Higgs or Higgsless? From a unitarity viewpoint

Size: px
Start display at page:

Download "Higgs or Higgsless? From a unitarity viewpoint"

Transcription

1 Higgs or Higgsless? From a unitarity viewpoint KEK theory center mini-workshop: Composite Higgs/Higgsless models and related topics toward LHC era Masaharu Tanabashi (Nagoya U.) October 29,

2 Higgs sector of the standard model is known to be problematic. Is it possible to construct models without Higgs? 2

3 The role of the Higgs boson in the SM: Renormalizability : W and Z are gauge bosons (universality of weak interaction). Explicit breaking of electroweak gauge symmetry makes the theory non-renormalizable. We need, at least, one Higgs boson so as to feed W and Z masses through spontaneous breaking. Unitarity : The longitudinal W boson (W L ) scattering amplitude grows as the CM energy increases. If there is no Higgs boson, it eventually violates the unitarity. 3

4 Life without a Higgs 4

5 Renormalizability : New physics (cutoff scale of SM) is believed to exist at TeV. In principle, renormalizability is not a primary issue in this sense. However, the lack of renormalizability usually implies a loss of robust predictability. How can we ensure the consistency with the existing precision electroweak measurements without introducing a Higgs boson then? July 2008 Theory uncertainty Δα (5) had = ± ± incl. low Q 2 data m Limit = 154 GeV U 0 m t = ± 2.9 GeV m H = GeV m W prel. Δχ 2 3 T 0 Γ ll 2 1 Excluded Preliminary m H [GeV] -0.2 sin 2 θ lept eff 68 % CL S m H m t 5

6 Unitarity: B.W.Lee, C.Quigg, and H.B.Thacker In the standard model, a Higgs boson (scalar resonance) unitarizes the W L W L scattering amplitude: a c a c a c im(w a LW b L W c LW d L)= + W + h +crossed. b d b d b d For E M W M(W a LW b L W c LW d L)= s v 2 2 MH MH 2 s δab δ cd + t v 2 2 MH M 2 H t δac δ bd + u v 2 2 MH MH 2 u δad δ bc, with M 2 H = λv 2, v 250 GeV. W L W L scattering amplitude remains perturbative even at high energy scale s 1 TeV thanks to the light Higgs exchange. How can we ensure the W L W L scattering unitarity (or calculability) without introducing a Higgs boson? 6

7 Unitarity in the WW Scattering 7

8 Unitarity in the W L W L scatteing Let us consider the longitudinally polarized W (W L ). It s polarization vector p ɛ μ (L) = E E M W p, E2 = p 2 + MW 2, ɛ (L)μ ɛ μ (L) = 1 p grows for large E M W. Naive power counting in E suggests M(W a LW b L W c LW d L) ɛ (L)μ 4 E4 M 4 W Unitarity seems to be violated in the high energy W L W L scattering. 8

9 For simplicity, we consider the g Y =0case. (Z = W 3 ) Two Feynman diagrams contributing to the WW scattering im gauge (ab cd) = a b c d a + W Contribution from the 4W vertex (terms proportional to δ ab δ cd ) { E 4 g WWWW (1 + cos θ)[3 cos θ 2 M W 2 E ] 2 M 4 W b (1 cos θ)[3 + cos θ 2 M 2 W E 2 ] c d + crossed. } 9

10 t-channel W exchange (terms proportional to δ ab δ cd ) { E 4 gwww 2 (1 cos θ)[3 + cos θ 2 M } W 2 2 E ]+1 W ( cos θ)m E 2 M 4 W u-channel W exchange (terms proportional to δ ab δ cd ) { E 4 gwww 2 (1 + cos θ)[3 cos θ 2 M } W 2 2 E ]+1 W (1 11 cos θ)m E 2 M 4 W Each diagram behaves E 4 /MW 4 at high energy. The leading E 4 /MW 4 term cancels in the amplitude thanks to the Ward-Takahashi identity of the gauge symmetry. g WWWW = g 2 WWW = g 2 W 10

11 M gauge (ab cd) =δ ab δ cd g 2 W E 4 MW 4 M 2 W E 2 + = δab δ cd g 2 W E 2 M 2 W + We use E 2 = s/4, M 2 W = g2 W v2 /4 M gauge (ab cd) = s v 2 δab δ cd + t v 2 δac δ bd + u v 2 δad δ bc +. This form agrees with the low energy theorem (equivalence theorem) B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. Lett. 38, 883 (1977); Phys.Rev.D16, 1519 (1977). This is clear because NG boson W L (Higgs mechanism) 11

12 Unitarity If the W L W L scattering amplitude is completely given by the low energy theorem The probability of the W L W L scattering exceeds unity at the s =8πv 2 eneryg scale. unitarity violation Two possibilities Unitarity bound : 8πv 1.2TeV perturbative case The W L W L scattering behavior is modified thanks to the existence of particles lighter than the unitarity bound (predictability) non-perturbative casse The theory beoomes non-perturbative above the unitarity bound. The unitarity should be recovered in a non-perturbative manner. (predictability may be lost.) 12

13 Perturbative unitarity in the standard model Higgs sector Higgs exchange diagram im Higgs (ab cd) = a b h c d + crossed. M Higgs (ab cd) =g 2 hw W s 2 MW 4 Using the standard model Higgs relation 1 M 2 h s δab δ cd +. g hw W = M 2 W v 13

14 we notice that the s E 2 term cancels M(ab cd) =M gauge + M Higgs = s v 2 2 Mh Mh 2 s δab δ cd +. The amplitude agrees with the low energy theorem at s M 2 h = λv2. The amplitude approaches to a constant λ at the region s M 2 h = λv2. The theory is perturbative is the constant λ is sufficiently small. It is easy to extend this to multi-higgs models From the perturbative unitarity requirement of the W L W L scattering n g 2 h (n) WW = M 4 W v 2 hw W coupling perturbative unitarity Essence of a Higgs 14

15 Physics ensuring the unigtarity in the W L W L scattering O(E 4 ) cancellation gauge symmetry O(E 2 ) cancellation g WWWW = g 2 WWW n g 2 h (n) WW = M 4 W v 2 unitarity sum rules The h (n) WW coupling determimes the Higgs property of h (n). 15

16 Can a spin-1 resonance unitarize the W L W L scattering amplitude? a c a c im(w a LW b L W c LW d L)= + W + W 0 a b d b d c +crossed. Answer: Yes! if we suitably adjust WWW coupling. b d M(W a LW b L W c LW d L)= 1 3v 2 (s u) M 2 W M 2 W 2 W M +(s t) t M 2 W u Cancellation of bad high-energy behavior is achieved through exchange of massive spin-1 particle W.! δ ab δ cd + 16

17 Note, however, we need to introduce yet another massive vector particle W so as to unitarize the W L W L W L W L amplitude... A tower of massive vector particles: W, W, W, W, This situation is naturally realized in gauge theory with an extra dimension A tower of massive Kaluza-Klein modes Chivukula, Dicus and He ; Csaki, Grojean, Murayama, Pilo and Terning Gauge symmetry breaking through boundary conditions 17

18 Unitarity sum rules Spin-0 (Higgs) exchange case: g WWWW = g 2 WWW, g WWWW M 2 W =4 n g 2 h (n) WW Spin-1 exchange case (Higgsless): g WWWW = n g 2 WWW (n), 4g WWWW M 2 W =3 n g 2 WWW (n) M 2 W (n) If there exist spin-0 and spin-1 simultaneously (gaugephobic Higgs): Cacciapaglia et al. hep-ph/ , c.f. Hikasa and Igi g WWWW = n g 2 WWW (n), 4g WWWW M 2 W =3 n g 2 WWW (n) M 2 W (n) +4 n g 2 h (n) WW 18

19 Higgsless models 19

20 Gauge symmetry breaking through boundary conditions 5D gauge theory with an interval extra dimension y =0 y = l BC: Neumann(N)? Dirichlet(D)? A μ, A 5 1. y A μ (x, y) y=0 =0(N), y A μ (x, y) y=l =0(N) [NN] 0 massless spin-1 field: N N unbroken 4D gauge symmetry 2. y A μ (x, y) y=0 =0(N), A μ (x, y) y=l =0(D) [ND] 1 absence of massless spi-1 field: N 3 2 D 4D gauge sym is broken 20

21 4D gauge sym and spectrum In addition to the massive spin-1 KK particles, we have 1. [NN]: massless spin-1 (unbroken gauge sym) photon 2. [ND]: absence of massless particle (broken gauge sym) 3. [DN]: absence of massless particle (broken gauge sym) W ±, Z 4. [DD]: massless spin-0 (gauge and global syms are broken) Applying this mechanism to EWSB, we can push up the unitarity vilation scale around 10TeV. (little Hierarchy) R. Sekhar Chivukula, D. A. Dicus and H. J. He, Unitarity of compactified five dimensional Yang-Mills theory, Phys. Lett. B 525, 175 (2002) [arxiv:hep-ph/ ]. C. Csaki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69, (2004) [arxiv:hep-ph/ ]. 21

22 Brane localized Higgs field (aka RS model) y =0 y = l A μ, A 5 BC: Neumann BC at both brane y A μ (x, y) y=0 =0(N), y A μ (x, y) y=l =0(N) [NN] Brane localized Higgs φ: S Higgs = dyδ(y l + ɛ) [ (D μ φ) (D μ φ) V (φ φ) ] (VEV v b ) dyδ(y l + ɛ)v 2 b A μ A μ KK mode equation for the gauge field [ 2 y + δ(y l + ɛ)g 2 vb 2 ] χ (n) (y) =Mnχ 2 (n) (y) 1-dim Schroedinger eq. with δ-function repulsive force 22

23 1. finite v b case 1 δ-function repulsive force at y = l N N brane affects the 3 2 wave-function form. 2. v b case 1 δ-function repulsive force at y = l brane N 3 2 N affects the effective boundary condition at the brane. 23

24 Remarks Brane localized Higgs with an infinite VEV. (equivalent) Dirichlet BC (Higgsless) The KK gauge boson spectrum remains finite around the compactification scale even in the infinite Higgs VEV limit. Higgsless models can be regarded as a variant of usual RS model. 24

25 Effective theory viewpoint Deconstruction 25

26 Deconstruction of boundary conditions Deconstruction (latticization) of extra dimension A M, M = μ, 5 U 2 U 3 U 4 U 5 A 1 μ A 2 μ A 3 μ A 4 μ A 5 μ moose diagram Arkani-Hamed, Cohen and Georgi ; Hill, Pokorski and Wang a : lattice spacing A j μ = A μ (x, y = ja) : gauge field at site j U j =exp(i link field. field. Z ja dya 5 (x, y)) : (j 1)a non-linear σ model Note: Moose model can be viewed as a generalization of Bando-Kugo-Yamawaki s Hidden Local Symmetry (HLS) model (Phys.Rep.164,217(1988)) + Georgi s vector symmetry model (NPB331,311(1990)). 26

27 Deconstructions of an interval in moose notation: [DD] G G G G #(U j )=#(A j μ)+1. [NN] G G G G G #(U j )=#(A j μ) 1. G [DN] G G G G G #(U j )=#(A j μ). [ND] G G G G G #(U j )=#(A j μ). which correspond to 5D gauge theories with an interval compactification: H.-J. He, hep-ph/ y = 0 y = l A μ, A 5 [DD] A μ (x, y) y=0 =0(D), A μ (x, y) y=l =0(D), [NN] 5 A μ (x, y) y=0 =0(N), 5 A μ (x, y) y=l =0(N), [DN] A μ (x, y) y=0 =0(D), 5 A μ (x, y) y=l =0(N), 5 A 5 (x, y) y=0 =0(N), 5 A 5 (x, y) y=l =0(N). A 5 (x, y) y=0 =0(D), A 5 (x, y) y=l =0(D). 5 A 5 (x, y) y=0 =0(N), A 5 (x, y) y=l =0(D). 27

28 Spectrum and 4D gauge symmetry: In addition to a tower of massive spin-1 KK-modes, we have 1. [DD]: massless spin-0 particle. 4D gauge sym. is all broken. 2. [NN]: massless spin-1 particle. unbroken 4D gauge sym. 3. [DN]: no massless particle. 4D gauge sym. is all broken. 4. [ND]: no massless particle. 4D gauge sym. is all broken. 28

29 Advantages for deconstruction in 5D Higgsless models Familiar language of spontaneous gauge symmetry breaking (gauged nonlinear σ model). Easier to understand the physics behind the delay of unitarity violation. Easier to calculate corrections to electroweak interactions. Allowing for arbitrary background 5D geometry, spatially dependent gauge couplings, and brane kinetic terms. Easier to perform loop analysis using well-known chiral perturbation method. 29

30 5D Higgsless model SU(2) R U(1) B L U(1) Y SU(2) L SU(2) R SU(2) V (y =0) (y = l) SU(2) L SU(2) R U(1) B L quarks/leptons Csaki et al. PRL92 (2004) ; Nomura JHEP 11 (2003) 050; Barbieri et al. PLB591 (2004) 141. and its deconstruction fermions SU(2) fermions U(1) Foadi, Gopalakrishna, Schmidt ; Casalbuoni, De Curtis and Dominici ; Chivukula, Simmons, He, Kurachi and M.T.; Georgi 5D Higgsless models are described by linear moose. c.f. BESS model (Casalbuoni et al., PLB (1985)) HLS model (Bando-Kugo-Yamawaki) & Vector limit model (Georgi) 30

31 Linear moose models General linear moose with localized J μ W and J μ Y : SU(2) g g g g g g 0 1 p N N+1 q U(1) g N+M g N+M+1 with L = 1 4 f N+M+1 X j=1 f 1 N+1 N+M+1 J μ W J μ Y f 2 j tr((d μ U j ) (D μ U j )) f N+M+1 X j=0 D μ U j = μ U j ia j 1 μ U j + iu j A j μ. 1 4g 2 j F j μνf jμν Low energy Fermi-constant: (EW symmetry is broken collectively) 2GF = 1 v 2 CC = N+1 X j=p+1 Low energy QED coupling: N+M+1 1 e = X 2 1 f 2 j, j=0 1 g 2 j. 1 v 2 NC = qx j=p+1 c.f. HLS model (Bando-Kugo-Yamawaki) 1 f 2 j. 31

32 Delay of unitarity violation For large N p, we are able to achieve delay of unitarity violation min(f j ) v 250 GeV, Note, however, 8π min(fj ) 8πv 1.2TeV. N< 100 if we assume perturbative gauge coupling : g 2 j /(4π) < 1. The perturbative unitarity is eventually violated at or below 10 TeV. ρ parameter ρ =1+Δρ v2 CC v 2 NC =1+v 2 q j=n+2 1 f 2 j 1. In this talk, we concentrate our attention on Case I models (q = N +1)inwhichΔρ =0is satisfied automatically. 32

33 The model we consider in this talk g 0 SU(2) g g g 1 N N+1 f 1 f N+1 J W μ J Y μ 33

34 General Sum Rules Chivukula, He, Kurachi, Simmons, M.T. Phys.Rev.D78, (2008) [arxiv: [hep-ph]] 34

35 General Sum Rules We try to genelarize the unitarity sum rule g WWWW = n g 2 WWW (n), 4g WWWW M 2 W =3 n g 2 WWW (n) M 2 W (n) Finite deconstruction Inelastic scattering nn mm Generalize to the transverse gauge boson scattering such as LL LT, LL TT, LT TT. important for the collider confirmation of the Higgsless scenario 35

36 We deduce the sum rules using the equivalence theorems M(L (n) L (n) L (m) L (m) ) M(π (n) π (n) π (m) π (m) ), E 4,E 2, (E 0 ) M(L (n) L (n) L (m) T (m) ) M(π (n) π (n) π (m) T (m) ), E 3,E 1 M(L (n) L (n) T (m) T (m) ) M(π (n) π (n) T (m) T (m) ), E 2,E 0 M(L (n) T (n) T (m) T (m) ) M(π (n) T (n) T (m) T (m) ), E 1 In the continuum limit (N ), M(π (n) π (n) π (m) π (m) )=0, M(π (n) π (n) π (m) T (m) )=0 36

37 Results G nnmm 4 = k G nnk 3 G mmk 3 = k G nmk 3 G nmk 3, 2(M 2 n + M 2 m)g nnmm 4 + k (G nmk 3 ) 2 [ (M 2 n M 2 m) 2 M 2 k 3M 2 k ] = 4 v 2 M 2 nm 2 m G nnmm 4,. Here G nmlk 4 g W(n) W (m) W (l) W (k), G nml 3 g W(n) W (m) W (l), G nmlk 4 g π(n) π (m) π (l) π (k), In the continuum limit, we have G nmlk 4 =0 37

38 These sum rules agree with the unitarity sum rule in the continuum limit G nnnn 4 = k G nnk 3 G nnk 3, 4M 2 ng nnnn 4 =3 k M 2 k (G nnk 3 ) 2, 38

39 Sum rules in the linear moose models W mass matrix M 2 W, π mass matrix M 2 W are given by (g Y =0), M 2 W = Q T Q, M 2 W = QQ T, where Q 1 2 g 0 f 1 g 1 f 1 g 1 f 2 g 2 f g N 1 f N g N f N. g N f N+1 39

40 Diagonalization M 1 M 2... = M diag W = RT Q T R = RT QR M N+1 The matrices R, R represent the KK gauge bson W (n) (NG boson π (n) ) wave function in the extra dimension. G nmk 3, G nmlk 4 aregivenbythekkgaugebosonwavefunction, G nmk 3 = j g j R j,n R j,m R j,k, G nmlk 4 = j g 2 j R j,n R j,m R l,k R j,k, while G nmlk 4 given by the NG boson wave function, G nmlk 4 = j v 2 f 2 j R j,n Rj,m Rl,k Rj,k. 40

41 A relation between W (n) and π (n) functions (WT identity) RM diag W = QR Completeness of the wave function δ j,j =(RR T ) j,j = k R j,k R j,k, δ j,j =( R R T ) j,j = k R j,k R j,k. Generalized sum rules WT identities + completeness relations 41

42 Example: Derivation of i G nmi 3 G lki 3 = G nmlk 4 i G nmi 3 G lki 3 = i j,j g j g j R j,n R j,m R j,i R j,nr j,mr j,i = j,j g j g j R j,n R j,m R j,nr j,mδ j,j = j g 2 j R j,n R j,m R j,n R j,m = G nmlk 4 42

43 Summary of the WT identities and the completeness relations G nmlk 4 = i G nmi 3 G lki 3, 4 Gnmlk v 2 4 = G nmlk 4 (Mn 2 + Mm 2 + Ml 2 + Mk 2 ) i (G nmi 3 G lki 3 + G nli 3 G mki 3 + G nki 3 G mli 3 )M 2 i, (M 2 n M 2 m)(m 2 l M 2 k ) i G nmi 3 G lki 3 M 2 i = i (G nki 3 G mli 3 G nli 3 G mki 3 )M 2 i, ( G 4 =0in the continuum limit). c.f., Sakai and Uekusa, Prog.Theo.Phys. 118 (2007) 315 [hep-th/ ] 43

44 Low Energy Effective Theory in 4D How can we ensure the consistency with the existing precision electroweak measurements? 44

45 A three-site Higgsless model Chivukula, Coleppa, Di Chiara, Simmons, He, Kurachi and M.T., PRD (2006); See also Bando, Kugo, Yamawaki s HLS model Phys.Rep.164,217(1988). SU(2) SU(2) U(1) gauge theory The gauge sector is precisely that of the BESS model. Casalbuoni et al., PLB (1985)) Fermion mass terms: L f = λf 1 ψl0 U 1 ψ R1 M ψ R1 ψ L1 f 2 ψl1 U 2 λ u λ d 1 0 u R2 d R2 For simplicity, we examine the case f 1 = f 2 = 2v andworkinthe limit 1 A+h.c.. g 0 g 1 1, g 2 g 1 1, and thus, g W g 0, g Y g 1. 45

46 Fermion mass matrix: (seesaw like) m 0 2 λv ε L 0 M m f 1 ε fr, ε L λ λ, ε fr λ f λ Light fermion mass: m f mm f M 2 + m 2 f = 2 λvεl ε fr 1+ε 2 fr and its eigenstate (or delocalization) ( ψ f,light L 1 ε2 L 2 ) ψ f L0 + ε Lψ f L1 where we assumed ε fr 1. Heavy (KK) fermion mass: M f,kk M 2 + m 2 f = 2 λv 1+ε 2 fr 46

47 For M v, we can integrate out the heavy KK-fermion. The fermion delocalization effect can then be replaced by an operator L f = x 1 ψl (i /DU 1 U 1 )ψ L, x 1 ε 2 L, ε L = 2λv M ψ L is a left-hand fermion at site-0, D μ ψ L = μ ψ L ig 0 W 0μ ψ L. S-parameter S = 4π g 2 1 ( 1 2g2 1 g 2 0 vanishes in the ideal delocalization limit: x 1 ) x 1 = g2 0, g 2g1 2 W ff =0. c.f. Anichini, Casalbuoni, and De Curtis, PLB (1995). 47

48 Tree level is not enough... 48

49 Fermionic one-loop corrections to T parameter Chivukula, Coleppa, Di Chiara, Simmons, He, Kurachi and M.T., PRD (2006) αt 1 16π 2 m 4 t M 2 v 2 = 1 ε 4 tr M 2 16π 2 v 2. Assuming ideal delocalization of fermions, we find M αt=2.5*10^ αt=5*10^ M W 49

50 Allowed region in S-T depends on the reference Higgs mass M H,ref. S S BSM S SM (M H,ref ), T T BSM T SM (M H,ref ) αt < ( )form H,ref = 340GeV (1000GeV). Which M H,ref should we use? We need to evaluate bosonic one-loop diagrams in order to get more precise bounds. 50

51 One loop constraint from precision electroweak measurements (95%CL): M GeV M W 380 GeV M GeV M W 500 GeV TeV 3.0 TeV g W ff g W TeV 3.0 TeV g W ff g W The cutoff dependence is small. Tiny (but non-zero) W ff coupling. T. Abe, S. Matsuzaki, and M.T., PRD78, (2008) 51

52 M (GeV) Λ = 4.3 TeV Λ = 3.0 TeV M W (GeV) M W > 380MeV is required by the ZWW measurement at LEP2. The cutoff Λ should satisfy Λ < 4πf 1 =4πf 2 =4.3TeV, which implies M W < 600GeV 52

53 LHC phenomenology of W 53

54 W production cross sections through W WZ vertex: H.-J. He et al., arxiv:

55 (a) (b) 100fb 1 55

56 W production cross sections through W ff vertex: T. Ohl and C. Speckner, arxiv: u ν l u u W + l W + d W + Z u W + Z e d ū d e events per bin (50 bins total) final state: lν l jj m W = 380 GeV, ε L = m W = 500 GeV, ε L = m W = 600 GeV, ε L = m bulk = 3.5 TeV for m W = 380 GeV, 500 GeV m bulk = 4.3 TeV for m W = 600 GeV 100 events per bin (50 bins total) final state: lljj m W = 380 GeV, ε L = m W = 500 GeV, ε L = m W = 600 GeV, ε L = m bulk = 3.5 TeV for m W = 380 GeV, 500 GeV m bulk = 4.3 TeV for m W = 600 GeV total invariant mass [GeV] total invariant mass [GeV] 100fb 1 56

57 Summary Higgsless theory is an interesting alternative to the standard model Higgs, achieving tree level unitarity at 1TeV. We analyzed an effective theory (three site Higgsless model) at one-loop level and found the model is consistent with the available precicion electroweak measurements. The allow ranges of the KK gauge boson coupling g W ff, the KK gauge boson mass M W,and the KK quark/lepton masses M are severely constrained, however. The KK gauge boson W will be discovered at LHC with L =20 30 fb 1. Although, in the case of flavor universal KK-fermion mass, FCNC is protected by GIM mechanism, more study on the flavor physics should be done in the Higgsless theory. 57

CalcHEP2.5: new facilities and future prospects

CalcHEP2.5: new facilities and future prospects CalcHEP2.5: new facilities and future prospects Alexander Belyaev and Alexander Pukhov MSU RAL Southampton Moscow State University http://theory.sinp.msu.ru/~pukhov/calchep.html 1 CalcHEP: old good features

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Boundary Conditions in AdS Life Without a Higgs

Boundary Conditions in AdS Life Without a Higgs Boundary Conditions in AdS Life Without a Higgs Csáki, Grojean, Murayama, Pilo, JT hep-ph/0305237 Csáki, Grojean, Pilo, JT hep-ph/0308038 Csáki, Grojean, Hubisz, Shirman, JT hep-ph/0310355 Cacciapaglia,

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs.

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs. Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs Tirtha Sankar Ray XXI DAE-BRNS HEP Symposium, 8-12 December, 2014 The Standard Model All

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

Monte Carlo Exploration of Warped Higgsless Models

Monte Carlo Exploration of Warped Higgsless Models SLAC-PUB-10510 July 2004 Monte Carlo Exploration of Warped Higgsless Models J.L. Hewett a, B. Lillie b, and T.G. Rizzo c Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, CA, 94025 Abstract

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Dark matter and collider signatures from extra dimensions

Dark matter and collider signatures from extra dimensions KAIST TF, A. Menon, Z. Sullivan, PRD 86 (2012) 093006 L. Edelhäuser, TF, M. Krämer, JHEP 1308 (2013) 091 TF, KC Kong, SC Park, JHEP 1305 (2013) 111, arxiv:1309.xxxx COSMO 2013, Cambridge Outline Universal

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Electroweak Symmetry Breaking

Electroweak Symmetry Breaking YITP workshop Electroweak Symmetry Breaking Mar. 11-17, 2011 Ryuicihro Kitano (Tohoku U.) Opening talk at YITP workshop, Mar 11, 2011 Two of the most important questions in particle physics: Who broke

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Z bb in Higgsless Models. Ken Hsieh. Pheno 09 Madison, Wisconsin May 11, PRD 79, (2009) [arxiv: ]

Z bb in Higgsless Models. Ken Hsieh. Pheno 09 Madison, Wisconsin May 11, PRD 79, (2009) [arxiv: ] In collaoration with: Tomohiro Ae (Nagoya University) Z in Higgsless Models PRD 79, 075016 (2009) [arxiv:0902.3910] Ken Hsieh Pheno 09 Madison, Wisconsin May 11, 2009 Sekhar Chivukula (Michigan State University)

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

Scenarios with Composite Higgs Bosons

Scenarios with Composite Higgs Bosons Scenarios with Composite Higgs Bosons 2013.2.15 Michio Hashimoto (Chubu U.) Introduction Let us consider scenarios that Some strong dynamics generate Composite particles, vectors, Pseudo-scalars, Scalars

More information

Coloron Models and LHC Phenomenology

Coloron Models and LHC Phenomenology Coloron Models and LHC Phenomenology Elizabeth H. Simmons Michigan State University - New Strong Dynamics - Models - LHC Phenomenology - Other Phenomenology - Conclusions SCGT 12 December 5, 2012 LHC s

More information

Flavor and Scalar Signals of an Extended Color Sector. R. Sekhar Chivukula Michigan State University

Flavor and Scalar Signals of an Extended Color Sector. R. Sekhar Chivukula Michigan State University Flavor and Scalar Signals of an Extended Color Sector R. Sekhar Chivukula Michigan State University - - - - - Extended Color Dynamics A Top-Coloron Model Flavor Symmetries and Constraints Scalars: Same

More information

FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 4, N o 2, 2006, pp

FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 4, N o 2, 2006, pp FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 4, N o 2, 2006, pp 331-339 Phenomenology of New Vector Resonances at Future e + e Colliders M. Gintner 1, I. Melo 2, B. Trpišová 3 123

More information

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection Trilinear and Quartic Gauge Boson Couplings at the LHC Fawzi BOUDJEMA OUTLINE LAPTH-Annecy, France Vector bosons self-couplings and the symmetry breaking connection Gauge Invariance and the Hierarchy of

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

DEGENERATE BESS AT FUTURE e + e COLLIDERS

DEGENERATE BESS AT FUTURE e + e COLLIDERS DEGENERATE BESS AT FUTURE e + e COLLIDERS DANIELE DOMINICI Dip. di Fisica, Univ. di Firenze, Sezione I.N.F.N. Firenze Lgo E. Fermi 2, 50125 Firenze, Italy E-mail: dominici@fi.infn.it ABSTRACT arxiv:hep-ph/9512403v1

More information

Beyond the Higgs. new ideas on electroweak symmetry breaking

Beyond the Higgs. new ideas on electroweak symmetry breaking E = mc 2 Beyond the Higgs new ideas on electroweak symmetry breaking Higgs mechanism. The Higgs as a UV moderator of EW interactions. Needs for New Physics beyond the Higgs. Dynamics of EW symmetry breaking

More information

Deconstructing six dimensional gauge theories with strongly coupled moose meshes

Deconstructing six dimensional gauge theories with strongly coupled moose meshes HUTP-02/A031 hep-ph/0207164 Deconstructing six dimensional gauge theories with strongly coupled moose meshes Thomas Gregoire and Jay G. Wacker Department of Physics, University of California Berkeley,

More information

multiplets and the chiral fields is the following:

multiplets and the chiral fields is the following: 29 November 2001 Physics Letters B 521 (2001) 308 314 wwwelseviercom/locate/npe GUT breaking on the lattice Hsin-Chia Cheng a, Konstantin T Matchev b, Jing Wang c a Enrico Fermi Institute, University of

More information

SUSY Breaking, Composite Higgs and Hidden Gravity

SUSY Breaking, Composite Higgs and Hidden Gravity SUSY Breaking, Composite Higgs and Hidden Gravity Ryuichiro Kitano (Tohoku U.) Talk at ICEPP meeting, April 1-3, 2009, Tokyo, Japan What's Higgs? Elementary particle? Something else? 1/ H Composite, technicolor,

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

From Hidden Symmetries to Extra Dimensions

From Hidden Symmetries to Extra Dimensions From Hidden Symmetries to Extra A 5-dimensional model of ElectroWeak Breaking Daniele Dominici Physics Dept. - Firenze Univ. École Polytechnique, 11 Mai 2010 based on R. Casalbuoni, F. Coradeschi, S. De

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

Higgsless Vector Boson Fusion at the LHC beyond leading order

Higgsless Vector Boson Fusion at the LHC beyond leading order Higgsless Vector Boson Fusion at the LHC beyond leading order Christoph Englert 29.10.2009 GGI Conference The Search for New States and Forces of Nature, Florence INSTITUTE FOR THEORETICAL PHYSICS KIT

More information

Theories with Compact Extra Dimensions

Theories with Compact Extra Dimensions Instituto de Física USP PASI 2012 UBA Theories with Compact Extra dimensions Part II Generating Large Hierarchies with ED Theories Warped Extra Dimensions Warped Extra Dimensions One compact extra dimension.

More information

arxiv: v2 [hep-ph] 12 Apr 2017

arxiv: v2 [hep-ph] 12 Apr 2017 Classification of simple heavy vector triplet models Tomohiro Abe 1, 2 and Ryo Nagai 1 Institute for Advanced Research, Nagoya University, uro-cho Chikusa-ku, Nagoya, Aichi, 6-8602 Japan 2 Kobayashi-Maskawa

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

FLAVOUR IN WARPED EXTRA DIMENSIONS

FLAVOUR IN WARPED EXTRA DIMENSIONS FLAVOUR IN WARPED EXTRA DIMENSIONS G. CACCIAPAGLIA Institut de Physique Nucléaire de Lyon, Université Lyon, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France Models in warped extra dimensions are very attractive

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions Prospective Study on Muon Colliders Strong Electroweak Symmetry Breaking at Muon Colliders Roberto Casalbuoni Firenze and Geneva Universities with A. Deandrea, S. De Curtis, D. Dominici, R. Gatto and J.F.

More information

Nobuhito Maru (Kobe)

Nobuhito Maru (Kobe) Calculable One-Loop Contributions to S and T Parameters in the Gauge-Higgs Unification Nobuhito Maru Kobe with C.S.Lim Kobe PRD75 007 50 [hep-ph/07007] 8/6/007 String theory & QFT @Kinki Univ. Introduction

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

Why Higgs Boson Searches?

Why Higgs Boson Searches? Why Higgs Boson Searches? Not just a search for a new particle... The missing piece in a spectacularly successful theory construct: the Standard Model of the fundamental interactions A massive experimental

More information

Strongly coupled gauge theories: What can lattice calculations teach us?

Strongly coupled gauge theories: What can lattice calculations teach us? Strongly coupled gauge theories: What can lattice calculations teach us? Anna Hasenfratz University of Colorado Boulder Rencontres de Moriond, March 21 216 Higgs era of particle physics The 212 discovery

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs IAS Program on the Future of High Energy Physics Jan 21, 2015 based on arxiv:1311.5928, Hsin-Chia Cheng, Bogdan A. Dobrescu, JG JHEP 1408

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

Constraints on UED Models

Constraints on UED Models KAIST TF, C. Pasold, PRD85 (2012) 126007 TF, A. Menon, Z. Sullivan, arxiv:1207.4472 TF, KC Kong, SC Park, arxiv:1210.xxxx KIAS-SNU Workshop on Particle Physics and Cosmology Outline UED Review Modifying

More information

arxiv:hep-ph/ v2 9 Jul 2003

arxiv:hep-ph/ v2 9 Jul 2003 DFF-405-5-03 The scalar sector in an extended electroweak gauge symmetry model Stefania DE CTIS a, Donatello DOLCE b, Daniele DOMINICI a,b a INFN, Sezione di Firenze, Italy. b Dip. di Fisica, niv. degli

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

arxiv:hep-ph/ v1 19 Nov 2004

arxiv:hep-ph/ v1 19 Nov 2004 KUNS-1945 OU-HET-502/2004 Higgs mass in the gauge-higgs unification arxiv:hep-ph/0411250v1 19 Nov 2004 Naoyuki Haba (a), Kazunori Takenaga (b), Toshifumi Yamashita (c),, (a) Institute of Theoretical Physics,

More information

Partial Compositeness and

Partial Compositeness and Partial Compositeness and its implications for the LHC Roberto Contino Università Roma La Sapienza & INFN In collaboration with: Raman Sundrum Thomas Kramer Minho Son Motivation: Solving the Hierarchy

More information

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv: v1 [hep-ph] 16 Mar 2017 Flavon-induced lepton flavour violation arxiv:1703.05579v1 hep-ph] 16 Mar 017 Venus Keus Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu, FIN-00014 University of Helsinki,

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

S = 2 decay in Warped Extra Dimensions

S = 2 decay in Warped Extra Dimensions S = 2 decay in Warped Extra Dimensions Faisal Munir IHEP, Beijing Supervisor: Cai-Dian Lü HFCPV CCNU, Wuhan October 28, 2017 based on: Chin. Phys. C41 (2017) 053106 [arxiv:1607.07713] F. Munir (IHEP) New

More information

Koji TSUMURA (NTU à Nagoya U.)

Koji TSUMURA (NTU à Nagoya U.) Koji TSUMURA (NTU à Nagoya U.) Toyama mini WS 20-21/2/2012 S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D80 015017 (2009) Outline The

More information

Beyond the Standard Model

Beyond the Standard Model 4 KIT, 6-10 February 12 Beyond the Standard Model Guido Altarelli Universita di Roma Tre CERN Solutions to the hierarchy problem Supersymmetry: boson-fermion symm. The most ambitious and widely accepted

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Walking in Monte-Carlo

Walking in Monte-Carlo University of Oxford MC4BSM, April 15 th 2010 m.frandsen1@physics.ox.ac.uk Outline 1 Bright and dark mass from Technicolor 2 3 Work in collaboration with: Alexander Belyaev (Southampton U.), Roshan Foadi

More information

Search for new physics in rare D meson decays

Search for new physics in rare D meson decays Search for new physics in rare D meson decays Svjetlana Fajfer and Sasa Prelovsek Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia XXXIII INTERNATIONAL CONFERENCE

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait Theory Perspective of Top Production: Top Resonances Tim M.P. Tait APS April Meeting May 3 2009 Outline Top Resonances are EVERYWHERE! Models, Models, and more Models High Mass Resonances and Boosted Tops

More information

XIV Frascati Spring School Bruno Touschek

XIV Frascati Spring School Bruno Touschek E = mc 2 Beyond the Standard Model: the LHC reach E = hν XIV Frascati Spring School Bruno Touschek R µν 1 2 Rg µν = 16πG T µν Ch!"o#e Grojean CERN-TH & CEA-Saclay/IPhT ( christophe.grojean@cern.ch ) Conclusions

More information

Longitudinal/Goldstone Boson Equivalence and Phenomenology of Probing the Electroweak Symmetry Breaking

Longitudinal/Goldstone Boson Equivalence and Phenomenology of Probing the Electroweak Symmetry Breaking July, 1995 VPI-IHEP-95-1 TUIMP-TH-95/67 MSUHEP-5071 Longitudinal/Goldstone Boson Equivalence and Phenomenology of Probing the Electroweak Symmetry Breaking Hong-Jian He Department of Physics and Institute

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

Extra-d geometry might also explain flavor

Extra-d geometry might also explain flavor Flavor and CP Solutions via~gim in Bulk RS LR with Liam Fitzpatrick, Gilad Perez -w/ Liam Fitzpatrick, Clifford Cheung Introduction Lots of attention devoted to weak scale Flavor and CP remain outstanding

More information

Theory of the ElectroWeak Interactions

Theory of the ElectroWeak Interactions Theory of the ElectroWeak Interactions Riccardo Barbieri 1st Summer School of ITN Corfu, September 4-15, 2011 1. The Standard Model: the indirect informations 2. Higgsless Grojean 3. The Higgs boson as

More information

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012 Koji TSUMURA (NTU Nagoya U.) @ KEK 16-18/2/2012 Outline: -Two-Higgs-doublet model -Leptophilic Higgs boson S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K.

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN The Higgs as a composite pseudo-goldstone boson Roberto Contino - CERN Part I: The need for an EWSB sector...... and how this could be strongly interacting The physics discovered so far: L = L 0 + L mass

More information

Extra Dimensional Signatures at CLIC

Extra Dimensional Signatures at CLIC Extra Dimensional Signatures at CLIC Thomas G. Rizzo SLAC A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e + e linear collider with a center

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

From Higgsless to Composite Higgs Models

From Higgsless to Composite Higgs Models From Higgsless to Composite Higgs Models E = mc 2 based on works in collaboration with E = hν G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP062007)045 R. Contino, M. Moretti, F. Puccinini

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012 How to tell apart non-standard EWSB mechanisms Veronica Sanz CERN and YORK Moriond 2012 In this talk What is standard? EWSB by elementary scalar(s) includes SM and SUSY What is non-standard? EWSB by -composite

More information

New Solutions to the Hierarchy Problem

New Solutions to the Hierarchy Problem 56 Brazilian Journal of Physics, vol. 37, no. 2B, June, 27 New Solutions to the Hierarchy Problem Gustavo Burdman Instituto de Física, Universidade de São Paulo Cidade Universitaria, São Paulo, SP, 558-9,

More information

Unitarization procedures applied to a Strongly Interacting EWSBS

Unitarization procedures applied to a Strongly Interacting EWSBS Unitarization procedures applied to a Strongly Interacting EWSBS Rafael L. Delgado A.Dobado, M.J.Herrero, Felipe J.Llanes-Estrada and J.J.Sanz-Cillero, 2015 Intern. Summer Workshop on Reaction Theory,

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

Weak boson scattering at the LHC

Weak boson scattering at the LHC Weak boson scattering at the LHC RADCOR 2009 Barbara Jäger University of Würzburg outline weak boson fusion at the LHC: Higgs production at high precision V V jj production @ NLO QCD strongly interacting

More information

Phenomenology for Higgs Searches at the LHC

Phenomenology for Higgs Searches at the LHC Phenomenology for Higgs Searches at the LHC in Composite Higgs Models Margherita Ghezzi Supervisor: dott. Roberto Contino Roma, 21/02/2012 Introduction Standard Model: SU(2) L U(1) Y U(1) Q Higgs mechanism

More information

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 OUTLINE How can Extra Dimensions explain the electroweak

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

A not so elementary Higgs boson

A not so elementary Higgs boson A not so elementary Higgs boson Corfu Summer Institute Workshop on Fields and Strings Sept. 14-18 2o11 Ch!"ophe Grojean CERN-TH & CEA-Saclay/IPhT ( christophe.grojean@cern.ch ) A not so elementary Higgs

More information

Electroweak Symmetry Breaking without Higgs Boson.

Electroweak Symmetry Breaking without Higgs Boson. Electroweak Symmetry Breaking without Higgs Boson. University College London Outline The Electroweak Chiral Langrangian (EWChL): Why and How. Application of the EWChL in the V L V L scattering to probe

More information

Theory and phenomenology of hidden U(1)s from string compactifications

Theory and phenomenology of hidden U(1)s from string compactifications Theory and phenomenology of hidden U(1)s from string compactifications Andreas Ringwald DESY Corfu Summer Institute Workshop on Cosmology and Strings, Sept. 6-13, 2009, Corfu, GR Theory and phenomenology

More information

Technicolored Strong Dynamics. Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions

Technicolored Strong Dynamics. Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions Technicolored Strong Dynamics Elizabeth H. Simmons Michigan State University - - - - Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions PASI (Buenos Aires) 7 March

More information

Constraining New Models with Precision Electroweak Data

Constraining New Models with Precision Electroweak Data Constraining New Models with Precision Electroweak Data Tadas Krupovnickas, BNL in collaboration with Mu-Chun Chen and Sally Dawson LoopFest IV, Snowmass, 005 EW Sector of the Standard Model 3 parameters

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

Dynamical Electroweak Symmetry Breaking from Extra Dimensions

Dynamical Electroweak Symmetry Breaking from Extra Dimensions DPNU-03-07 TU-686 UT-ICEPP 03-03 March 2003 Dynamical Electroweak Symmetry Breaking from Extra Dimensions Michio Hashimoto ICEPP, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

More information