HARVESTING MECHANICAL VIBRATIONS ENERGY USING NONLINEAR ELECTROMAGNETIC MINIGENERATORS A SURVEY OF CONCEPTS AND PROBLEMS

Size: px
Start display at page:

Download "HARVESTING MECHANICAL VIBRATIONS ENERGY USING NONLINEAR ELECTROMAGNETIC MINIGENERATORS A SURVEY OF CONCEPTS AND PROBLEMS"

Transcription

1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 90 Electrical Engineering 2017 DOI /j Marcin KULIK* Mariusz JAGIEŁA* HARVESTING MECHANICAL VIBRATIONS ENERGY USING NONLINEAR ELECTROMAGNETIC MINIGENERATORS A SURVEY OF CONCEPTS AND PROBLEMS The state of knowledge in the field of conversion of energy of mechanical vibrations into electrical energy using nonlinear electromagnetic generators is presented. The principle of operation of the considered converters is based on the Faraday law. The electromotive force is induced by the relative movement of the coil or permanent magnets under impact of externally applied vibrations. In order to diminish the disadvantages of conventional generators, namely the narrow frequency bandwidth, in recent years the nonlinear systems were introduced that exhibit the nonlinear resonance phenomenon. Broadening the frequency bandwidth, in which the power generated by the system is relatively high, is realized via introduction of nonlinear force into system kinematics. Designing such systems becomes a big challenge. Based on thorough survey of recent publications as well as on own expertise in the field, the work compares a few concepts of nonlinear electromechanical minigenerators in term of their functional characteristics and design problems. Sample calculations of frequency characteristics using time- and frequency-domain models are presented. KEYWORDS: energy harvesting, nonlinear resonance, bistability, electromagnetic induction 1. INTRODUCTION Harvesting energy from sources available in the environment, has recently attracted considerable attention [1, 2]. This fact is related with continuously increasing number of wireless systems requiring complete autonomy of power supply as well as with the need to increase the share of renewable systems in generation of electric power. One of the most widespread are the systems harvesting energy from mechanical vibrations [1] as the sources of vibrations are present in almost every environment. The most commonly considered type of vibration energy harvesters are the inertial ones which use a few kinds of physical phenomena for conversion of vibrations into electricity, namely: * Opole University of Technology.

2 348 Marcin Kulik, Mariusz Jagieła electromagnetic, piezoelectric, magnetoelectric and electrostatic [1, 2]. This work focuses on the electromagnetic generators which are characterised by the highest power density per unit volume and relatively high currents and the output voltages of nearly 1 V [2]. The main disadvantage of such systems relates with the need to design the mechanical system of the harvester so as its structural resonance frequency matches frequency of the external vibrations. A configuration of the kinematics of such the system is presented in Fig. 1. The vibrations are applied to the moving base which moves with respect to the reference point along y axis. The relative motion z( of mass m is limited by stiffness k and damping d of the spring element that connects vibrating mover with permanent magnets with the base. As the permanent magnets move with respect to the coil fixed to the base the back emf is induced in the winding. The equations of electromechanical balance for the considered systems are in form [2] 2 d z( dz( m d kz( F( (1a) 2 dt dt di( t ) Lc ( RL RC )i( t ) (t ) (1b) dt where, F( is the total applied force, L c and R c the coil inductance and resistance, respectively, R L the load resistance and i( the electric current through the coil winding. The theoretical point of maximum generated electrical power is reached when the frequency of the excitation force matches the structural resonance frequency given by k f 1 res 2 m (2) Fig. 1. Kinematics of linear electromagnetic vibration energy harvester

3 Harvesting mechanical vibrations energy using nonlinear Figure 2 displays typical frequency characteristics of the linear harmonic oscillator for two magnitudes of the excitation frequency. Theoretically in this type of harvesters the resonance frequency depends only on the mechanical structure of the system that determines the stiffness k. In practice, beside the externally applied excitation force F ext ( the total force F( contains the electromagnetic force Fe(i) produced by the action of the magnetic flux on current. The latter affects the stiffness of the system. As a consequence, even though the kinematics does not contain any nonlinear components, the system characteristics expose weak nonlinear effects [8]. Fig. 2. Frequency characteristics of linear harmonic oscillator for two magnitudes of the external force The majority of sources of mechanical vibrations have the non stationary frequency rich spectra [1, 2, 3]. The only ways to tune the harvester with respect to the signal is to change the number of turns in the coil and the load resistance, but both are the same extremely impractical, if not impossible methods [3]. The latter was the motivation to focus attention on nonlinear systems, where the frequency bandwidth is wider than in the linear systems. 2. NONLINEAR ELECTROMECHANICAL MINIGENERATORS 2.1. Concepts and structures The nonlinear electromechanical minigenerators excited with permanent magnets develop the internal force F mag that makes impact on the overall stiffness of the system. This force is brought by action of the magnets on the ferromagnetic core [4] or by action of the magnets on another magnets [5]. This effect can also be accomplished by utilisation of pure mechanical effects such as those produced by the guided beams [6]. In this work we focus the attention of systems where the nonlinearity is brought by the electromagnetic force. Figure 3 displays the kinematics of the nonlinear harvester, where the spring constant is augmented by the nonlinear

4 350 Marcin Kulik, Mariusz Jagieła stiffness k mag (z) dependent on the displacement. In such case the equations of electromechanical balance are in form 2 d z( dz( m d [ k k ( z)] z( F( 2 mag (3a) dt dt di( t ) dz( t ) ( RL RC )i(t ) (3b) i dt z dt where is the flux linkage of the coil. Equation (3b) is a more general case which takes account for systems where the nonlinearity is brought by action of the magnets on the ferromagnetic core [4]. The relationships are nonlinear not only due to k mag (z) = F mag /z, but also to (i,z). If the second case is considered, namely when the nonlinearity is a result of force between magnets without the presence of ferromagnetic core, the flux linkage is decoupled from current, then const Lc which greatly simplifies the designing process. When i neglecting the impact of electromagnetic force due to current coupled with, damping d, and assuming that z( is a single harmonic function of time, equation (3a) has the following nonlinear eigenvalue ~ 1 k kmag ( Z ) f r ( Z ) (4) 2 m where f ~ r is the time averaged frequency, and Z the magnitude of displacement. The resonance frequency that the system would exhibit neglecting the nonlinear effects is that given by (2) and is called the natural frequency f n. From (4) it is clear that the frequency has to be found iterating between solution of (3) and equation (4). In many cases the force can be approximated by the polynomial [7] 3 F s ( z) k1z k2z (5) making possible to apply the existing theory of the nonlinear oscillator based on the Duffing equation [7]. Fig. 3. Kinematics of nonlinear vibration energy harvester

5 Harvesting mechanical vibrations energy using nonlinear Usually the magnetic system that is responsible for relationship (5) can be reconfigured such that coefficients a and b can be positive or negative. With respect to system kinematics the nonlinear stiffness causes the hardening (k mag (z) > 0) or the softening action (k mag (z) < 0). Figure 4a depicts the theoretical frequency characteristics for both cases. The complexity of the frequency characteristics is beyond the dependence of the resonance point on the magnitude of the external force. The force (5) is a non monotonic function of displacement which causes complex behavior of the frequency characteristics. When the force reaches the knee point, the characteristic experiences a jump o value. The jump appears at different points when increasing or decreasing frequency. Another consequence of this phenomenon is thus the hysteresis of the characteristics as explained by arrows in Fig. 4. a) b) Fig. 4. Frequency characteristics of nonlinear oscillators: a) for hardening and softening magnetic stiffness, b) for softening magnetic stiffness and the two different magnitudes of external forces In the beginning of the XXI century some configurations of nonlinear harvesters were presented. One of the proposed systems had a single permanent magnet connected to a stretching membrane that brought nonlinear stiffness into system kinematics [8]. Work [9] presents the results of mathematical modeling of a nonlinear electromechanical generator, composed of the two permanent magnets connected to the base and the two moving in a tube with a coil wound on the surface. The model used a single equation of motion where the results of the 2d finite element computations of the magnetic force were used. The impact of the load resistance was investigated. The maximum determined power was equal to 6 mw. Works [10] and [11] present a low frequency harvester. The construction uses a moving coil and stationary magnets. The nonlinearity is brought by nonlinear spring made of a special polymer. Works [6] and [12] present another solution, in which the nonlinearity is brought by the guided beam. There also examples of hybrid generation systems such as that in [7, 13] where the nonlinear beam made of a piezoelectric material increases the amount of the generated power. Another group are

6 352 Marcin Kulik, Mariusz Jagieła systems combining the nonlinear stiffness of mechanical and magnetic origins simultaneously [14]. Widening the frequency bandwidth is due to the system bistability caused by the magnetic forces and mechanical stretching. Works [5, 15] presents such the system designed for the operating frequency equal to 35 Hz that has the frequency bandwidth wider by some 5 Hz with respect to linear system. Configuration of such the harvester is depicted in Fig. 5. Fig. 5. Nonlinear vibration energy harvester with bistability caused by magnetic force [5] A generator with stationary coil and the ferromagnetic core was presented in [16, 17]. By means of coupled analysis using partial finite element computations and the dynamic equation of motion it was demonstrated that the frequency bandwidth can be as much as 30 Hz wide. It is also shown that at higher frequencies the system exhibits chaotic motion. A modified version of such the generator is presented in [18]. Another example of the system with nonlinearity brought by the magnetic forces is presented in [19]. The considered systems consists of a singly supported cantilever beam with permanent magnet attached to the end. The coil is attached to the base. The generator uses additional "magnet on magnet" system to bring the nonlinearity. The vibrating beam is covered with the piezoelectric material to increase the efficiency of harvesting. The system of this type constructed by the authors [4, 20, 21] is shown in Fig. 6. Fig. 6. Electromagnetic minigenerator with cored coil [20]

7 Harvesting mechanical vibrations energy using nonlinear Design problems Designing the harvesters with nonlinear resonance phenomenon should be started from providing appropriate variation of the potential energy which depends on both mechanical and magnetic stiffness [22]. If bistable systems are considered, then it should be noticed that an appropriate balance between the mechanical and magnetic energy should be provided [7, 23]. To ensure transition between the local stability points (see Fig. 7), an appropriate design of the magnetic system should be carried out [24, 25, 26]. a) b) Fig. 7. Potential energy vs displacement for: a) monostable system, b) bistable system The characteristic in Fig. 7a has a single point of local stability where the moving part of the harvester stops at static conditions and starts its operation from. For the generators with the ferromagnetic cores shown in Fig. 6 the potential energy has two stable minima and one unstable point. By appropriate design of the magnetic system the potential energy can be reverted giving one stable and two unstable points [21]. This task can be accomplished using the finite element analysis of the magnetic field distribution [4, 20]. Beside the local stability one should take account of the global stability so as the system generates electric power that is proportional to power of the excitation force and does not hang in local equilibrium points. This task, first of all, requires application of structural analysis [21] in order to determine the equivalent mechanical stiffness. Then, based on equations (3) the analysis of global stability should be carried out using the computational methods for nonlinear systems such as the Lyapunov methods [16, 17]. This regards especially systems with bistability which expose tendency to oscillate around or even hang in the stable equilibrium points. The chaos phenomenon defined by sensivity of system to initial conditions and lack of stable trajectory, can be detected using the method of Lyapunov exponents [16]. The presence of chaos

8 354 Marcin Kulik, Mariusz Jagieła is generally a determinant of instability regarding the long term prediction of performance for nonlinear systems. For the short time predictions, the systems exposing chaotic behaviour can, however generate the electric power which is proportional to the power of the excitation force [17]. In order to determine the correct conditions of operation every system should be considered individually taking account of not only the system itself but also a type of signal representing the vibrations. 3. CALCULATION OF FREQUENCY CHARACTERISTICS The frequency characteristics of the system response to the excitation force are the main descriptors of performance for the energy harvesters. In determination of these characteristics both the time and frequency domain models are used. The former are based on solution of the ode systems defined by equations (3) using the methods of numerical integration. The frequency domain models are formulated using the Galerkin harmonic balance approach or the complex envelope function approach [27]. The time domain analysis provides higher accuracy of predictions, although involves severe numerical costs. The frequency domain models are far more computationally efficient, but provide lower accuracy of predictions especially for the systems exposing significant chaos and bistability. Often they, however provide the accuracy that is sufficient for basic design purposes. The advantage of the frequency domain models is the possibility to illustrate the jump and hysteresis phenomena. To compare the performance of both models the analysis was carried out for the system illustrated in Fig. 6 having the variation of the magnetic stiffness as shown in Fig. 8. The results were obtained using the 2d magnetostatic analysis. a) b) Magnetic stiffness kmag [N\m] Magnetic potential energy [J] Displacement [m] Displacement [m] Fig. 8. Characteristics of magnetic system: a) magnetic stiffness vs. displacement, b) potential energy vs. displacement. The characteristics are even functions of displacement

9 Harvesting mechanical vibrations energy using nonlinear As seen in figure the systems is magnetically unstable at 0 point and exposes two stable equilibria at 5 mm. The remaining parameters are (see equations (3)): m = kg, d = 10 5 Ns/m. The system is analysed at open circuit conditions, thus equation (3b) is not considered. Figures 9 10 present the frequency characteristics calculated using both approaches for k = 825 N/m and k = 425 N/m, respectively. The time domain analysis was carried out using the continuous sweep of the frequency from 0 to 50 Hz. The computations were carried out using Matlab ode23s function. The equations of the frequency domain model were derived using the complex envelope method and solved using the fixed point technique. The shaded area in Figs is enclosed between the upper and lower envelope of the obtained waveforms. a) b) Fig. 9. Comparison of characteristics determined using time and frequency domain models for system with small chaos: a) frequency charatceristics, b) spectrogram of displacement for the time domain analysis a) b) Fig. 10. Comparison of characteristics determined using time and frequency domain models for system with significant chaos: a) frequency charatceristics, b) spectrogram of displacement for the time domain analysis

10 356 Marcin Kulik, Mariusz Jagieła The information on the harmonic spectrum of the waveforms is presented in spectrograms in Figs. 9b 10b. As it can be seen the system with smaller k exposes chaos at small frequencies. After jump of displacement both systems are no longer proportional. For the system with higher k the predicted frequency of a jump diverges by some 2.5 Hz, though for higher magnitudes these are qualitatively different. The differences become clear from Fig. 9b as after jump the change of frequency cannot be handled by the single harmonic frequency domain model. For the chaotic system the fixed point iterations are divergent and the frequency domain model does not provide any solution (see Fig. 10a). 4. CONCLUSIONS In this work we presented the most important problems involving application of nonlinear electromechanical minigenerators as the systems harvesting electric power from mechanical vibrations. The attention was focused on the systems using ferromagnetic core elements as means to bring nonlinearity. The basic computational methods used for predictions of the performances of the considered systems were compared showing their advantages and drawbacks. Currently, using the presented methods the authors work on designing an improved system which is to be presented shortly. REFERENCES [1] Mitcheson P. D., Yeatman E. M., Rao G. K., Holmes A. S., Green T. C., Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices, Proc. IEEE, vol. 96, no. 9, pp , Sep [2] Beeby S. P., Tudor M. J., White N. M., Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., vol. 17, no. 12, pp. R175 R195, Dec [3] Beeby S. P., Torah R. N., Tudor M. J., Glynne Jones P., O Donnell T., Saha C. R., Roy S., A micro electromagnetic generator for vibration energy harvesting, J. Micromechanics Microengineering, vol. 17, no. 7, pp , Jul [4] Jagieƚa M., Kulik M., Considerations on frequency characteristics of an electromechanical vibration energy harvesting converter with nonlinear parametric resonance, Int. J. Appl. Electromagn. Mech., vol. 53, no. 1, pp , Jan [5] Podder P., Amann A., Roy S., Combined Effect of Bistability and Mechanical Impact on the Performance of a Nonlinear Electromagnetic Vibration Energy Harvester, IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp , Apr [6] Boisseau S., Despesse G., Seddik B. A., Nonlinear H Shaped Springs to Improve Efficiency of Vibration Energy Harvesters, J. Appl. Mech. Asme, vol. 80, no. 6, p , 2013.

11 Harvesting mechanical vibrations energy using nonlinear [7] Elvin N., Erturk A., Advances in Energy Harvesting Methods, ISBN New York, NY: Springer New York, [8] Williams C. B., Shearwood C., Harradine M. A., Mellor P. H., Birch T. S., Yates R. B., Development of an electromagnetic micro generator, IEE Proc. Circuits, Devices Syst., vol. 148, no. 6, p. 337, [9] Dallago E., Marchesi M., Venchi G., Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects, IEEE Trans. Power Electron., vol. 25, no. 8, pp , Aug [10] Sardini E., Serpelloni M., An efficient electromagnetic power harvesting device for low frequency applications, Sensors Actuators A Phys., vol. 172, no. 2, pp , Dec [11] Mallick D., Amann A., Roy S., Analysis of Nonlinear Spring Arm for Improved Performance of Vibrational Energy Harvesting Devices, J. Phys. Conf. Ser., vol. 476, no. 1, p , Dec [12] Cottone F., Basset P., Vocca H., Gammaitoni L., Electromagnetic Buckled Beam Oscillator for Enhanced Vibration Energy Harvesting, in 2012 IEEE International Conference on Green Computing and Communications, 2012, pp [13] Ab Rahman M. F., Kok S. L., Ali N. M., Hamzah R. A., Aziz K. A. A., Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism, in 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013, pp [14] Podder P., Mallick D., Roy S., Bandwidth widening in nonlinear electromagnetic vibrational generator by combined effect of bistability and stretching, J. Phys. Conf. Ser., vol. 557, no. 1, p , Nov [15] Podder P., Amann A., Roy S., A bistable electromagnetic micro power generator using FR4 based folded arm cantilever, Sensors Actuators A Phys., vol. 227, pp , May [16] Sato T., Igarashi H., A New Wideband Electromagnetic Vibration Energy Harvester with Chaotic Oscillation, J. Phys. Conf. Ser., vol. 476, no. 1, p , Dec [17] Sato T., Igarashi H., A chaotic vibration energy harvester using magnetic material, Smart Mater. Struct., vol. 24, no. 2, p , Feb [18] Sugisawa T., Igarashi H., Properties of chaotic vibration energy harvester: comparison of numerical results with experiments, Int. J. Numer. Model. Electron. Networks, Devices Fields, no. April, pp. 1 6, [19] Xu Z. L., Shan X. B., Song R. J., Xie T., Electromechanical modeling and experimental verification of nonlinear hybrid vibration energy harvester, in 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy, 2014, pp [20] Kulik M., Jagieła M., Coupled dynamic FE analysis of permanent magnet mechanical vibration energy harvesting converter, Pozn. Univ. Technol. Acad. Journals. Electr. Eng., vol. 85, pp , 2016.

12 358 Marcin Kulik, Mariusz Jagieła [21] Jagieła M., Kulik M., Cogging force and frequency bandwidth of a vibration energy harvester with nonlinear electromechanical resonance, Przegląd Elektrotechniczny, vol. 1, no. 1, pp , Jan [22] Gammaitoni L., Vocca H., Neri I., Travasso F., Orfei F., Vibration Energy Harvesting: Linear and Nonlinear Oscillator Approaches, in Sustainable Energy Harvesting Technologies Past, Present and Future, InTech, 2011, pp [23] Harne R. L., Wang K. W., A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., vol. 22, no. 2, p , Feb [24] Lan C., Qin W., Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester, Mech. Syst. Signal Process., vol. 85, pp , Feb [25] Kumar A., Balpande S. S., Anjankar S. C., Electromagnetic Energy Harvester for Low Frequency Vibrations Using MEMS, Procedia Comput. Sci., vol. 79, pp , [26] Zhou Z., Qin W., Zhu P., Improve efficiency of harvesting random energy by snap through in a quad stable harvester, Sensors Actuators A Phys., vol. 243, pp , Jun [27] Peng Z.K., Lang Z.Q., Billings S.A., Tomlinson G.R., Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis, J. of Sound and Vibration, vol. 311, pp , (Received: , revised: )

Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester

Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester Journal of Physics: Conference Series 557 (24) 24 doi:.88/742-6596/557//24 Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester C H Nguyen, D S Nguyen 2 and E Halvorsen

More information

Nonlinear Considerations in Energy Harvesting

Nonlinear Considerations in Energy Harvesting Nonlinear Considerations in Energy Harvesting Daniel J. Inman Alper Erturk* Amin Karami Center for Intelligent Material Systems and Structures Virginia Tech Blacksburg, VA 24061, USA dinman@vt.edu www.cimss.vt.edu

More information

Nonlinear vibration energy harvesting based on variable double well potential function

Nonlinear vibration energy harvesting based on variable double well potential function Binghamton University The Open Repository @ Binghamton (The ORB) Mechanical Engineering Faculty Scholarship Mechanical Engineering 2016 Nonlinear vibration energy harvesting based on variable double well

More information

Design and development of a parametrically excited nonlinear energy harvester

Design and development of a parametrically excited nonlinear energy harvester University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 216 Design and development of a parametrically

More information

Piezoelectric-based Broadband Bistable Vibration Energy Harvester and SCE/SSHI-based High-Power Extraction

Piezoelectric-based Broadband Bistable Vibration Energy Harvester and SCE/SSHI-based High-Power Extraction Piezoelectric-based Broadband Bistable Vibration Energy Harvester and SCE/SSHI-based High-Power Extraction Kanishka Aman Singh (kanishka@iastate.edu), Ratnesh Kumar, Fellow, IEEE (rkumar@iastate.edu),

More information

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter Journal of Physics: Conference Series PAPER OPEN ACCESS Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter To cite this article: Sonia Bradai et al 2015 J. Phys.:

More information

High Efficiency, Nonlinear Vibration Energy Harvesting using Electrical Switching

High Efficiency, Nonlinear Vibration Energy Harvesting using Electrical Switching High Efficiency, Nonlinear Vibration Energy Harvesting using Electrical Switching D. Mallick, A. Amann, S. Roy Tyndall National Institute Cork, Ireland Micro-energy 2017, Gubbio, Italy Internet of Things

More information

ANALYSIS, DESIGN AND OPTIMIZATION OF A NONLINEAR ENERGY HARVESTER

ANALYSIS, DESIGN AND OPTIMIZATION OF A NONLINEAR ENERGY HARVESTER ANALYSIS, DESIGN AND OPTIMIZATION OF A NONLINEAR ENERGY HARVESTER Diala Uchenna, Pope Simon and Lang Zi-Qiang Department of Automatic Control and Systems Engineering, University of Sheffield, Western Bank,

More information

Finite Element Analysis and Experiment on a Piezoelectric Harvester with Multiple Cantilevers

Finite Element Analysis and Experiment on a Piezoelectric Harvester with Multiple Cantilevers doi: 10.14355/ijep.2015.04.003 Finite Element Analysis and Experiment on a Piezoelectric Harvester with Multiple Cantilevers Hongbing WANG *1, Chunhua SUN 2, Zhirong LI 3, Yiping ZhANG 4 Department of

More information

Journal of Sound and Vibration

Journal of Sound and Vibration Journal of Sound and Vibration 330 (2011) 2339 2353 Contents lists available at ScienceDirect Journal of Sound and Vibration journal homepage: www.elsevier.com/locate/jsvi Broadband piezoelectric power

More information

IN recent years, dynamic simulation of electromagnetic actuators has been the

IN recent years, dynamic simulation of electromagnetic actuators has been the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 23, no. 1, April 2010, 37-43 Simulation of the Dynamic Behaviour of a Permanent Magnet Linear Actuator Ivan Yatchev, Vultchan Gueorgiev, Racho Ivanov,

More information

Energy balance in self-powered MR damper-based vibration reduction system

Energy balance in self-powered MR damper-based vibration reduction system BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v10175-011-0011-4 Varia Energy balance in self-powered MR damper-based vibration reduction system J. SNAMINA

More information

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers F.J.O. RODRIGUES, L.M. GONÇALVES, J.H. CORREIA, P.M. MENDES University of Minho, Dept. Industrial Electronics,

More information

HARVESTING VIBRATION ENERGY BY ELECTROMAGNETIC INDUCTION

HARVESTING VIBRATION ENERGY BY ELECTROMAGNETIC INDUCTION Annals of the University of Craiova, Electrical Engineering series, No. 35, 011; ISSN 184-4805 HARVESTING VIBRATION ENERGY BY ELECTROMAGNETIC INDUCTION AN Robert GHERC, Radu OLARU Gh. Asachi Technical

More information

An energy harvester with Two degrees of freedom Nonlinear oscillations. Zuyao Wang

An energy harvester with Two degrees of freedom Nonlinear oscillations. Zuyao Wang International Conference on Advances in Energy and Environmental Science (ICAEES 05) An energy harvester with Two degrees of freedom Nonlinear oscillations Zuyao Wang School of Sciences, Zhejiang University

More information

Prof. Dr. Erol KURT Nonlinear Problems in Piezoelectric Harvesters

Prof. Dr. Erol KURT Nonlinear Problems in Piezoelectric Harvesters Prof. Dr. Erol KURT Nonlinear Problems in Piezoelectric Harvesters 1 This chapter focuses on the nonlinear problems in the piezoelectric harvester systems under the magnetic field. In this manner, the

More information

SENSOR DESIGN FOR PIEZOELECTRIC CANTILEVER BEAM ENERGY HARVESTERS

SENSOR DESIGN FOR PIEZOELECTRIC CANTILEVER BEAM ENERGY HARVESTERS SENSOR DESIGN FOR PIEZOELECTRIC CANTILEVER BEAM ENERGY HARVESTERS Michael I. Friswell and Sondipon Adhikari School of Engineering Swansea University Singleton Park, Swansea SA2 8PP, UK E-mail: m.i.friswell@swansea.ac.uk;

More information

Integration of a nonlinear energy sink and a piezoelectric energy harvester

Integration of a nonlinear energy sink and a piezoelectric energy harvester Appl. Math. Mech. -Engl. Ed., 38(7), 1019 1030 (2017) DOI 10.1007/s10483-017-2220-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2017 Applied Mathematics and Mechanics (English Edition)

More information

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System Journal of Magnetics 18(3), 250-254 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave

More information

2727. Analysis of nonlinear suspension power harvest potential

2727. Analysis of nonlinear suspension power harvest potential 2727. Analysis of nonlinear suspension power harvest potential Jin Qiu Zhang 1, Jun Yao 2, Ming Mei Zhao 3, Xin Li 4 Academy of Armored Force Engineering Institute, Beijing, China 2 Corresponding author

More information

Studying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters

Studying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters JCAMECH Vol. 47, No., December 6, pp 4-46 DOI:.59/jcamech.7.495.5 Studying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters Saeid Shakki,

More information

Energy Harvesting Enhancement by Vibrational Resonance

Energy Harvesting Enhancement by Vibrational Resonance International Journal of Bifurcation and Chaos, Vol. 24, No. 6 (2014) 1430019 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414300195 Energy Harvesting Enhancement by Vibrational

More information

ENERGY HARVESTING FROM TRAIN VIBRATIONS

ENERGY HARVESTING FROM TRAIN VIBRATIONS 11 th International Conference on Vibration Problems M. Ghandchi Tehrani et al. Lisbon, Portugal, 9-12 September 2013 ENERGY HARVESTING FROM TRAIN VIBRATIONS M. Ghandchi Tehrani* 1, G. Gatti 2, M. J. Brennan

More information

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS P. MIAO, P. D. MITCHESON, A. S. HOLMES, E. M. YEATMAN, T. C. GREEN AND B. H. STARK Department of Electrical and Electronic Engineering, Imperial

More information

ENERGY RECOVERY FROM A NON-LINEAR ELECTROMAGNETIC SYSTEM

ENERGY RECOVERY FROM A NON-LINEAR ELECTROMAGNETIC SYSTEM DOI 10.2478/ama-2018-0002 acta mechanica et automatica, vol.12 no.1 (2018) ENERGY RECOVERY FROM A NON-LINEAR ELECTROMAGNETIC SYSTEM Krzysztof KĘCIK * * Department of Applied Mechanics, Lublin University

More information

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson Experimental analysis of spring hardening and softening nonlinearities in microelectromechanical oscillators. Sarah Johnson Department of Physics, University of Florida Mentored by Dr. Yoonseok Lee Abstract

More information

NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM

NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 011-4 November 011, Montreal, Quebec, Canada NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM

More information

A FLOW INDUCED STRUCTURE BASED KINETIC ENERGY HARVESTER

A FLOW INDUCED STRUCTURE BASED KINETIC ENERGY HARVESTER A FLOW INDUCED STRUCTURE BASED KINETIC ENERGY HARVESTER Guangcheng Zhang Department of Mechanical, Materials and manufacturing Engineering, University of Nottingham Ningbo China Ningbo 315100, China Email:

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Impedance Modeling of Electromagnetic Energy Harvesting System Using Full-Wave Bridge Rectifier

Impedance Modeling of Electromagnetic Energy Harvesting System Using Full-Wave Bridge Rectifier Impedance Modeling of Electromagnetic Energy Harvesting System Using Full-Wave Bridge Rectifier Junrui Liang a, Cong Ge a, and Yi-Chung Shu b a School of Information Science and Technology, ShanghaiTech

More information

Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design Item Type Article Authors Du, Sijun; Jia, Yu; Seshia, Ashwin A. Citation Du, S., Jia, Y., & Seshia,

More information

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving Journal of Physics: Conference Series PAPER OPEN ACCESS Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving To cite this article: Y Zhang et al 15 J. Phys.: Conf. Ser. 66 116 Recent

More information

MCE603: Interfacing and Control of Mechatronic Systems

MCE603: Interfacing and Control of Mechatronic Systems MCE603: Interfacing and Control of Mechatronic Systems Chapter 7: Actuators and Sensors Topic 7d: Piezoelectric Actuators. Reference: Various articles. Cleveland State University Mechanical Engineering

More information

Module 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA

Module 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA The Lecture Contains: Development of an Active DVA Proof Mass Actutor Application of Active DVA file:///d /chitra/vibration_upload/lecture19/19_1.htm[6/25/2012 12:35:51 PM] In this section, we will consider

More information

DAMPING CONTROL OF A PZT MULTILAYER VIBRATION USING NEGATIVE IMPEDANCE CIRCUIT

DAMPING CONTROL OF A PZT MULTILAYER VIBRATION USING NEGATIVE IMPEDANCE CIRCUIT International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada DAMPING CONTROL OF A PZT MULTILAYER VIBRATION USING NEGATIVE

More information

COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM

COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM Kunal Ganpati Rajdeep Department Of Mechanical Engineering, Solapur University / Fabtech Technical Campus & Research, Sangola, India ABSTRACT Electromechanical

More information

Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration

Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration 2 Dibin Zhu University of Southampton UK 1. Introduction With the development of low power electronics and energy

More information

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material K. Z. Gomes *1, T. A. G. Tolosa 1, E. V. S. Pouzada 1 1 Mauá Institute of Technology, São Caetano do

More information

Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic

Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic Muhammad Ammar Faris Muhammad Yazid 1, Norlida Jamil 1, Nik Nurul Husna Muhmed Razali 1, and Ahmad Razlan Yusoff

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Improving functionality of vibration energy harvesters using magnets Author(s) Tang, Lihua; Yang, Yaowen;

More information

ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016)

ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016) ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016) Shad Roundy, PhD Department of Mechanical Engineering University of Utah shad.roundy@utah.edu Three Types of Electromechanical

More information

Manufacture and Characterisation of Piezoelectric Broadband Energy Harvesters Based on Asymmetric Bistable Laminates

Manufacture and Characterisation of Piezoelectric Broadband Energy Harvesters Based on Asymmetric Bistable Laminates Journal of Multifunctional Composites, 2.3 (2014) 113 123 Manufacture and Characterisation of Piezoelectric Broadband Energy Harvesters Based on Asymmetric Bistable Laminates PETER HARRIS, CHRIS R. BOWEN

More information

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level 3 Basic Phenomenon in Effect in Sensor Operation Sensors Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

Converting Impulsive Kinetic Energy to DC Power for Self-Powered Microelectronics by Tunable, Nonlinear Vibration Energy Harvesters

Converting Impulsive Kinetic Energy to DC Power for Self-Powered Microelectronics by Tunable, Nonlinear Vibration Energy Harvesters Converting Impulsive Kinetic Energy to DC Power for Self-Powered Microelectronics by Tunable, Nonlinear Vibration Energy Harvesters Undergraduate Honors Thesis Presented in Partial Fulfillment of the Requirements

More information

Distributed parameter model and experimental validation of a compressive-mode energy harvester under harmonic excitations

Distributed parameter model and experimental validation of a compressive-mode energy harvester under harmonic excitations Distributed parameter model and experimental validation of a compressive-mode energy harvester under harmonic excitations H.T. Li, Z. Yang, J. Zu, and W. Y. Qin Citation: AIP Advances 6, 8531 (216); View

More information

Modeling and experiment of a broadband energy harvester for concurrent energy harvesting from base vibrations and wind flows

Modeling and experiment of a broadband energy harvester for concurrent energy harvesting from base vibrations and wind flows Modeling and experiment of a broadband energy harvester for concurrent energy harvesting from base vibrations and wind flows Liya Zhao 1) and * Yaowen Yang 2) 1), 2) School of Civil and Environmental Engineering,

More information

An optimum design of a double pendulum in autoparametric resonance for energy harvesting applications

An optimum design of a double pendulum in autoparametric resonance for energy harvesting applications An optimum design of a double pendulum in autoparametric resonance for energy harvesting applications Taizoon Chunawala 1, Maryam Ghandchi-Tehrani 2, Jize Yan 2 1 Birla Institute of Technology and Science-Pilani,

More information

Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms

Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms J. Micro/Nanolith. MEMS MOEMS 9 2, 023002 Apr Jun 2010 Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms Bin Yang Chengkuo Lee National University of Singapore Department of

More information

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters!

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! Provided by the author(s) and University College Dublin Library in accordance with publisher policies., Please cite the published version when available. Title Bifurcations and chaos in electrostatic vibration

More information

A new cantilever beam-rigid-body MEMS gyroscope: mathematical model and linear dynamics

A new cantilever beam-rigid-body MEMS gyroscope: mathematical model and linear dynamics Proceedings of the International Conference on Mechanical Engineering and Mechatronics Toronto, Ontario, Canada, August 8-10 2013 Paper No. XXX (The number assigned by the OpenConf System) A new cantilever

More information

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators The Open Acoustics Journal 8 9-3 9 Open Access Hopf ifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators Jianping Cai *a and Jianhe Shen b a Department of

More information

Energy Harvesting and Dissipation with Piezoelectric Materials

Energy Harvesting and Dissipation with Piezoelectric Materials Proceedings of the 8 IEEE International Conference on Information and Automation June -3, 8, Zhangjiajie, China Energy Harvesting and Dissipation with Materials Junrui Liang and Wei-Hsin Liao Smart Materials

More information

Magnetic Field and Oscillating Analysis of Hybrid Suspension Systems Combining Magnetic Spring and Damper

Magnetic Field and Oscillating Analysis of Hybrid Suspension Systems Combining Magnetic Spring and Damper APSAEM12 Jorunal of the Japan Society of Applied Electromagnetics and Mechanics Vol.21, No.3 (2013) Regular Paper Magnetic Field and Oscillating Analysis of Hybrid Suspension Systems Combining Magnetic

More information

Modeling and simulation of multiport RF switch

Modeling and simulation of multiport RF switch Journal of Physics: Conference Series Modeling and simulation of multiport RF switch To cite this article: J Vijay et al 006 J. Phys.: Conf. Ser. 4 715 View the article online for updates and enhancements.

More information

NONLINEAR DYNAMICS OF A VIBRATION-BASED ENERGY HARVESTING SYSTEM USING PIEZOELECTRIC AND SHAPE MEMORY ALLOY ELEMENTS

NONLINEAR DYNAMICS OF A VIBRATION-BASED ENERGY HARVESTING SYSTEM USING PIEZOELECTRIC AND SHAPE MEMORY ALLOY ELEMENTS NONLINEAR DYNAMICS OF A VIBRATION-BASED ENERGY HARVESTING SYSTEM USING PIEZOELECTRIC AND SHAPE MEMORY ALLOY ELEMENTS Arthur Adeodato adeodatoarthur@hotmail.com CEFET/RJ, Department of Mechanical Engineering

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information

Adaptives Energy Harvesting für Condition Monitoring Anwendungen im maritimen Umfeld

Adaptives Energy Harvesting für Condition Monitoring Anwendungen im maritimen Umfeld Adaptives Energy Harvesting für Condition Monitoring Anwendungen im maritimen Umfeld Daniel Hoffmann 1, Alexander Willmann 1, Thorsten Hehn 1, Yiannos Manoli 1,2 1 Hahn-Schickard, Wilhelm-Schickard-Str.

More information

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field *Sang-Yun Park 1) and Ohseop Song 2) 1), 2) Department of Mechanical Engineering, Chungnam National University,

More information

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array N. Roshandel Tavana, and A. Shoulaie nroshandel@ee.iust.ir, and shoulaie@ee.iust.ac.ir Department of Electrical

More information

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Module I Module I: traditional test instrumentation and acquisition systems Prof. Ramat, Stefano Transducers A

More information

Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator

Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 3, 2015 DOI: 10.1515/bpasts-2015-0067 Use of the finite element method for parameter estimation of the circuit model of a high

More information

Applicability of Self-Powered Synchronized Electric Charge Extraction (SECE) Circuit for Piezoelectric Energy Harvesting

Applicability of Self-Powered Synchronized Electric Charge Extraction (SECE) Circuit for Piezoelectric Energy Harvesting International Journal of Engineering and Technology Volume 4 No. 11, November, 214 Applicability of Self-Powered Synchronized Electric Charge Extraction (SECE) Circuit for Piezoelectric Energy Harvesting

More information

Electrostatic Microgenerators

Electrostatic Microgenerators Electrostatic Microgenerators P.D. Mitcheson, T. Sterken, C. He, M. Kiziroglou, E. M. Yeatman and R. Puers Executive Summary Just as the electromagnetic force can be used to generate electrical power,

More information

Comparative investigation of permanent magnet linear oscillatory actuators used in orbital friction vibration machine

Comparative investigation of permanent magnet linear oscillatory actuators used in orbital friction vibration machine International Journal of Applied Electromagnetics and Mechanics 45 (214) 581 588 581 DOI 1.3233/JAE-14188 IOS Press Comparative investigation of permanent magnet linear oscillatory actuators used in orbital

More information

Modeling of Direct Torque Control (DTC) of BLDC Motor Drive

Modeling of Direct Torque Control (DTC) of BLDC Motor Drive IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 09 March 2017 ISSN (online): 2349-784X Modeling of Direct Torque Control (DTC) of BLDC Motor Drive Addagatla Nagaraju Lecturer

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

ELG4112. Electromechanical Systems and Mechatronics

ELG4112. Electromechanical Systems and Mechatronics ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical

More information

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES A. Carrella 1, F. Mattioni 1, A.A. Diaz 1, M.I. Friswell 1, D.J. Wagg 1 and P.M. Weaver 1 1 Department of Aerospace

More information

Design of vibratory energy harvesters under stochastic parametric uncertainty: a new

Design of vibratory energy harvesters under stochastic parametric uncertainty: a new Home Search Collections Journals About Contact us My IOPscience Design of vibratory energy harvesters under stochastic parametric uncertainty: a new optimization philosophy This content has been downloaded

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

TORSION PENDULUM: THE MECHANICAL NONLINEAR OSCILLATOR

TORSION PENDULUM: THE MECHANICAL NONLINEAR OSCILLATOR TORSION PENDULUM: THE MECHANICAL NONLINEAR OSCILLATOR Samo Lasič, Gorazd Planinšič,, Faculty of Mathematics and Physics University of Ljubljana, Slovenija Giacomo Torzo, Department of Physics, University

More information

Torsional vibration energy harvesting through transverse vibrations of a passively tuned beam

Torsional vibration energy harvesting through transverse vibrations of a passively tuned beam oughborough University Institutional Repository Torsional vibration energy harvesting through transverse vibrations of a passively tuned beam This item was submitted to oughborough University's Institutional

More information

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting Excerpt from the Proceedings of the COMSOL Conference 29 Milan Thickness Optimization of a Piezoelectric Converter for Energy Harvesting M. Guizzetti* 1, V. Ferrari 1, D. Marioli 1 and T. Zawada 2 1 Dept.

More information

Optimization Analysis of Interface Circuits in Piezoelectric Energy Harvesting Systems

Optimization Analysis of Interface Circuits in Piezoelectric Energy Harvesting Systems Open Access Journal Journal of Power Technologies 96 (1) (216) 1 7 journal homepage:papers.itc.pw.edu.pl Optimization Analysis of Interface Circuits in Piezoelectric Energy Harvesting ystems huai Pang,

More information

Scaling of electromagnetic transducers for shunt damping and energy harvesting

Scaling of electromagnetic transducers for shunt damping and energy harvesting Scaling of electromagnetic transducers for shunt damping and energy harvesting Stephen J. Elliott a sje@isvr.soton.ac.uk Michele Zilletti b michele.zilletti@uniud.it a Institute of Sound and Vibration

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Response of A Hard Duffing Oscillator to Harmonic Excitation An Overview

Response of A Hard Duffing Oscillator to Harmonic Excitation An Overview INDIN INSTITUTE OF TECHNOLOGY, KHRGPUR 710, DECEMBER 8-0, 00 1 Response of Hard Duffing Oscillator to Harmonic Excitation n Overview.K. Mallik Department of Mechanical Engineering Indian Institute of Technology

More information

7. CONCLUSIONS & SCOPE

7. CONCLUSIONS & SCOPE 7. CONCLUSIONS & SCOPE ENERGY harvesting is a critical technology for the expansion of self-governing, self-powered electronic devices. As the energy requirements of low-power electronics reduction, the

More information

9001:2008 2, 5, 2013 II. PIEZOELECTRIC ENERGY HARVESTING

9001:2008 2, 5, 2013 II. PIEZOELECTRIC ENERGY HARVESTING Piezoelectric Energy Harvesting with Frequency Tuning for Ventilation System Monitoring Joseph R. Davidson and Changki Mo Washington State University Tri-Cities, School of Mechanical and Materials Engineering

More information

Feedback Control and Stability of the Van der Pol Equation Subjected to External and Parametric Excitation Forces

Feedback Control and Stability of the Van der Pol Equation Subjected to External and Parametric Excitation Forces International Journal of Applied Engineering Research ISSN 973-456 Volume 3, Number 6 (8) pp. 377-3783 Feedback Control and Stability of the Van der Pol Equation Subjected to External and Parametric Excitation

More information

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method R. Lerch a, M. Kaltenbacher a and M. Meiler b a Univ. Erlangen-Nuremberg, Dept. of Sensor Technology, Paul-Gordan-Str.

More information

Numerical Study on the Quasi-periodic Behavior in Coupled. MEMS Resonators

Numerical Study on the Quasi-periodic Behavior in Coupled. MEMS Resonators THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. Numerical Study on the Quasi-periodic Behavior in Coupled Abstract MEMS Resonators Suketu NAIK and Takashi

More information

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding.

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding. UNIT 4 DISPLACEMENT MEASURMENT Electrical comparator Working principle of Electrical comparators: These instruments are based on the theory of Wheatstone A.C. Bridge. When the bridge is electrically balanced,

More information

ELECTROMAGNETIC FIELD

ELECTROMAGNETIC FIELD UNIT-III INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Journal of Sound and

More information

SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY

SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY S. Sunithamani 1, P. Lakshmi 1, E. Eba Flora 1 1 Department of EEE, College of Engineering, Anna University,

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving M. Baù *, V. Ferrari, D. Marioli Department of Electronics for

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.2, pp 678-684, 2014-2015 ICONN 2015 [4 th -6 th Feb 2015] International Conference on Nanoscience and Nanotechnology-2015

More information

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Gireesh K C 1, Harisha M 2, Karthick Raj M 3, Karthikkumar M 4, Thenmoli M 5 UG Students, Department

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

UNIT-III Maxwell's equations (Time varying fields)

UNIT-III Maxwell's equations (Time varying fields) UNIT-III Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word

More information

OVER the past decade, there has been a significant growth

OVER the past decade, there has been a significant growth IEEE SENSORS JOURNAL, VOL. 9, NO. 7, JULY 2009 731 A Vibration-Based PMN-PT Energy Harvester Alex Mathers, Kee S. Moon, and Jingang Yi, Senior Member, IEEE Abstract We report design, modeling, analysis,

More information

Design and Analysis of a Simple Nonlinear Vibration Absorber

Design and Analysis of a Simple Nonlinear Vibration Absorber IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 30-334X, Volume 11, Issue Ver. VI (Mar- Apr. 014), PP 84-90 Design and Analysis of a Simple Nonlinear Vibration Absorber

More information

ELECTRODYNAMIC magnetic suspension systems (EDS

ELECTRODYNAMIC magnetic suspension systems (EDS 460 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 1, JANUARY 2005 Mathematical Model of the 5-DOF Sled Dynamics of an Electrodynamic Maglev System With a Passive Sled Jeroen de Boeij, Maarten Steinbuch,

More information

Balancing of an Inverted Pendulum with a SCARA Robot

Balancing of an Inverted Pendulum with a SCARA Robot Balancing of an Inverted Pendulum with a SCARA Robot Bernhard Sprenger, Ladislav Kucera, and Safer Mourad Swiss Federal Institute of Technology Zurich (ETHZ Institute of Robotics 89 Zurich, Switzerland

More information

Application and analysis of phononic crystal energy harvesting devices

Application and analysis of phononic crystal energy harvesting devices J. Eng. Technol. Educ. (013) 10(1): 18-6 March 013 Application and analysis of phononic crystal energy harvesting devices Department of Information Management, Chung Hwa University of Medical Technology.

More information

Optimizing the Electrical Power in an Energy Harvesting System

Optimizing the Electrical Power in an Energy Harvesting System International Journal of Bifurcation and Chaos, Vol. 25, No. 12 (2015) 1550171 (14 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127415501710 Optimizing the Electrical Power in an Energy

More information

DOUBOCHINSKI S REVERSE-PARAMETRICAL PENDULUM AND MOTOR

DOUBOCHINSKI S REVERSE-PARAMETRICAL PENDULUM AND MOTOR DOUBOCHINSKI S REVERSE-PARAMETRICAL PENDULUM AND MOTOR Summary Danil DOUBOCHINSKI E-Mail: doubochinski.danil@gmail.com The type of systems in which the excitation of motion periodic due to high-frequency

More information