Introduction to Simulation - Lecture 5. QR Factorization. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Size: px
Start display at page:

Download "Introduction to Simulation - Lecture 5. QR Factorization. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy"

Transcription

1 Introducton to Smulaton - Lecture 5 QR Factorzaton Jacob Whte hanks to Deepak Ramaswamy, Mchal Rewensk, and Karen Veroy

2 Sngular Example LU Factorzaton Fals Strut Jont Load force he resultng nodal matrx s SINGULAR, but a soluton exsts!

3 Sngular Example LU Factorzaton Fals v v v3 v4 he resultng nodal matrx s SINGULAR, but a soluton exsts!

4 Sngular Example Recall weghted sum of columns vew of systems of equatons x b x b M M MN = xn bn xm + xm + + x M = b N N M s sngular but b s n the span of the columns of M

5 Orthogonal columns mples: M M = 0 j j Orthogonalzaton If M has orthogonal columns Multplyng the weghted columns equaton by th column: M xm + xm + + x M = M b ( ) N N Smplfyng usng orthogonalty: x M M = M b x = ( ) M b ( M ) M

6 Orthogonalzaton Orthonormal M - Pcture M s orthonormal f: M M = 0 j and M M = j Pcture for the two-dmensonal case M M b Non-orthogonal Case M x x Orthogonal Case b M

7 Orthogonalzaton QR Algorthm Key Idea x b x b M M M N = xn bn Orgnal Matrx y b y b Q Q QN = yn bn Matrx wth Orthonormal Columns Qy = b y = Q b How to perform the converson?

8 Orthogonalzaton Projecton Formula Gven M, M, fnd Q= M rm so that M ( ) Q= M M rm = 0 M M r = M M M Q r M

9 Orthogonalzaton Normalzaton Formulas smplfy f we normalze Q = M = M Q Q = M M r Now fnd Q = M rq so that Q Q = 0 r = Q M Fnally Q = Q = Q Q r Q

10 Orthogonalzaton How was a x matrx converted? Snce Mx should equal Qy, we can relate x to y x y M M = xm + x M = Q Q = yq + y Q x y M = r Q M = r Q + r Q r r x y 0 r = x y

11 Orthogonalzaton he x QR Factorzaton x r r x b M M Q Q x = = 0 r x b Upper rangular Orthonormal wo Step Solve Gven QR Step ) QRx = b Rx = Q b = b Step ) Backsolve Rx = b

12 Orthogonalzaton he General Case 3x3 Case M M M3 M M rm M3 r 3M r3m o Insure the thrd column s orthogonal M ( M r ) 3M r M M M r M r M = 3 3 = 0 ( )

13 ( r3 r ) ( r3 r ) Orthogonalzaton M M M M M M M M = Must Solve Equatons for Coeffcents n 3x3 Case 3 3 = M M M M r M M 3 3 M M M M r = 3 M M 3

14 Orthogonalzaton Must Solve Equatons for Coeffcents o Orthogonalze the Nth Vector M M M M N r, N M M N = M M M M r M M N N N N, N N N N nner products requres N 3 work

15 3x3 Case Orthogonalzaton Use prevously orthogonalzed vectors M M M3 M M r Q M3 r3q r 3Q o Insure the thrd column s orthogonal Q M Q Q = 0 r = Q M ( r r ) Q M Q Q = 0 r = Q M ( r r )

16 Basc Algorthm Modfed Gram-Schmdt For = to N For each Source Column r = M M N Normalze N N = Q = M r For j = + to N { r j M j Q M M r Q j j j operatons For each target Column rght of source N = 3 ( N ) N N operatons

17 Basc Algorthm By Pcture Q Q Q Q 3 N r r r r 0 r r r 0 0 r r r 3 N 3 N 33 3N NN

18 Basc Algorthm By Pcture QM MQ MQ 3 QM 44 r r r3 r4 r r3 r4 r 33 r 34 r 44

19 Basc Algorthm Zero Column Q What f a Column becomes Zero? M M N Matrx MUS BE Sngular! r r r3 r N ) Do not try to normalze the column. ) Do not use the column as a source for orthogonalzaton. 3) Perform backward substtuton as well as possble

20 Basc Algorthm Zero Column Contnued Resultng QR Factorzaton 0 Q 0 Q3 Q N 0 r r r r r r r 3 N 33 3N NN

21 Sngular Example Recall weghted sum of columns vew of systems of equatons x b x b M M MN = xn bn wo Cases when M s sngular xm + xm + + x M = b N N Case ) b span{ M,.., MN} b span{ Q,.., QN} Case ) b span{ M,.., M }, How accurate s x? N

22 Mnmzaton Vew Alternatve Formulatons Defnton of the Resdual R: R x b Mx ( ) Fnd x whch satsfes Mx = b Mnmze over all x ( ) R x R x = R x ( ) ( ) ( ) N = Equvalent f b span cols M { ( )} ( ) ( ) Mx = b and mnx R x R x = 0 Mnmzaton extends to non-sngular or nonsquare case!

23 Mnmzaton Vew One-dmensonal Mnmzaton Suppose x= xe and therefo re Mx= xme = xm One dmensonal Mnmzaton R x R x = b xme b xme d dx ( ) ( ) ( ) ( ) = bb xbme + x Me Me ( ) ( ) ( ) ( ) ( ) R x R x = bme ( ) + x Me Me = 0 bme x = e M Me Normalzaton

24 Mnmzaton Vew One-dmensonal Mnmzaton, Pcture Me = M bme x b x = e M Me e One dmensonal mnmzaton yelds same result as projecton on the column!

25 Now Mnmzaton Vew wo-dmensonal Mnmzaton x= xe + x e and Mx= xme + x Me Resdual Mnmzaton R x R x = b x Me x Me b x Me x Me ( ) = b b xb ( ) Me + x Me Me ( ) xb ( ) Me + x Me Me + x x Me Me ( ) ( ) ( ) ( ) Couplng erm ( ) ( )

26 Mnmzaton Vew wo-dmensonal Mnmzaton Contnued More General Search Drectons x= v p + v p and Mx= vmp + v Mp span p, p = span e, e { } { } R x R x = b b vb Mp + v Mp Mp ( ) ( ) ( ) ( ) If Couplng erm p M Mp = vb Mp v Mp Mp + + v v Mp Mp ( ) ( ) ( ) ( ) 0 Mnmzatons Decouple!!

27 Mnmzaton Vew Formng M M orthogonal Mnmzaton Drectons th search drecton equals M M orthogonalzed unt vector p e rjpj p M Mpj j= = = r = j ( Mp ) ( Me ) j ( Mp ) ( Mp ) j j 0 Use prevous orthogonalzed Search drectons

28 Mnmzaton Vew Mnmzng n the Search Drecton Decoupled mnmzatons done ndvdually ( ) Mnmze: ( ) v Mp Mp vb Mp Dfferentatng: v Mp Mp b Mp = 0 v = ( ) ( ) Mp bmp ( ) ( ) Mp

29 Mnmzaton Vew Mnmzaton Algorthm For = to N For each arget Column p = e For j = to - For each Source Column left of target r r = j Mp p p r x= x+ v p p j M Mp j j Mp p p r p Orthogonalze Search Drecton Normalze search drecton

30 Mnmzaton and QR Comparson Q Q Q N Orthonormal M M M e r p e ( ) r p r e rn N p ( e ) rne N M M Orthonormal

31 Search Drecton Orthogonalzed { e }, e unt vectors search drectons,, e {,, } N p p N Unt Vectors Search Drectons M M Orthogonalzaton Could use other sets of startng vectors { bmbmb,,, } {,, p } p N Krylov-Subspace Search Drectons M M Orthogonalzaton Why?

32 Summary QR Algorthm Projecton Formulas Orthonormalzng the columns as you go Modfed Gram-Schmdt Algorthm QR and Sngular Matrces Matrx s sngular, column of Q s zero. Mnmzaton Vew of QR Basc Mnmzaton approach Orthogonalzed Search Drectons QR and Length mnmzaton produce dentcal results Mentoned changng the search drectons

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras CS4495/6495 Introducton to Computer Vson 3C-L3 Calbratng cameras Fnally (last tme): Camera parameters Projecton equaton the cumulatve effect of all parameters: M (3x4) f s x ' 1 0 0 0 c R 0 I T 3 3 3 x1

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

w ). Then use the Cauchy-Schwartz inequality ( v w v w ).] = in R 4. Can you find a vector u 4 in R 4 such that the

w ). Then use the Cauchy-Schwartz inequality ( v w v w ).] = in R 4. Can you find a vector u 4 in R 4 such that the Math S-b Summer 8 Homework #5 Problems due Wed, July 8: Secton 5: Gve an algebrac proof for the trangle nequalty v+ w v + w Draw a sketch [Hnt: Expand v+ w ( v+ w) ( v+ w ) hen use the Cauchy-Schwartz

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING

ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING Mroslav Rozložník jont work wth Jří Kopal, Alcja Smoktunowcz and Mroslav Tůma Insttute of Computer Scence, Czech

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-015 Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and another set of ponts

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 48/58 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 48/58 7. Robot Dynamcs 7.5 The Equatons of Moton Gven that we wsh to fnd the path q(t (n jont space) whch mnmzes the energy

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

Lecture 2: Prelude to the big shrink

Lecture 2: Prelude to the big shrink Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120a-style regresson

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

A New Algorithm for Finding a Fuzzy Optimal. Solution for Fuzzy Transportation Problems

A New Algorithm for Finding a Fuzzy Optimal. Solution for Fuzzy Transportation Problems Appled Mathematcal Scences, Vol. 4, 200, no. 2, 79-90 A New Algorthm for Fndng a Fuzzy Optmal Soluton for Fuzzy Transportaton Problems P. Pandan and G. Nataraan Department of Mathematcs, School of Scence

More information

If we apply least squares to the transformed data we obtain. which yields the generalized least squares estimator of β, i.e.,

If we apply least squares to the transformed data we obtain. which yields the generalized least squares estimator of β, i.e., Econ 388 R. Butler 04 revsons lecture 6 WLS I. The Matrx Verson of Heteroskedastcty To llustrate ths n general, consder an error term wth varance-covarance matrx a n-by-n, nxn, matrx denoted as, nstead

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 3: Operating with Complex Numbers Instruction

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 3: Operating with Complex Numbers Instruction Prerequste Sklls Ths lesson requres the use of the followng sklls: understandng that multplyng the numerator and denomnator of a fracton by the same quantty produces an equvalent fracton multplyng complex

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

Differential Polynomials

Differential Polynomials JASS 07 - Polynomals: Ther Power and How to Use Them Dfferental Polynomals Stephan Rtscher March 18, 2007 Abstract Ths artcle gves an bref ntroducton nto dfferental polynomals, deals and manfolds and ther

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

actuary )uj, problem L It X Projection approximation Orthogonal subspace of !- ( iii. ( run projection of Pcxzll rim orthogonal ( Nuu, y H, ye W )

actuary )uj, problem L It X Projection approximation Orthogonal subspace of !- ( iii. ( run projection of Pcxzll rim orthogonal ( Nuu, y H, ye W ) dmensonal ( Note thot rm t w ; n ( ( run u! ( t E 21 k f } actuary uj n ( Nuu h rate h Hutt O Snce when Truth Klment we also have wht Lu te It k} Orthogonal Projecton let W be an un subspace a Eucldean

More information

arxiv: v1 [quant-ph] 6 Sep 2007

arxiv: v1 [quant-ph] 6 Sep 2007 An Explct Constructon of Quantum Expanders Avraham Ben-Aroya Oded Schwartz Amnon Ta-Shma arxv:0709.0911v1 [quant-ph] 6 Sep 2007 Abstract Quantum expanders are a natural generalzaton of classcal expanders.

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

A combinatorial problem associated with nonograms

A combinatorial problem associated with nonograms A combnatoral problem assocated wth nonograms Jessca Benton Ron Snow Nolan Wallach March 21, 2005 1 Introducton. Ths work was motvated by a queston posed by the second named author to the frst named author

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

MEM Chapter 4b. LMI Lab commands

MEM Chapter 4b. LMI Lab commands 1 MEM8-7 Chapter 4b LMI Lab commands setlms lmvar lmterm getlms lmedt lmnbr matnbr lmnfo feasp dec2mat evallm showlm setmvar mat2dec mncx dellm delmvar gevp 2 Intalzng the LMI System he descrpton of an

More information

Least-Squares Fitting of a Hyperplane

Least-Squares Fitting of a Hyperplane Least-Squares Fttng of a Hyperplane Robert K. Monot October 20, 2002 Abstract A method s developed for fttng a hyperplane to a set of data by least-squares, allowng for ndependent uncertantes n all coordnates

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

An Inequality for the trace of matrix products, using absolute values

An Inequality for the trace of matrix products, using absolute values arxv:1106.6189v2 [math-ph] 1 Sep 2011 An Inequalty for the trace of matrx products, usng absolute values Bernhard Baumgartner 1 Fakultät für Physk, Unverstät Wen Boltzmanngasse 5, A-1090 Venna, Austra

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Developing an Improved Shift-and-Invert Arnoldi Method

Developing an Improved Shift-and-Invert Arnoldi Method Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (June 00) pp. 67-80 (Prevously, Vol. 5, No. ) Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) Developng an

More information

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

), &(do), A ) is the (Krylov) MGMRES: A Generalization of GMRES for Solving Large Sparse Nomymetric Linear Systems

), &(do), A ) is the (Krylov) MGMRES: A Generalization of GMRES for Solving Large Sparse Nomymetric Linear Systems I. MGMRES: A Generalzaton of GMRES for Solvng Large Sparse Nomymetrc Lnear Systems Davd M.Young and Jen Yuan Chen Center for Numercal Analyas The Unversty of Texaa at Aurrtn Austn, Texas We are concerned

More information

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i MTH 819 Algebra I S13 Homework 1/ Solutons Defnton A. Let R be PID and V a untary R-module. Let p be a prme n R and n Z +. Then d p,n (V) = dm R/Rp p n 1 Ann V (p n )/p n Ann V (p n+1 ) Note here that

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information