtering Wiener filtering is the application of LMMSE estimation to recovery of a signal in additive noise under wide sense sationarity assumptions. Problem

More information

Chapter 2 Wiener Filtering

Chapter 2 Wiener Filtering Chapter 2 Wiener Filtering Abstract Before moving to the actual adaptive filtering problem, we need to solve the optimum linear filtering problem (particularly, in the mean-square-error sense). We start

More information

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL.

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL. Adaptive Filtering Fundamentals of Least Mean Squares with MATLABR Alexander D. Poularikas University of Alabama, Huntsville, AL CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is

More information

An Adaptive Sensor Array Using an Affine Combination of Two Filters

An Adaptive Sensor Array Using an Affine Combination of Two Filters An Adaptive Sensor Array Using an Affine Combination of Two Filters Tõnu Trump Tallinn University of Technology Department of Radio and Telecommunication Engineering Ehitajate tee 5, 19086 Tallinn Estonia

More information

3.4 Linear Least-Squares Filter

3.4 Linear Least-Squares Filter X(n) = [x(1), x(2),..., x(n)] T 1 3.4 Linear Least-Squares Filter Two characteristics of linear least-squares filter: 1. The filter is built around a single linear neuron. 2. The cost function is the sum

More information

Adaptive Systems Homework Assignment 1

Adaptive Systems Homework Assignment 1 Signal Processing and Speech Communication Lab. Graz University of Technology Adaptive Systems Homework Assignment 1 Name(s) Matr.No(s). The analytical part of your homework (your calculation sheets) as

More information

Adaptive SP & Machine Intelligence Linear Adaptive Filters and Applications

Adaptive SP & Machine Intelligence Linear Adaptive Filters and Applications Adaptive SP & Machine Intelligence Linear Adaptive Filters and Applications Danilo Mandic room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

ECE580 Partial Solution to Problem Set 3

ECE580 Partial Solution to Problem Set 3 ECE580 Fall 2015 Solution to Problem Set 3 October 23, 2015 1 ECE580 Partial Solution to Problem Set 3 These problems are from the textbook by Chong and Zak, 4th edition, which is the textbook for the

More information

Some definitions. Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization. A-inner product. Important facts

Some definitions. Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization. A-inner product. Important facts Some definitions Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization M. M. Sussman sussmanm@math.pitt.edu Office Hours: MW 1:45PM-2:45PM, Thack 622 A matrix A is SPD (Symmetric

More information

Ch6-Normalized Least Mean-Square Adaptive Filtering

Ch6-Normalized Least Mean-Square Adaptive Filtering Ch6-Normalized Least Mean-Square Adaptive Filtering LMS Filtering The update equation for the LMS algorithm is wˆ wˆ u ( n 1) ( n) ( n) e ( n) Step size Filter input which is derived from SD as an approximation

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

Project: Vibration of Diatomic Molecules

Project: Vibration of Diatomic Molecules Project: Vibration of Diatomic Molecules Objective: Find the vibration energies and the corresponding vibrational wavefunctions of diatomic molecules H 2 and I 2 using the Morse potential. equired Numerical

More information

Machine Learning and Adaptive Systems. Lectures 5 & 6

Machine Learning and Adaptive Systems. Lectures 5 & 6 ECE656- Lectures 5 & 6, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2015 c. Performance Learning-LMS Algorithm (Widrow 1960) The iterative procedure in steepest

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Linear Optimum Filtering: Statement

Linear Optimum Filtering: Statement Ch2: Wiener Filters Optimal filters for stationary stochastic models are reviewed and derived in this presentation. Contents: Linear optimal filtering Principle of orthogonality Minimum mean squared error

More information

Regular paper. Adaptive System Identification Using LMS Algorithm Integrated with Evolutionary Computation

Regular paper. Adaptive System Identification Using LMS Algorithm Integrated with Evolutionary Computation Ibraheem Kasim Ibraheem 1,* Regular paper Adaptive System Identification Using LMS Algorithm Integrated with Evolutionary Computation System identification is an exceptionally expansive topic and of remarkable

More information

Deep Learning. Authors: I. Goodfellow, Y. Bengio, A. Courville. Chapter 4: Numerical Computation. Lecture slides edited by C. Yim. C.

Deep Learning. Authors: I. Goodfellow, Y. Bengio, A. Courville. Chapter 4: Numerical Computation. Lecture slides edited by C. Yim. C. Chapter 4: Numerical Computation Deep Learning Authors: I. Goodfellow, Y. Bengio, A. Courville Lecture slides edited by 1 Chapter 4: Numerical Computation 4.1 Overflow and Underflow 4.2 Poor Conditioning

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

In the Name of God. Lecture 11: Single Layer Perceptrons

In the Name of God. Lecture 11: Single Layer Perceptrons 1 In the Name of God Lecture 11: Single Layer Perceptrons Perceptron: architecture We consider the architecture: feed-forward NN with one layer It is sufficient to study single layer perceptrons with just

More information

Instructor: Dr. Benjamin Thompson Lecture 8: 3 February 2009

Instructor: Dr. Benjamin Thompson Lecture 8: 3 February 2009 Instructor: Dr. Benjamin Thompson Lecture 8: 3 February 2009 Announcement Homework 3 due one week from today. Not so long ago in a classroom very very closeby Unconstrained Optimization The Method of Steepest

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Adaptive Beamforming Algorithms

Adaptive Beamforming Algorithms S. R. Zinka srinivasa_zinka@daiict.ac.in October 29, 2014 Outline 1 Least Mean Squares 2 Sample Matrix Inversion 3 Recursive Least Squares 4 Accelerated Gradient Approach 5 Conjugate Gradient Method Outline

More information

A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION

A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION Jordan Cheer and Stephen Daley Institute of Sound and Vibration Research,

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

TMA4180 Solutions to recommended exercises in Chapter 3 of N&W

TMA4180 Solutions to recommended exercises in Chapter 3 of N&W TMA480 Solutions to recommended exercises in Chapter 3 of N&W Exercise 3. The steepest descent and Newtons method with the bactracing algorithm is implemented in rosenbroc_newton.m. With initial point

More information

Lecture: Adaptive Filtering

Lecture: Adaptive Filtering ECE 830 Spring 2013 Statistical Signal Processing instructors: K. Jamieson and R. Nowak Lecture: Adaptive Filtering Adaptive filters are commonly used for online filtering of signals. The goal is to estimate

More information

Advanced Signal Processing Adaptive Estimation and Filtering

Advanced Signal Processing Adaptive Estimation and Filtering Advanced Signal Processing Adaptive Estimation and Filtering Danilo Mandic room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

Numerical methods part 2

Numerical methods part 2 Numerical methods part 2 Alain Hébert alain.hebert@polymtl.ca Institut de génie nucléaire École Polytechnique de Montréal ENE6103: Week 6 Numerical methods part 2 1/33 Content (week 6) 1 Solution of an

More information

PETROV-GALERKIN METHODS

PETROV-GALERKIN METHODS Chapter 7 PETROV-GALERKIN METHODS 7.1 Energy Norm Minimization 7.2 Residual Norm Minimization 7.3 General Projection Methods 7.1 Energy Norm Minimization Saad, Sections 5.3.1, 5.2.1a. 7.1.1 Methods based

More information

Chapter 1.6. Perform Operations with Complex Numbers

Chapter 1.6. Perform Operations with Complex Numbers Chapter 1.6 Perform Operations with Complex Numbers EXAMPLE Warm-Up 1 Exercises Solve a quadratic equation Solve 2x 2 + 11 = 37. 2x 2 + 11 = 37 2x 2 = 48 Write original equation. Subtract 11 from each

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

Assesment of the efficiency of the LMS algorithm based on spectral information

Assesment of the efficiency of the LMS algorithm based on spectral information Assesment of the efficiency of the algorithm based on spectral information (Invited Paper) Aaron Flores and Bernard Widrow ISL, Department of Electrical Engineering, Stanford University, Stanford CA, USA

More information

Machine Learning. A Bayesian and Optimization Perspective. Academic Press, Sergios Theodoridis 1. of Athens, Athens, Greece.

Machine Learning. A Bayesian and Optimization Perspective. Academic Press, Sergios Theodoridis 1. of Athens, Athens, Greece. Machine Learning A Bayesian and Optimization Perspective Academic Press, 2015 Sergios Theodoridis 1 1 Dept. of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens,

More information

Multimedia Communications. Differential Coding

Multimedia Communications. Differential Coding Multimedia Communications Differential Coding Differential Coding In many sources, the source output does not change a great deal from one sample to the next. This means that both the dynamic range and

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4, 6, M Open access books available International authors and editors Downloads Our authors are

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

MMSE System Identification, Gradient Descent, and the Least Mean Squares Algorithm

MMSE System Identification, Gradient Descent, and the Least Mean Squares Algorithm MMSE System Identification, Gradient Descent, and the Least Mean Squares Algorithm D.R. Brown III WPI WPI D.R. Brown III 1 / 19 Problem Statement and Assumptions known input x[n] unknown system (assumed

More information

Sparse Least Mean Square Algorithm for Estimation of Truncated Volterra Kernels

Sparse Least Mean Square Algorithm for Estimation of Truncated Volterra Kernels Sparse Least Mean Square Algorithm for Estimation of Truncated Volterra Kernels Bijit Kumar Das 1, Mrityunjoy Chakraborty 2 Department of Electronics and Electrical Communication Engineering Indian Institute

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

IS NEGATIVE STEP SIZE LMS ALGORITHM STABLE OPERATION POSSIBLE?

IS NEGATIVE STEP SIZE LMS ALGORITHM STABLE OPERATION POSSIBLE? IS NEGATIVE STEP SIZE LMS ALGORITHM STABLE OPERATION POSSIBLE? Dariusz Bismor Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland, e-mail: Dariusz.Bismor@polsl.pl

More information

FALL 2018 MATH 4211/6211 Optimization Homework 4

FALL 2018 MATH 4211/6211 Optimization Homework 4 FALL 2018 MATH 4211/6211 Optimization Homework 4 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

ODE Final exam - Solutions

ODE Final exam - Solutions ODE Final exam - Solutions May 3, 018 1 Computational questions (30 For all the following ODE s with given initial condition, find the expression of the solution as a function of the time variable t You

More information

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M:

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M: Lesson 1 Optimal Signal Processing Optimal signalbehandling LTH September 2013 Statistical Digital Signal Processing and Modeling, Hayes, M: John Wiley & Sons, 1996. ISBN 0471594318 Nedelko Grbic Mtrl

More information

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model 5 Kalman filters 5.1 Scalar Kalman filter 5.1.1 Signal model System model {Y (n)} is an unobservable sequence which is described by the following state or system equation: Y (n) = h(n)y (n 1) + Z(n), n

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

4.6 Iterative Solvers for Linear Systems

4.6 Iterative Solvers for Linear Systems 4.6 Iterative Solvers for Linear Systems Why use iterative methods? Virtually all direct methods for solving Ax = b require O(n 3 ) floating point operations. In practical applications the matrix A often

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Gradient Descent. Sargur Srihari

Gradient Descent. Sargur Srihari Gradient Descent Sargur srihari@cedar.buffalo.edu 1 Topics Simple Gradient Descent/Ascent Difficulties with Simple Gradient Descent Line Search Brent s Method Conjugate Gradient Descent Weight vectors

More information

EE 225a Digital Signal Processing Supplementary Material

EE 225a Digital Signal Processing Supplementary Material EE 225A DIGITAL SIGAL PROCESSIG SUPPLEMETARY MATERIAL EE 225a Digital Signal Processing Supplementary Material. Allpass Sequences A sequence h a ( n) ote that this is true iff which in turn is true iff

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

Postulates of Quantum Mechanics

Postulates of Quantum Mechanics EXERCISES OF QUANTUM MECHANICS LECTURE Departamento de Física Teórica y del Cosmos 018/019 Exercise 1: Stern-Gerlach experiment Postulates of Quantum Mechanics AStern-Gerlach(SG)deviceisabletoseparateparticlesaccordingtotheirspinalonga

More information

R-Linear Convergence of Limited Memory Steepest Descent

R-Linear Convergence of Limited Memory Steepest Descent R-Linear Convergence of Limited Memory Steepest Descent Fran E. Curtis and Wei Guo Department of Industrial and Systems Engineering, Lehigh University, USA COR@L Technical Report 16T-010 R-Linear Convergence

More information

Convergence Evaluation of a Random Step-Size NLMS Adaptive Algorithm in System Identification and Channel Equalization

Convergence Evaluation of a Random Step-Size NLMS Adaptive Algorithm in System Identification and Channel Equalization Convergence Evaluation of a Random Step-Size NLMS Adaptive Algorithm in System Identification and Channel Equalization 1 Shihab Jimaa Khalifa University of Science, Technology and Research (KUSTAR) Faculty

More information

Hirschman Optimal Transform Block LMS Adaptive

Hirschman Optimal Transform Block LMS Adaptive Provisional chapter Chapter 1 Hirschman Optimal Transform Block LMS Adaptive Hirschman Optimal Transform Block LMS Adaptive Filter Filter Osama Alkhouli, Osama Alkhouli, Victor DeBrunner and Victor DeBrunner

More information

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013 Practice Final Exam Solutions for Calculus II, Math 5, December 5, 3 Name: Section: Name of TA: This test is to be taken without calculators and notes of any sorts. The allowed time is hours and 5 minutes.

More information

PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron

PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron PMR5406 Redes Neurais e Aula 3 Single Layer Percetron Baseado em: Neural Networks, Simon Haykin, Prentice-Hall, 2 nd edition Slides do curso por Elena Marchiori, Vrije Unviersity Architecture We consider

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf.

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf. Maria Cameron 1. Trust Region Methods At every iteration the trust region methods generate a model m k (p), choose a trust region, and solve the constraint optimization problem of finding the minimum of

More information

Optimal and Adaptive Filtering

Optimal and Adaptive Filtering Optimal and Adaptive Filtering Murat Üney M.Uney@ed.ac.uk Institute for Digital Communications (IDCOM) 26/06/2017 Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 1 / 69 Table of Contents 1

More information

Adap>ve Filters Part 2 (LMS variants and analysis) ECE 5/639 Sta>s>cal Signal Processing II: Linear Es>ma>on

Adap>ve Filters Part 2 (LMS variants and analysis) ECE 5/639 Sta>s>cal Signal Processing II: Linear Es>ma>on Adap>ve Filters Part 2 (LMS variants and analysis) Sta>s>cal Signal Processing II: Linear Es>ma>on Eric Wan, Ph.D. Fall 2015 1 LMS Variants and Analysis LMS variants Normalized LMS Leaky LMS Filtered-X

More information

JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.6 ALGEBRA 6 (Formulae and algebraic equations) by A.J.Hobson 1.6.1 Transposition of formulae 1.6. of linear equations 1.6.3 of quadratic equations 1.6. Exercises 1.6.5 Answers

More information

AN ITERATION. In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b

AN ITERATION. In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b AN ITERATION In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b In this, A is an n n matrix and b R n.systemsof this form arise

More information

Decision Weighted Adaptive Algorithms with Applications to Wireless Channel Estimation

Decision Weighted Adaptive Algorithms with Applications to Wireless Channel Estimation Decision Weighted Adaptive Algorithms with Applications to Wireless Channel Estimation Shane Martin Haas April 12, 1999 Thesis Defense for the Degree of Master of Science in Electrical Engineering Department

More information

Conjugate gradient algorithm for training neural networks

Conjugate gradient algorithm for training neural networks . Introduction Recall that in the steepest-descent neural network training algorithm, consecutive line-search directions are orthogonal, such that, where, gwt [ ( + ) ] denotes E[ w( t + ) ], the gradient

More information

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year 2017-2018 1 Outline Systems modeling: input/output approach of LTI systems. Convolution

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Chapter 10 Conjugate Direction Methods

Chapter 10 Conjugate Direction Methods Chapter 10 Conjugate Direction Methods An Introduction to Optimization Spring, 2012 1 Wei-Ta Chu 2012/4/13 Introduction Conjugate direction methods can be viewed as being intermediate between the method

More information