Multivariate General Linear Models (MGLM) on Riemannian Manifolds

Size: px
Start display at page:

Download "Multivariate General Linear Models (MGLM) on Riemannian Manifolds"

Transcription

1 Multivariate General Linear Models (MGLM) on Riemannian Manifolds Hyunwoo J. Kim, Nagesh Adluru, Maxwell D. Collins, Moo K. Chung,! Barbara B. Bendlin, Sterling C. Johnson, Richard J. Davidson, Vikas Singh Poster session ID: O-3C-384

2 General Linear Model for Group Analysis Disease Normal Template Registration Registration

3 General Linear Model for Group Analysis Disease Normal M D M D AGE All subjects AGE

4 General Linear Model for Group Analysis Disease Normal P-value map M D AGE All subjects

5 General Linear Model (GLM) f : R! R : Group (patient or normal)

6 General Linear Model (GLM) f : R 2! R : Group (patient or normal) : Age

7 General Linear Model (GLM) f : R 3! R : Group (patient or normal) : Age : Gender

8 GLM on scalar valued summaries DTI P-value map D = A

9 GLM on scalar valued summaries DTI FA P-value map MD

10 GLM on scalar valued summaries DTI? P-value map D = A x T Dx > 0,x6= 0

11 GLM on scalar valued summaries DTI? P-value Response Y is manifold-valued

12 Manifold -valued data Unit sphere, quotient spaces of spheres SPD matrix i.e covariance matrix, diffusion tensors Probability density functions (PDFs), orientation density functions (ODFs) Lie groups i.e. O(n), SO(n), GL(n), SL(n) Kendall shape manifolds

13 Can we directly use the ordinary general linear model with manifold data?

14 Euclidean model for manifolds

15 Euclidean model for manifolds Test Training Training Test

16 Euclidean model for manifolds Problem 1: Model in ambient space Predictions in ambient space Predictions need to be projected onto manifolds

17 Euclidean model for manifolds

18 Euclidean model for manifolds Problem 2: Distance metric in ambient space

19 Euclidean model for manifolds Problem 2: Distance metric in ambient space Geodesic distance is needed.

20 Model on manifolds

21 Regression with a Single Covariate f : R!M Fletcher, P. Thomas. "Geodesic regression and the theory of least squares on Riemannian manifolds. IJCV, 2013.

22 Model on manifolds f : R!M Jia Du, Alvina Goh, Sergey Kushnareva, Anqi Qiu, "Geodesic regression on orientation distribution functions with its application to an aging study." NeuroImage, 2014.

23 Model on manifolds f : R!M Jia Du, Alvina Goh, Sergey Kushnareva, Anqi Qiu, "Geodesic regression on orientation distribution functions with its application to an aging study." NeuroImage, f : R n!m Our MGLM

24 Single covariate E(p, v) = 1 2 NX i=1 d(exp(p, x i v),y i ) 2 y 1 y 2 y 4 M y 3

25 Single covariate E(p, v) = 1 2 NX i=1 d(exp(p, x i v),y i ) 2 p y 1 y 2 y 4 M y 3

26 Single covariate E(p, v) = 1 2 NX i=1 d(exp(p, x i v),y i ) 2 T p M p y 1 y 2 y4 v M y 3

27 Single covariate E(p, v) = 1 2 NX i=1 d(exp(p, x i v),y i ) 2 T p M p y 1 y 2 y4 v M y 3

28 Single covariate E(p, v) = 1 2 NX i=1 d(exp(p, x i v),y i ) 2 p y 1 x 1 x 2 x 3 x 4 y 2 y4 v T p M M y 3

29 Single covariate E(p, v) = 1 2 NX i=1 d(exp(p, x i v),y i ) 2 p x 1 x 2 x 4 x 3 y 1 y 2 y4 T p M v M y 3

30 Multiple covariates E(p, V )= 1 2 NX i=1 d(exp(p, X j x j i vj ),y i ) 2 v 2 x 2 1 p x 1 1 T p M v 1 M

31 Multiple covariates E(p, V )= 1 2 NX i=1 d(exp(p, X j x j i vj ),y i ) 2 v 2 x 2 2 x 2 1 p x 1 1 x 1 2 T p M v 1 M

32 Multiple covariates E(p, V )= 1 2 NX i=1 d(exp(p, X j x j i vj ),y i ) 2 v 2 x 2 2 x 2 1 p x 1 1 x 1 2 T p M v 1

33 Multiple covariates E(p, V )= 1 2 NX i=1 d(exp(p, X j x j i vj ),y i ) 2 v 2 x 2 2 x 2 1 p x 1 1 x 1 2 T p M v 1

34 Multiple covariates E(p, V )= 1 2 NX i=1 d(exp(p, X j x j i vj ),y i ) 2 v 2 x 2 2 x 2 1 p x 1 1 x 1 2 T p M v 1

35 Optimization (iterative method) E(p, V )= 1 2 NX i=1 d(exp(p, X j x j i vj ),y i ) 2

36 Optimization (iterative method) Step 1 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j p k+1 Exp (p k, i ŷi!p k Log(ŷ i,y i ))

37 Optimization (iterative method) Step 1 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j p k+1 Exp (p k, i ŷi!p k Log(ŷ i,y i )) Error term p k v 1 ŷ 1 v 2 y 1 Error term

38 Optimization (iterative method) Step 1 : E(p, V )= 1 NX d(exp(p, X x j i 2 ),y i ) 2 i=1 j p k+1 Exp (p k, i ŷi!p k Log(ŷ i,y i )) Parallel transported error p k v 1 Parallel transported error v 2 ŷ 1 y 1

39 Optimization (iterative method) Step 1 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j p k+1 Exp (p k, i ŷi!p k Log(ŷ i,y i )) p k p k+1 v 1 v 2 y 1

40 Optimization (iterative method) Step 1 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j p k+1 Exp (p k, i ŷi!p k Log(ŷ i,y i )) p k pk+1 v 1 v 2 ŷ 1 y 1

41 Optimization (iterative method) Step 2 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 v j k+1/2 = vj k + X j x j i ŷ i!plog(ŷ i,y i ) Error term i p k v 1 k v 2 k y 1 ŷ 1 Error term

42 Optimization (iterative method) Step 2 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 v j k+1/2 = vj k + X j x j i ŷ i!plog(ŷ i,y i ) i Parallel transported Error p k v 1 k v 2 k y 1 ŷ 1

43 Optimization (iterative method) Step 2 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 v j k+1/2 = vj k + X j x j i ŷ i!plog(ŷ i,y i ) i p k v 1 k v 1 k+ 1 2 v 2 k+ 1 2 v 2 k y 1 ŷ 1

44 Optimization (iterative method) Step 3 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j V k+1 = pk!p k+1 (V k+1/2 ) p k p k+1 v 1 k+ 1 2 v 2 k+ 1 2 v 1 k+1 v 2 k+1

45 Optimization (iterative method) Step 3 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j V k+1 = pk!p k+1 (V k+1/2 ) Must we solve for p or can p k we approximate it? p k+1 v 1 k+ 1 2 v 2 k+ 1 2 v 1 k+1 v 2 k+1

46 Optimization (iterative method) Step 3 : E(p, V )= 1 NX d(exp(p, X x j i 2 vj ),y i ) 2 i=1 j V k+1 = pk!p k+1 (V k+1/2 ) Must we solve for p or can p k we approximate it? p k+1 v 1 k+ 1 2 v 2 k+ 1 2 v 1 k+1 Xie, Yuchen, Baba C. Vemuri, and Jeffrey Ho Statistical analysis of tensor fields,miccai 10 v 2 k+1

47 Experiments Synthetic data Neuroimaging data GLM Full : y = Exp(p, v 1 Group + v 2 Gender + v 3 Age)

48 Experiments (synthetic ODF)

49 Experiments (synthetic ODF)

50 Experiments (synthetic ODF)

51 Experiments (synthetic ODF)

52 Experiments (synthetic ODF)

53 Experiments Synthetic data Neuroimaging data GLM Full : y = Exp(p, v 1 Group + v 2 Gender + v 3 Age)

54 Experiments (neuroimaging study) LTM (ODF) AD risk (DTI) Subjects Group LTM WLC APOE4+ APOE4- Gender Female Male Female Male Age GLM Full : y =Exp(p, v 1 Group + v 2 Gender + V 3 Age) GLM Age : y =Exp(p, v 2 Gender + v 3 Age) GLMFull : y = Exp(p, v 1 Group + v 2 Gender + v 3 Age) GLM Group : y =Exp(p, v 1 Group + v 2 Gender

55 Experiments (neuroimaging study) p-values maps and histograms for effect of age and group computed from simulating the Null distribution of the F ratio statistic using 20,000 permutations. F ratio statistic is defined for a pair of nested GLMs as! F = RSS 1 RSS 2 p 2 p 1 RSS 2 N p 2

56 Neuroimaging study 1 Age effect in study 1 (long-term meditators, ODFs)! GLM Full : y = Exp(p, v 1 Group + v 2 Gender + v 3 Age) GLM Group : y = Exp(p, v 1 Group + v 2 Gender)!!!!

57 Neuroimaging study 1 Group effect in study 1 (long-term meditators, ODFs)! GLM Full : y = Exp(p, v 1 Group + v 2 Gender + v 3 Age) GLM Age : y = Exp(p, v 2 Gender + v 3 Age)!!!! Group 2 {LTM, WLC}.

58 !!! GLM Full : y = Exp(p, v 1 Group + v 2 Gender + v 3 Age) GLM Group : y = Exp(p, v 1 Group + v 2 Gender)!!!! Neuroimaging study 2 Age model of study 2 (AD, DTI)

59 Conclusion Generalization of multivariate general linear model (MGLM) to Riemannian manifolds Especially useful when response is manifold valued and we want to control for one or more covariates. Here, the analysis obtains significantly improved statistical power Applicable to other manifold-valued statistical inference problems Code is available. See me at the posters! Poster session ID: O-3C-384

60 Thank you Research supported in part by! NSF CAREER RI ! NIH R01 AG Poster session ID: O-3C-384

Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images

Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images Hyunwoo J. Kim Nagesh Adluru Maxwell D. Collins Moo K. Chung Barbara

More information

Statistical Analysis of Tensor Fields

Statistical Analysis of Tensor Fields Statistical Analysis of Tensor Fields Yuchen Xie Baba C. Vemuri Jeffrey Ho Department of Computer and Information Sciences and Engineering University of Florida Abstract. In this paper, we propose a Riemannian

More information

Riemannian Variance Filtering: An Independent Filtering Scheme for Statistical Tests on Manifold-valued Data

Riemannian Variance Filtering: An Independent Filtering Scheme for Statistical Tests on Manifold-valued Data Riemannian Variance Filtering: An Independent Filtering Scheme for Statistical Tests on Manifold-valued Data Ligang Zheng Hyunwoo J. Kim Nagesh Adluru Michael A. Newton Vikas Singh Guangzhou University

More information

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures Nikhil Singh, Tom Fletcher, Sam Preston, Linh Ha, J. Stephen Marron, Michael Wiener, and

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

17th Annual Meeting of the Organization for Human Brain Mapping. Multivariate cortical shape modeling based on sparse representation

17th Annual Meeting of the Organization for Human Brain Mapping. Multivariate cortical shape modeling based on sparse representation 17th Annual Meeting of the Organization for Human Brain Mapping Multivariate cortical shape modeling based on sparse representation Abstract No: 2207 Authors: Seongho Seo 1, Moo K. Chung 1,2, Kim M. Dalton

More information

Dictionary Learning on Riemannian Manifolds

Dictionary Learning on Riemannian Manifolds Dictionary Learning on Riemannian Manifolds Yuchen Xie Baba C. Vemuri Jeffrey Ho Department of CISE, University of Florida, Gainesville FL, 32611, USA {yxie,vemuri,jho}@cise.ufl.edu Abstract. Existing

More information

Multi-class DTI Segmentation: A Convex Approach

Multi-class DTI Segmentation: A Convex Approach Multi-class DTI Segmentation: A Convex Approach Yuchen Xie 1 Ting Chen 2 Jeffrey Ho 1 Baba C. Vemuri 1 1 Department of CISE, University of Florida, Gainesville, FL 2 IBM Almaden Research Center, San Jose,

More information

Geodesic Regression on Riemannian Manifolds

Geodesic Regression on Riemannian Manifolds Geodesic Regression on Riemannian Manifolds Thomas Fletcher To cite this version: Thomas Fletcher. Geodesic Regression on Riemannian Manifolds. Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings

More information

Covariance Structure Analysis of Climate Model Outputs

Covariance Structure Analysis of Climate Model Outputs Covariance Structure Analysis of Climate Model Outputs Chintan Dalal* (Rutgers University) Doug Nychka (NCAR) Claudia Tebaldi (Climate Central) * Presenting poster Goal Goal Simulate computationally efficient

More information

A Riemannian Framework for Denoising Diffusion Tensor Images

A Riemannian Framework for Denoising Diffusion Tensor Images A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used

More information

Diffeomorphic Shape Trajectories for Improved Longitudinal Segmentation and Statistics

Diffeomorphic Shape Trajectories for Improved Longitudinal Segmentation and Statistics Diffeomorphic Shape Trajectories for Improved Longitudinal Segmentation and Statistics Prasanna Muralidharan 1, James Fishbaugh 1, Hans J. Johnson 2, Stanley Durrleman 3, Jane S. Paulsen 2, Guido Gerig

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2. General Linear Models (GLM) Multivariate General Linear Models (MGLM) September 11, 2009 Research Projects If you have your own

More information

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Suppose again we have n sample points x,..., x n R p. The data-point x i R p can be thought of as the i-th row X i of an n p-dimensional

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 10-11. Deformation-based morphometry (DBM) Tensor-based morphometry (TBM) November 13, 2009 Image Registration Process of transforming

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES II. DIFFERENTIABLE MANIFOLDS Washington Mio Anuj Srivastava and Xiuwen Liu (Illustrations by D. Badlyans) CENTER FOR APPLIED VISION AND IMAGING SCIENCES Florida State University WHY MANIFOLDS? Non-linearity

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008

Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008 Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008 Jean Gallier Department of Computer and Information Science University

More information

Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data

Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data Angelos Barmpoutis, Baba C. Vemuri, John R. Forder University of Florida Gainesville, FL 32611, USA {abarmpou, vemuri}@cise.ufl.edu,

More information

8 Eigenvectors and the Anisotropic Multivariate Gaussian Distribution

8 Eigenvectors and the Anisotropic Multivariate Gaussian Distribution Eigenvectors and the Anisotropic Multivariate Gaussian Distribution Eigenvectors and the Anisotropic Multivariate Gaussian Distribution EIGENVECTORS [I don t know if you were properly taught about eigenvectors

More information

Deformation Morphometry: Basics and Applications

Deformation Morphometry: Basics and Applications Deformation Morphometry: Basics and Applications Valerie Cardenas Nicolson, Ph.D. Assistant Adjunct Professor NCIRE, UCSF, SFVA Center for Imaging of Neurodegenerative Diseases VA Challenge Clinical studies

More information

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration Miaomiao Zhang and P. Thomas Fletcher School of Computing, University of Utah, Salt Lake City, USA Abstract. Computing a concise

More information

Morphometrics with SPM12

Morphometrics with SPM12 Morphometrics with SPM12 John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. What kind of differences are we looking for? Usually, we try to localise regions of difference.

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

Fast Geodesic Regression for Population-Based Image Analysis

Fast Geodesic Regression for Population-Based Image Analysis Fast Geodesic Regression for Population-Based Image Analysis Yi Hong 1, Polina Golland 2, and Miaomiao Zhang 2 1 Computer Science Department, University of Georgia 2 Computer Science and Artificial Intelligence

More information

BMI/STAT 768: Lecture 09 Statistical Inference on Trees

BMI/STAT 768: Lecture 09 Statistical Inference on Trees BMI/STAT 768: Lecture 09 Statistical Inference on Trees Moo K. Chung mkchung@wisc.edu March 1, 2018 This lecture follows the lecture on Trees. 1 Inference on MST In medical imaging, minimum spanning trees

More information

Morphometrics with SPM12

Morphometrics with SPM12 Morphometrics with SPM12 John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. What kind of differences are we looking for? Usually, we try to localise regions of difference.

More information

Analysis of Longitudinal Shape Variability via Subject Specific Growth Modeling

Analysis of Longitudinal Shape Variability via Subject Specific Growth Modeling Analysis of Longitudinal Shape Variability via Subject Specific Growth Modeling James Fishbaugh 1, Marcel Prastawa 1, Stanley Durrleman 2, Joseph Piven 3 for the IBIS Network, and Guido Gerig 1 1 Scientific

More information

Multivariate models of inter-subject anatomical variability

Multivariate models of inter-subject anatomical variability Multivariate models of inter-subject anatomical variability Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK. Prediction Binary Classification Curse

More information

Hypothesis Testing For Multilayer Network Data

Hypothesis Testing For Multilayer Network Data Hypothesis Testing For Multilayer Network Data Jun Li Dept of Mathematics and Statistics, Boston University Joint work with Eric Kolaczyk Outline Background and Motivation Geometric structure of multilayer

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

Distribution-Free Distribution Regression

Distribution-Free Distribution Regression Distribution-Free Distribution Regression Barnabás Póczos, Alessandro Rinaldo, Aarti Singh and Larry Wasserman AISTATS 2013 Presented by Esther Salazar Duke University February 28, 2014 E. Salazar (Reading

More information

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key Statistical Methods III Statistics 212 Problem Set 2 - Answer Key 1. (Analysis to be turned in and discussed on Tuesday, April 24th) The data for this problem are taken from long-term followup of 1423

More information

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN Contribution from: Mathematical Physics Studies Vol. 7 Perspectives in Analysis Essays in Honor of Lennart Carleson s 75th Birthday Michael Benedicks, Peter W. Jones, Stanislav Smirnov (Eds.) Springer

More information

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data Stéphanie Allassonnière with J.B. Schiratti, O. Colliot and S. Durrleman Université Paris Descartes & Ecole Polytechnique

More information

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Guido Gerig Sarang Joshi Tom Fletcher Applications of image registration in neuroimaging

More information

Diffusion Processes and Dimensionality Reduction on Manifolds

Diffusion Processes and Dimensionality Reduction on Manifolds Faculty of Science Diffusion Processes and Dimensionality Reduction on Manifolds ESI, Vienna, Feb. 2015 Stefan Sommer Department of Computer Science, University of Copenhagen February 23, 2015 Slide 1/22

More information

Distribution-free ROC Analysis Using Binary Regression Techniques

Distribution-free ROC Analysis Using Binary Regression Techniques Distribution-free Analysis Using Binary Techniques Todd A. Alonzo and Margaret S. Pepe As interpreted by: Andrew J. Spieker University of Washington Dept. of Biostatistics Introductory Talk No, not that!

More information

Spatiotemporal Anatomical Atlas Building

Spatiotemporal Anatomical Atlas Building Spatiotemporal Anatomical Atlas Building Population Shape Regression For Random Design Data Brad Davis 1, P. Thomas Fletcher 2, Elizabeth Bullitt 1, Sarang Joshi 2 1 The University of North Carolina at

More information

Construction of Neuroanatomical Shape Complex Atlas from 3D Brain MRI

Construction of Neuroanatomical Shape Complex Atlas from 3D Brain MRI Construction of Neuroanatomical Shape Complex Atlas from 3D Brain MRI Ting Chen 1, Anand Rangarajan 1, Stephan J. Eisenschenk 2, and Baba C. Vemuri 1 1 Department of CISE, University of Florida, Gainesville,

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

2 Lie Groups. Contents

2 Lie Groups. Contents 2 Lie Groups Contents 2.1 Algebraic Properties 25 2.2 Topological Properties 27 2.3 Unification of Algebra and Topology 29 2.4 Unexpected Simplification 31 2.5 Conclusion 31 2.6 Problems 32 Lie groups

More information

BMI/STAT 768: Lecture 04 Correlations in Metric Spaces

BMI/STAT 768: Lecture 04 Correlations in Metric Spaces BMI/STAT 768: Lecture 04 Correlations in Metric Spaces Moo K. Chung mkchung@wisc.edu February 1, 2018 The elementary statistical treatment on correlations can be found in [4]: http://www.stat.wisc.edu/

More information

Group Testing for Longitudinal Data

Group Testing for Longitudinal Data Group Testing for Longitudinal Data Yi Hong 1, Nikhil Singh 1, Roland Kwitt, and arc Niethammer 1 1 Department of Computer Science, UNC Chapel Hill, NC, USA Department of Computer Science, University of

More information

Rician Noise Removal in Diffusion Tensor MRI

Rician Noise Removal in Diffusion Tensor MRI Rician Noise Removal in Diffusion Tensor MRI Saurav Basu, Thomas Fletcher, and Ross Whitaker University of Utah, School of Computing, Salt Lake City, UT 84112, USA Abstract. Rician noise introduces a bias

More information

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009 [under construction] 8 Parallel transport 8.1 Equation of parallel transport Consider a vector bundle E B. We would like to compare vectors belonging to fibers over different points. Recall that this was

More information

Recursive Estimation of the Stein Center of SPD Matrices & its Applications

Recursive Estimation of the Stein Center of SPD Matrices & its Applications 013 IEEE International Conference on Computer Vision Recursive Estimation of the Stein Center of SPD Matrices & its Applications Hesamoddin Salehian salehian@cise.ufl.edu Guang Cheng gcheng@cise.ufl.edu

More information

Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data

Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data P. Thomas Fletcher Scientific Computing and Imaging Institute University of Utah 50 S Central Campus Drive Room 3490 Salt Lake

More information

Covariance Tracking Algorithm on Bilateral Filtering under Lie Group Structure Yinghong Xie 1,2,a Chengdong Wu 1,b

Covariance Tracking Algorithm on Bilateral Filtering under Lie Group Structure Yinghong Xie 1,2,a Chengdong Wu 1,b Applied Mechanics and Materials Online: 014-0-06 ISSN: 166-748, Vols. 519-50, pp 684-688 doi:10.408/www.scientific.net/amm.519-50.684 014 Trans Tech Publications, Switzerland Covariance Tracking Algorithm

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Multivariate Topological Data Analysis

Multivariate Topological Data Analysis Cleveland State University November 20, 2008, Duke University joint work with Gunnar Carlsson (Stanford), Peter Kim and Zhiming Luo (Guelph), and Moo Chung (Wisconsin Madison) Framework Ideal Truth (Parameter)

More information

ALGORITHMS FOR TRACKING ON THE MANIFOLD OF SYMMETRIC POSITIVE DEFINITE MATRICES

ALGORITHMS FOR TRACKING ON THE MANIFOLD OF SYMMETRIC POSITIVE DEFINITE MATRICES ALGORITHMS FOR TRACKING ON THE MANIFOLD OF SYMMETRIC POSITIVE DEFINITE MATRICES By GUANG CHENG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE

More information

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES Author: Abhishek Bhattacharya Coauthor: David Dunson Department of Statistical Science, Duke University 7 th Workshop on Bayesian Nonparametrics Collegio

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

IMA Preprint Series # 2298

IMA Preprint Series # 2298 RELATING FIBER CROSSING IN HARDI TO INTELLECTUAL FUNCTION By Iman Aganj, Neda Jahanshad, Christophe Lenglet, Arthur W. Toga, Katie L. McMahon, Greig I. de Zubicaray, Margaret J. Wright, Nicholas G. Martin,

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

DIFFERENTIAL GEOMETRY HW 12

DIFFERENTIAL GEOMETRY HW 12 DIFFERENTIAL GEOMETRY HW 1 CLAY SHONKWILER 3 Find the Lie algebra so(n) of the special orthogonal group SO(n), and the explicit formula for the Lie bracket there. Proof. Since SO(n) is a subgroup of GL(n),

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 19.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 19. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 19. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

SAS macro to obtain reference values based on estimation of the lower and upper percentiles via quantile regression.

SAS macro to obtain reference values based on estimation of the lower and upper percentiles via quantile regression. SESUG 2012 Poster PO-12 SAS macro to obtain reference values based on estimation of the lower and upper percentiles via quantile regression. Neeta Shenvi Department of Biostatistics and Bioinformatics,

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

Bulletin of the Transilvania University of Braşov Vol 7(56), No Series III: Mathematics, Informatics, Physics, 1-12

Bulletin of the Transilvania University of Braşov Vol 7(56), No Series III: Mathematics, Informatics, Physics, 1-12 Bulletin of the Transilvania University of Braşov Vol 7(56), No. 1-2014 Series III: Mathematics, Informatics, Physics, 1-12 EQUATION GEODESIC IN A TWO-DIMENSIONAL FINSLER SPACE WITH SPECIAL (α, β)-metric

More information

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB Quantitative Genomics and Genetics BTRY 4830/6830; PBSB.5201.01 Lecture16: Population structure and logistic regression I Jason Mezey jgm45@cornell.edu April 11, 2017 (T) 8:40-9:55 Announcements I April

More information

Segmenting Images on the Tensor Manifold

Segmenting Images on the Tensor Manifold Segmenting Images on the Tensor Manifold Yogesh Rathi, Allen Tannenbaum Georgia Institute of Technology, Atlanta, GA yogesh.rathi@gatech.edu, tannenba@ece.gatech.edu Oleg Michailovich University of Waterloo,

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013 The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds Zdeněk Dušek Sao Paulo, 2013 Motivation In a previous project, it was proved that any homogeneous affine manifold (and

More information

Diffeomorphic Metric Mapping of Hybrid Diffusion Imaging based on BFOR Signal Basis

Diffeomorphic Metric Mapping of Hybrid Diffusion Imaging based on BFOR Signal Basis Diffeomorphic Metric Mapping of Hybrid Diffusion Imaging based on BFOR Signal Basis Jia Du 1, A. Pasha Hosseinbor 3,4, Moo K. Chung 4,5, Barbara B. Bendlin 6, Gaurav Suryawanshi 3, Andrew L. Alexander

More information

Persistent homology and nonparametric regression

Persistent homology and nonparametric regression Cleveland State University March 10, 2009, BIRS: Data Analysis using Computational Topology and Geometric Statistics joint work with Gunnar Carlsson (Stanford), Moo Chung (Wisconsin Madison), Peter Kim

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Final Exam. 1 True or False (15 Points)

Final Exam. 1 True or False (15 Points) 10-606 Final Exam Submit by Oct. 16, 2017 11:59pm EST Please submit early, and update your submission if you want to make changes. Do not wait to the last minute to submit: we reserve the right not to

More information

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 Manifolds, Lie Groups, Lie Algebras, with Applications Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 1 Motivations and Goals 1. Motivations Observation: Often, the set of all objects

More information

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications Canonical Correlation Analysis on Riemannian Manifolds and Its Applications Hyunwoo J. Kim 1, Nagesh Adluru 1, Barbara B. Bendlin 1, Sterling C. Johnson 1,BabaC.Vemuri 2,andVikasSingh 1 1 University of

More information

Tangent bundles, vector fields

Tangent bundles, vector fields Location Department of Mathematical Sciences,, G5-109. Main Reference: [Lee]: J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, Springer-Verlag, 2002. Homepage for the book,

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida Quasi-invariant Measures on Path Space Denis Bell University of North Florida Transformation of measure under the flow of a vector field Let E be a vector space (or a manifold), equipped with a finite

More information

Distances and inference for covariance operators

Distances and inference for covariance operators Royal Holloway Probability and Statistics Colloquium 27th April 2015 Distances and inference for covariance operators Davide Pigoli This is part of joint works with J.A.D. Aston I.L. Dryden P. Secchi J.

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Nonparametric Bayes Inference on Manifolds with Applications

Nonparametric Bayes Inference on Manifolds with Applications Nonparametric Bayes Inference on Manifolds with Applications Abhishek Bhattacharya Indian Statistical Institute Based on the book Nonparametric Statistics On Manifolds With Applications To Shape Spaces

More information

Recursive Karcher Expectation Estimators And Geometric Law of Large Numbers

Recursive Karcher Expectation Estimators And Geometric Law of Large Numbers Recursive Karcher Expectation Estimators And Geometric Law of Large Numbers Jeffrey Ho Guang Cheng Hesamoddin Salehian Baba C. Vemuri Department of CISE University of Florida, Gainesville, FL 32611 Abstract

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 15 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields The goal of this chapter is to understand the behavior of isometries and local isometries, in particular

More information

Research Trajectory. Alexey A. Koloydenko. 25th January Department of Mathematics Royal Holloway, University of London

Research Trajectory. Alexey A. Koloydenko. 25th January Department of Mathematics Royal Holloway, University of London Research Trajectory Alexey A. Koloydenko Department of Mathematics Royal Holloway, University of London 25th January 2016 Alexey A. Koloydenko Non-Euclidean analysis of SPD-valued data Voronezh State University

More information

2. Lie groups as manifolds. SU(2) and the three-sphere. * version 1.4 *

2. Lie groups as manifolds. SU(2) and the three-sphere. * version 1.4 * . Lie groups as manifolds. SU() and the three-sphere. * version 1.4 * Matthew Foster September 1, 017 Contents.1 The Haar measure 1. The group manifold for SU(): S 3 3.3 Left- and right- group translations

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

Statistics 135 Fall 2008 Final Exam

Statistics 135 Fall 2008 Final Exam Name: SID: Statistics 135 Fall 2008 Final Exam Show your work. The number of points each question is worth is shown at the beginning of the question. There are 10 problems. 1. [2] The normal equations

More information

Applications of Fisher Information

Applications of Fisher Information Applications of Fisher Information MarvinH.J. Gruber School of Mathematical Sciences Rochester Institute of Technology 85 Lomb Memorial Drive Rochester,NY 14623 jgsma@rit.edu www.people.rit.edu/mjgsma/syracuse/talk.html

More information

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Casey Goodlett 1, Brad Davis 1,2, Remi Jean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

arxiv: v4 [math.dg] 18 Jun 2015

arxiv: v4 [math.dg] 18 Jun 2015 SMOOTHING 3-DIMENSIONAL POLYHEDRAL SPACES NINA LEBEDEVA, VLADIMIR MATVEEV, ANTON PETRUNIN, AND VSEVOLOD SHEVCHISHIN arxiv:1411.0307v4 [math.dg] 18 Jun 2015 Abstract. We show that 3-dimensional polyhedral

More information

Computational Brain Anatomy

Computational Brain Anatomy Computational Brain Anatomy John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing followed

More information

Approximation of Geometric Data

Approximation of Geometric Data Supervised by: Philipp Grohs, ETH Zürich August 19, 2013 Outline 1 Motivation Outline 1 Motivation 2 Outline 1 Motivation 2 3 Goal: Solving PDE s an optimization problems where we seek a function with

More information

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES ANDREAS ČAP AND KARIN MELNICK Abstract. We use the general theory developed in our article [1] in the setting of parabolic

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

Variational methods for restoration of phase or orientation data

Variational methods for restoration of phase or orientation data Variational methods for restoration of phase or orientation data Martin Storath joint works with Laurent Demaret, Michael Unser, Andreas Weinmann Image Analysis and Learning Group Universität Heidelberg

More information

Topological Data Analysis for Brain Networks

Topological Data Analysis for Brain Networks Topological Data Analysis for Brain Networks Relating Functional Brain Network Topology to Clinical Measures of Behavior Bei Wang Phillips 1,2 University of Utah Joint work with Eleanor Wong 1,2, Sourabh

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Logistic regression (v1) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 30 Regression methods for binary outcomes 2 / 30 Binary outcomes For the duration of this

More information