ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING

Size: px
Start display at page:

Download "ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING"

Transcription

1 ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING Mroslav Rozložník jont work wth Jří Kopal, Alcja Smoktunowcz and Mroslav Tůma Insttute of Computer Scence, Czech Academy of Scences, Prague, Czech Republc 10th IMACS Internatonal Symposum on Iteratve Methods n Scentfc Computng, Marrakech, Morocco, May 18-21, 2011 Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 1 / 20

2 Orthogonalzaton wth a non-standard nner product A symmetrc postve defnte m m matrx Z (0) = [z (0) 1,..., z (0) n ] full column rank m n matrx A-orthogonal bass of span(z (0) ): Z = [z 1,..., z n] - m n matrx havng orthogonal columns wth respect to the nner product, A U upper trangular n n matrx Z (0) = ZU, Z T AZ = I (Z (0) ) T AZ (0) = U T U Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 2 / 20

3 Condton number of orthogonal and trangular factor Z T AZ = (A 1/2 Z) T (A 1/2 Z) = I = A 1/2 Z s orthogonal wth respect to the standard nner product A 1/2 Z (0) = (A 1/2 Z)U s a standard QR factorzaton κ(z) κ 1/2 (A) κ(u) = κ(a 1/2 Z (0) ) κ 1/2 (A)κ(Z (0) ) partcular case Z (0) = I: Z = U 1 upper trangular m n matrx κ(u) = κ(z) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 3 / 20

4 Approxmaton propertes of orthogonal factor Z T AZ = I ZZ T = Z (0) U 1 U T (Z (0) ) T = Z (0) [(Z (0) ) T AZ (0) ] 1 (Z (0) ) T AZZ T : orthogonal projector onto R(AZ (0) ) and orthogonal to R(Z (0) ) ZZ T A : orthogonal projector onto R(Z (0) ) and orthogonal to R(AZ (0) ) mportant case Z (0) square and nonsngular: nverse factorzaton ZZ T = A 1 Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 4 / 20

5 Important applcaton: approxmate nverse precondtonng Z gves the approxmate nverse Z Z T A 1 Ax = b Z T A Zy = Z T b, where x = Zy Ū approxmates the Cholesky factor of (Z (0) ) T AZ (0) the loss of orthogonalty Z T A Z I the factorzaton error Z (0) ZŪ Cholesky factorzaton error (Z (0) ) T AZ (0) ŪT Ū Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 5 / 20

6 Problem 1a (nverse Hlbert matrx) 10 5 A A+1e 14 A *rand(n,n) A+1e 12 A *rand(n,n) A+1e 10 A *rand(n,n) A+1e 8 A *rand(n,n) Loss of orthogonalty I Z T AZ = 0 = 1e 14 = 1e 12 = 1e 10 = 1e 8 u * A Z 2 X T X resdual norm r e 14 * A Z 2 X T X e 12 * A Z 2 X T X 1e 10 * A Z 2 X T X 1e 8 * A Z 2 X T X condton number (A) teraton n Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 6 / 20

7 Egenvalue based mplementaton - EIG 1. spectral decomposton A = VΛV T 2. QR factorzaton Λ 1/2 V T Z (0) = QU 3. orthogonal-dagonal-orthogonal matrx multplcaton Z = VΛ 1/2 Q backward stable egendecomposton + backward stable QR: Z T A Z I O(u) A Z 2 Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 7 / 20

8 Gram-Schmdt orthogonalzaton z (j) = z (j 1) α j z j z = z ( 1) /α, α = z 1 modfed Gram-Schmdt (MGS) algorthm SAINV algorthm: α j = z (j 1), z j A classcal Gram-Schmdt (CGS) algorthm: α j = z (0), z j A AINV algorthm: oblque projectons α j = z (j 1), z (0) j A /α jj A Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 8 / 20

9 Local errors n the (modfed) Gram-Schmdt process z (j) z (j) = z (j 1) α j z j α j = z (j 1), z j A, z j A = (1 z j 2 A ) z(j 1), z j A ( z (j), z j A = z (j) = z (j 1) ᾱ j z j ᾱ j = fl[ z (j 1), z j A ] fl[ z (j 1) ), z j A ] z (j 1), z j A z j 2 A Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 9 / 20

10 Loss of orthogonalty n the MGS algorthm: O(u)κ(A)κ(A 1/2 Z (0) ) < 1 I Z T A Z O(u) A Z 2 κ(a 1/2 Z (0) ) 1 O(u) A Z 2 κ(a 1/2 Z (0) ) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 10 / 20

11 Loss of orthogonalty n the CGS and AINV algorthms O(u)κ(A)κ(A 1/2 Z (0) )κ(z (0) ) < 1 I Z T A Z O(u) A 1/2 Z κ(a 1/2 Z (0) )κ 1/2 (A)κ(Z (0) ) 1 O(u) A 1/2 Z κ(a 1/2 Z (0) )κ 1/2 (A)κ(Z (0) ) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 11 / 20

12 Classcal Gram-Schmdt (CGS2) wth reorthogonalzaton z (1) = z (0) z (2) = z (1) P α (1) j z j, α (1) j = z (0), z j A 1 j=1 P α (2) j z j, α (2) j = z (1), z j A 1 j=1 z = z (2) /α, α = z (2) A O(u)κ 1/2 (A)κ(A 1/2 Z (0) ) < 1 I Z T A Z O(u) A Z 2 Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 12 / 20

13 Local errors n the nner product and normalzaton general postve defnte A : fl[ z (j 1), z j A ] z (j 1), z j A O(u) A z (j 1) z j 1 z j 2 A O(u) A z j 2 dagonal (weght matrx) A : fl[ z (j 1), z j A ] z (j 1), z j A O(u) z (j 1) A z j A 1 z j 2 A O(u) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 13 / 20

14 A dagonal smlar to orthogonalzaton wth the standard nner product MGS algorthm: CGS and AINV algorthms: CGS wth reorthogonalzaton: O(u)κ(A 1/2 Z (0) ) < 1 I Z T A Z O(u)κ(A1/2 Z (0) ) 1 O(u)κ(A 1/2 Z (0) ) O(u)κ 2 (A 1/2 Z (0) ) < 1 I Z T A Z O(u)κ2 (A 1/2 Z (0) ) 1 O(u)κ 2 (A 1/2 Z (0) ) O(u)κ(A 1/2 Z (0) ) < 1 I Z T A Z O(u) [standard nner product A = I; MGS: Björck 1967, Björck and Page 1992, CGS: Graud, Langou, R, van den Eshof 2005, Barlow, Langou, Smoktunowcz 2006, CGS2: Graud, Langou, R, van den Eshof 2005] [weghted least squares problem; MGS: Gullksson, Wedn 1992, Gullksson 1995] Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 14 / 20

15 Numercal experments - four extremal cases 1. κ 1/2 (A) κ(a 1/2 Z (0) ) 2. κ(a 1/2 Z (0) ) κ 1/2 (A) 3. A postve dagonal 4. Z (0) = I Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 15 / 20

16 10 0 Problem 9 (Hlbert matrx), κ(a) = 1.2e Loss of orthogonalty I Z T AZ MGS CGS CGS2 AINV EIG u κ(a) u κ(a) κ(a 1/2 Z (0) ) u κ(a) κ(a 1/2 Z (0) ) κ(z (0) ) condton number (A 1/2 Z (0) ) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 16 / 20

17 10 0 Problem 11 (Hlbert matrx) Loss of orthogonalty I Z T AZ MGS CGS CGS2 AINV EIG u κ(a) u κ(a) κ(a 1/2 Z (0) ) u κ(a) κ(a 1/2 Z (0) ) κ(z 0 ) condton number (A) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 17 / 20

18 10 0 Problem 3 (dagonal matrx) Loss of orthogonalty I Z T AZ MGS CGS CGS2 AINV EIG u κ(a 1/2 Z (0) ) u κ 2 (A 1/2 Z (0) ) condton number (A) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 18 / 20

19 10 0 Problem 6 (Hlbert matrx) Loss of orthogonalty I Z T AZ MGS CGS CGS2 AINV EIG u κ(a) u κ(a) κ(a 1/2 Z (0) ) u κ(a) κ(a 1/2 Z (0) ) κ(z 0 ) condton number (A) Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 19 / 20

20 Thank you for your attenton!!! Reference: J. Kopal, R, A. Smoktunowcz, and M. Tůma: Roundng error analyss of orthogonalzaton wth a non-standard nner product, submtted Mroslav Rozložník (ICS CAS) Orthogonalzaton wth a non-standard nner product 10th IMACS 20 / 20

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

On a Parallel Implementation of the One-Sided Block Jacobi SVD Algorithm

On a Parallel Implementation of the One-Sided Block Jacobi SVD Algorithm Jacob SVD Gabrel Okša formulaton One-Sded Block-Jacob Algorthm Acceleratng Parallelzaton Conclusons On a Parallel Implementaton of the One-Sded Block Jacob SVD Algorthm Gabrel Okša 1, Martn Bečka, 1 Marán

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

Developing an Improved Shift-and-Invert Arnoldi Method

Developing an Improved Shift-and-Invert Arnoldi Method Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (June 00) pp. 67-80 (Prevously, Vol. 5, No. ) Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) Developng an

More information

NUMERICS OF THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS

NUMERICS OF THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS NUMERICS OF THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS Miro Rozložník Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic email: miro@cs.cas.cz joint results with Luc Giraud,

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Introduction to Simulation - Lecture 5. QR Factorization. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 5. QR Factorization. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introducton to Smulaton - Lecture 5 QR Factorzaton Jacob Whte hanks to Deepak Ramaswamy, Mchal Rewensk, and Karen Veroy Sngular Example LU Factorzaton Fals Strut Jont Load force he resultng nodal matrx

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Lnear Algebra and ts Applcatons 4 (00) 5 56 Contents lsts avalable at ScenceDrect Lnear Algebra and ts Applcatons journal homepage: wwwelsevercom/locate/laa Notes on Hlbert and Cauchy matrces Mroslav Fedler

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

A COMPARATIVE STUDY OF SOME GREEDY PURSUIT ALGORITHMS FOR SPARSE APPROXIMATION

A COMPARATIVE STUDY OF SOME GREEDY PURSUIT ALGORITHMS FOR SPARSE APPROXIMATION A CARATIVE STUDY OF SOME GREEDY PURSUIT ALGORITHMS FOR SPARSE APPROXIMATION Gagan Rath 1 and Arabnda Sahoo 2 1 INRIA, Centre Rennes - Bretagne Atlantue Campus Unverstare de Beauleu 35042 Rennes, France

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems IMA Journal of Numercal Analyss (2005) Page of 29 do: 0.093/manum/ A Tuned Precondtoner for Inexact Inverse Iteraton Appled to Hermtan Egenvalue Problems MELINA A. FREITAG AND ALASTAIR SPENCE Department

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

A. Further Background on Gauss Quadrature

A. Further Background on Gauss Quadrature A. Further Background on Gauss Quadrature Gauss quadrature for matrx nverse forms wth applcatons We present below a more detaled summary of materal on Gauss quadrature to make the paper self-contaned.

More information

w ). Then use the Cauchy-Schwartz inequality ( v w v w ).] = in R 4. Can you find a vector u 4 in R 4 such that the

w ). Then use the Cauchy-Schwartz inequality ( v w v w ).] = in R 4. Can you find a vector u 4 in R 4 such that the Math S-b Summer 8 Homework #5 Problems due Wed, July 8: Secton 5: Gve an algebrac proof for the trangle nequalty v+ w v + w Draw a sketch [Hnt: Expand v+ w ( v+ w) ( v+ w ) hen use the Cauchy-Schwartz

More information

MATH Homework #2

MATH Homework #2 MATH609-601 Homework #2 September 27, 2012 1. Problems Ths contans a set of possble solutons to all problems of HW-2. Be vglant snce typos are possble (and nevtable). (1) Problem 1 (20 pts) For a matrx

More information

An Inequality for the trace of matrix products, using absolute values

An Inequality for the trace of matrix products, using absolute values arxv:1106.6189v2 [math-ph] 1 Sep 2011 An Inequalty for the trace of matrx products, usng absolute values Bernhard Baumgartner 1 Fakultät für Physk, Unverstät Wen Boltzmanngasse 5, A-1090 Venna, Austra

More information

DFT with Planewaves pseudopotential accuracy (LDA, PBE) Fast time to solution 1 step in minutes (not hours!!!) to be useful for MD

DFT with Planewaves pseudopotential accuracy (LDA, PBE) Fast time to solution 1 step in minutes (not hours!!!) to be useful for MD LLNL-PRES-673679 Ths work was performed under the auspces of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence Lvermore Natonal Securty, LLC Sequoa, IBM BGQ, 1,572,864 cores O(N)

More information

Robust Norm Equivalencies and Preconditioning

Robust Norm Equivalencies and Preconditioning Robust Norm Equvalences and Precondtonng Karl Scherer Insttut für Angewandte Mathematk, Unversty of Bonn, Wegelerstr. 6, 53115 Bonn, Germany Summary. In ths contrbuton we report on work done n contnuaton

More information

Overlapping additive and multiplicative Schwarz iterations for H -matrices

Overlapping additive and multiplicative Schwarz iterations for H -matrices Lnear Algebra and ts Applcatons 393 (2004) 91 105 www.elsever.com/locate/laa Overlappng addtve and multplcatve Schwarz teratons for H -matrces Rafael Bru a,1, Francsco Pedroche a, Danel B. Szyld b,,2 a

More information

Solutions to Problems of Numerical Methods I.

Solutions to Problems of Numerical Methods I. Solutons to Problems of Numercal Methods I Csaba J Hegedüs ELE, Faculty of Informatcs Budapest, 5 November egyzet az ELE Informatka Kar 5 év Jegyzetpályázatának támogatásával készült Lektorálta: Dr baffy

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

The FEAST Algorithm for Sparse Symmetric Eigenvalue Problems

The FEAST Algorithm for Sparse Symmetric Eigenvalue Problems The FEAST Algorthm for Sparse Symmetrc Egenvalue Problems Susanne Bradley Department of Computer Scence, Unversty of Brtsh Columba Abstract The FEAST algorthm s a method for computng extreme or nteror

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

Gram-Schmidt Orthogonalization: 100 Years and More

Gram-Schmidt Orthogonalization: 100 Years and More Gram-Schmidt Orthogonalization: 100 Years and More September 12, 2008 Outline of Talk Early History (1795 1907) Middle History 1. The work of Åke Björck Least squares, Stability, Loss of orthogonality

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Rounding error analysis of the classical Gram-Schmidt orthogonalization process

Rounding error analysis of the classical Gram-Schmidt orthogonalization process Cerfacs Technical report TR-PA-04-77 submitted to Numerische Mathematik manuscript No. 5271 Rounding error analysis of the classical Gram-Schmidt orthogonalization process Luc Giraud 1, Julien Langou 2,

More information

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell Orthogonal Functons and Fourer Seres Vector Spaces Set of ectors Closed under the followng operatons Vector addton: 1 + 2 = 3 Scalar multplcaton: s 1 = 2 Lnear combnatons: Scalars come from some feld F

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

VECTORS AND MATRICES:

VECTORS AND MATRICES: VECTORS AND MATRICES: Matrx: a rectangular array of elements Dmenson: rxc means r rows by b columns Example: A = [a ], =1,2,3; j=1,2 j In general: A = [a ], =1, r; j=1,...c j Multvarate observatons=vector:

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

Numerical Properties of the LLL Algorithm

Numerical Properties of the LLL Algorithm Numercal Propertes of the LLL Algorthm Frankln T. Luk a and Sanzheng Qao b a Department of Mathematcs, Hong Kong Baptst Unversty, Kowloon Tong, Hong Kong b Dept. of Computng and Software, McMaster Unv.,

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo Scalng and structural condton numbers Arnold Neumaer Insttut fur Mathematk, Unverstat Wen Strudlhofgasse 4, A-1090 Wen, Austra emal: neum@cma.unve.ac.at revsed, August 1996 Abstract. We ntroduce structural

More information

The Multiple Explicitly Restarted Arnoldi method (MERAM) involves multiple

The Multiple Explicitly Restarted Arnoldi method (MERAM) involves multiple A Comparson Between Parallel Multple Explctly Restarted and Explctly Restarted Block Arnold Methods N. Emad, S. Petton y z, and A. Sedrakan x Introducton The Multple Explctly Restarted Arnold method ()

More information

WHEN MODIFIED GRAM-SCHMIDT GENERATES A WELL-CONDITIONED SET OF VECTORS

WHEN MODIFIED GRAM-SCHMIDT GENERATES A WELL-CONDITIONED SET OF VECTORS IMA Journal of Numerical Analysis (2002) 22, 1-8 WHEN MODIFIED GRAM-SCHMIDT GENERATES A WELL-CONDITIONED SET OF VECTORS L. Giraud and J. Langou Cerfacs, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex

More information

Least-Squares Solutions of Generalized Sylvester Equation with Xi Satisfies Different Linear Constraint

Least-Squares Solutions of Generalized Sylvester Equation with Xi Satisfies Different Linear Constraint Advances n Lnear Algebra & Matrx heory 6 6 59-7 Publshed Onlne June 6 n ScRes. http://www.scrp.org/journal/alamt http://dx.do.org/.6/alamt.6.68 Least-Squares Solutons of Generalzed Sylvester Equaton wth

More information

2.5 Iterative Improvement of a Solution to Linear Equations

2.5 Iterative Improvement of a Solution to Linear Equations 2.5 Iteratve Improvement of a Soluton to Lnear Equatons 47 Dahlqust, G., and Bjorck, A. 1974, Numercal Methods (Englewood Clffs, NJ: Prentce-Hall), Example 5.4.3, p. 166. Ralston, A., and Rabnowtz, P.

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Parallel One-Sided Block Jacobi SVD Algorithm: I. Analysis and Design

Parallel One-Sided Block Jacobi SVD Algorithm: I. Analysis and Design Parallel One-Sded Block Jacob SVD Algorthm: I. Analyss and Desgn Gabrel Okša a Marán Vateršc a Mathematcal Insttute, Department of Informatcs, Slovak Academy of Scences, Bratslava, Slovak Republc Techncal

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

Applied Numerical Mathematics. Preconditioning linear systems via matrix function evaluation

Applied Numerical Mathematics. Preconditioning linear systems via matrix function evaluation Appled Numercal Mathematcs 62 (2012) 1804 1818 Contents lsts avalable at ScVerse ScenceDrect Appled Numercal Mathematcs www.elsever.com/locate/apnum Precondtonng lnear systems va matrx functon evaluaton

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

Bootstrap AMG for Markov Chain Computations

Bootstrap AMG for Markov Chain Computations Bootstrap AMG for Markov Chan Computatons Karsten Kahl Bergsche Unverstät Wuppertal May 27, 200 Outlne Markov Chans Subspace Egenvalue Approxmaton Ingredents of Least Squares Interpolaton Egensolver Bootstrap

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

Two-level Parallel Computation for Approximate Inverse with AISM Method

Two-level Parallel Computation for Approximate Inverse with AISM Method Vol 49 No 6 2164 2168 (June 2008) AISM 2 1 2 3 2 AISM SGI Orgn 2400 MPI PE16 PE 13672 Two-level Parallel Computaton for Approxmate Inverse wth AISM Method Lnje Zhang, 1 Kentaro Morya 2 and Takash Nodera

More information

Nahid Emad. Abstract. the Explicitly Restarted Block Arnoldi method. Some restarting strategies for MERAM are given.

Nahid Emad. Abstract. the Explicitly Restarted Block Arnoldi method. Some restarting strategies for MERAM are given. A Generalzaton of Explctly Restarted Block Arnold Method Nahd Emad Abstract The Multple Explctly Restarted Arnold s a technque based upon a multple use of Explctly Restarted Arnold method to accelerate

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Orthogonal Functons and Fourer Seres Fall 21 Don Fussell Vector Spaces Set of ectors Closed under the followng operatons Vector addton: 1 + 2 = 3 Scalar multplcaton: s 1 = 2 Lnear combnatons: Scalars come

More information

[7] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Clis, New Jersey, (1962).

[7] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Clis, New Jersey, (1962). [7] R.S. Varga, Matrx Iteratve Analyss, Prentce-Hall, Englewood ls, New Jersey, (962). [8] J. Zhang, Multgrd soluton of the convecton-duson equaton wth large Reynolds number, n Prelmnary Proceedngs of

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Preconditioning techniques in Chebyshev collocation method for elliptic equations

Preconditioning techniques in Chebyshev collocation method for elliptic equations Precondtonng technques n Chebyshev collocaton method for ellptc equatons Zh-We Fang Je Shen Ha-We Sun (n memory of late Professor Benyu Guo Abstract When one approxmates ellptc equatons by the spectral

More information

arxiv:cs/ v4 [cs.na] 17 Sep 2009

arxiv:cs/ v4 [cs.na] 17 Sep 2009 Nearly-Lnear Tme Algorthms for Precondtonng and Solvng Symmetrc, Dagonally Domnant Lnear Systems arxv:cs/0607105v4 [cs.na] 17 Sep 2009 Danel A. Spelman Department of Computer Scence Program n Appled Mathematcs

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

Adaptive Coarse Space Selection in the BDDC and the FETI-DP Iterative Substructuring Methods: Optimal Face Degrees of Freedom

Adaptive Coarse Space Selection in the BDDC and the FETI-DP Iterative Substructuring Methods: Optimal Face Degrees of Freedom Adaptve Coarse Space Selecton n the BDDC and the FETI-DP Iteratve Substructurng Methods: Optmal Face Degrees of Freedom Jan Mandel and Bedřch Sousedík 2 Department of Mathematcs, Unversty of Colorado at

More information

ECEN 667 Power System Stability Lecture 21: Modal Analysis

ECEN 667 Power System Stability Lecture 21: Modal Analysis ECEN 667 Power System Stablty Lecture 21: Modal Analyss Prof. Tom Overbye Dept. of Electrcal and Computer Engneerng Texas A&M Unversty, overbye@tamu.edu 1 Announcements Read Chapter 8 Homework 7 s posted;

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-015 Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and another set of ponts

More information

Generalization of the Dynamic Ordering for the One-Sided Block Jacobi SVD Algorithm: I. Analysis and Design

Generalization of the Dynamic Ordering for the One-Sided Block Jacobi SVD Algorithm: I. Analysis and Design Generalzaton of the Dynamc Orderng for the One-Sded Block Jacob SVD Algorthm: I. Analyss and Desgn Martn Bečka a Marán Vateršc a Mathematcal Insttute, Department of Informatcs, Slovak Academy of Scences,

More information

A NOTE ON THE COMPLEX MATRIX PROCRUSTES PROBLEM

A NOTE ON THE COMPLEX MATRIX PROCRUSTES PROBLEM A NOTE ON THE COMPLEX MATRIX PROCRUSTES PROBLEM J. Kskras G.D. Halkas Control Engneerng Research Centre, School of Engneerng Mathematcal Scences, Cty Unversty, Northampton Square, London EC1V 0HB, U.K.

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

An Inexact Krylov-Schur Algorithm for the Unitary Eigenvalue Problem

An Inexact Krylov-Schur Algorithm for the Unitary Eigenvalue Problem An Inexact Krylov-Schur Algorthm for the Untary Egenvalue Problem Roden J. A. Davd and Davd S. Watkns July 26, 2007 Abstract We present an effcent nexact mplctly restarted Arnold algorthm to fnd a few

More information

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem Fndng he Rghtmost Egenvalues of Large Sparse Non-Symmetrc Parameterzed Egenvalue Problem Mnghao Wu AMSC Program mwu@math.umd.edu Advsor: Professor Howard Elman Department of Computer Scences elman@cs.umd.edu

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

A Parallel Multisplitting Solution of the Least Squares Problem

A Parallel Multisplitting Solution of the Least Squares Problem NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Lnear Algebra Appl., 5, 11 31 (1998) A Parallel Multsplttng Soluton of the Least Squares Problem R. A. Renaut Department of Mathematcs, Arzona State Unversty,

More information

DIVIDE AND CONQUER LOW-RANK PRECONDITIONING TECHNIQUES

DIVIDE AND CONQUER LOW-RANK PRECONDITIONING TECHNIQUES DIVIDE AND CONQUER LOW-RANK PRECONDITIONING TECHNIQUES RUIPENG LI AND YOUSEF SAAD Abstract. Ths paper presents a precondtonng method based on a recursve multlevel lowrank approxmaton approach. The basc

More information

A Riemannian Limited-Memory BFGS Algorithm for Computing the Matrix Geometric Mean

A Riemannian Limited-Memory BFGS Algorithm for Computing the Matrix Geometric Mean A Remannan Lmted-Memory BFGS Algorthm for Computng the Matrx Geometrc Mean Xnru Yuan 1, Wen Huang 2, P.-A. Absl 2 and Kyle A. Gallvan 1 1 Florda State Unversty 2 Unversté Catholque de Louvan July 3, 2016

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

PRECONDITIONING TECHNIQUES IN CHEBYSHEV COLLOCATION METHOD FOR ELLIPTIC EQUATIONS

PRECONDITIONING TECHNIQUES IN CHEBYSHEV COLLOCATION METHOD FOR ELLIPTIC EQUATIONS ITERATIOAL JOURAL OF UMERICAL AALYSIS AD MODELIG Volume 15 umber 1-2 Pages 277 287 c 2018 Insttute for Scentfc Computng and Informaton PRECODITIOIG TECHIQUES I CHEBYSHEV COLLOCATIO METHOD FOR ELLIPTIC

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Least-Squares Systems and The QR factorization

Least-Squares Systems and The QR factorization Least-Squares Systems and The QR factorization Orthogonality Least-squares systems. The Gram-Schmidt and Modified Gram-Schmidt processes. The Householder QR and the Givens QR. Orthogonality The Gram-Schmidt

More information

Detecting Attribute Dependencies from Query Feedback

Detecting Attribute Dependencies from Query Feedback Detectng Attrbute Dependences from Query Feedback Peter J. Haas 1, Faban Hueske 2, Volker Markl 1 1 IBM Almaden Research Center 2 Unverstät Ulm VLDB 2007 Peter J. Haas The Problem: Detectng (Parwse) Dependent

More information

On a class of preconditioners for solving the Helmholtz equation

On a class of preconditioners for solving the Helmholtz equation Appled Numercal athematcs 50 (2004) 409 425 www.elsever.com/locate/apnum On a class of precondtoners for solvng the Helmholtz equaton Y.A. Erlangga,C.Vuk,C.W.Oosterlee Department of Appled athematcal Analyss,

More information

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012 Effects of Ignorng Correlatons When Computng Sample Ch-Square John W. Fowler February 6, 0 It can happen that ch-square must be computed for a sample whose elements are correlated to an unknown extent.

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Key words. multilinear algebra, singular value decomposition, tensor decomposition, low rank approximation

Key words. multilinear algebra, singular value decomposition, tensor decomposition, low rank approximation ON THE TENSOR SVD AND THE OPTIMAL LOW RANK ORTHOGONAL APPROXIMATION OF TENSORS JIE CHEN AND YOUSEF SAAD Abstract. It s known that a hgher order tensor does not necessarly have an optmal low rank approxmaton,

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

A RELAXED SUFFICIENT CONDITION FOR ROBUST STABILITY OF AFFINE SYSTEMS

A RELAXED SUFFICIENT CONDITION FOR ROBUST STABILITY OF AFFINE SYSTEMS Доклади на Българската академия на науките Comptes rendus de l Académe bulgare des Scences Tome 60 No 9 2007 SCIENCES ET INGENIERIE Théore des systèmes A RELAXED SUFFICIENT CONDITION FOR ROBUST STABILITY

More information

2 LATERAL TORSIONAL BUCKLING OF AN IDEAL BEAM WITHOUT LATERAL RESTRAINTS

2 LATERAL TORSIONAL BUCKLING OF AN IDEAL BEAM WITHOUT LATERAL RESTRAINTS 0.55/tvsb-05-000 Transactons of the VŠB Techncal Unversty of Ostrava No., 05, Vol. 5, Cvl Engneerng Seres paper #0 Ivan BALÁZS, Jndřch MELCHER STABILITY OF THIN-WALLED BEAMS WITH LATERAL CONTINUOUS RESTRAINT

More information

ANALYSIS OF PROJECTION METHODS FOR SOLVING LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

ANALYSIS OF PROJECTION METHODS FOR SOLVING LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES SIAM J. SCI. COMPUT. c 997 Socety for Industral and Appled Mathematcs Vol. 8, No. 6, pp. 698 72, November 997 009 ANALYSIS OF PROJECTION METHODS FOR SOLVING LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Stability analysis for class of switched nonlinear systems

Stability analysis for class of switched nonlinear systems Stablty analyss for class of swtched nonlnear systems The MIT Faculty has made ths artcle openly avalable. Please share how ths access benefts you. Your story matters. Ctaton As Publshed Publsher Shaker,

More information

A stable variant of Simpler GMRES and GCR

A stable variant of Simpler GMRES and GCR A stable variant of Simpler GMRES and GCR Miroslav Rozložník joint work with Pavel Jiránek and Martin H. Gutknecht Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic miro@cs.cas.cz,

More information

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros Appled Mathematcal Scences, Vol. 5, 2011, no. 75, 3693-3706 On the Interval Zoro Symmetrc Sngle-step Procedure for Smultaneous Fndng of Polynomal Zeros S. F. M. Rusl, M. Mons, M. A. Hassan and W. J. Leong

More information