Detecting Attribute Dependencies from Query Feedback

Size: px
Start display at page:

Download "Detecting Attribute Dependencies from Query Feedback"

Transcription

1 Detectng Attrbute Dependences from Query Feedback Peter J. Haas 1, Faban Hueske 2, Volker Markl 1 1 IBM Almaden Research Center 2 Unverstät Ulm VLDB 2007 Peter J. Haas

2 The Problem: Detectng (Parwse) Dependent Attrbutes Example: Color and Year are ndependent f F( Color = red AND Year = 2005 ) = F ( Color = red ) x F (Year = 2005 ) F( Color = blue AND Year = 2007 ) = F (Color = blue ) x F ( Year = 2007 ) etc. F ( P ) = fracton of rows n table that satsfy predcate P Dependence = sgnfcant departure from ndependence Detecton needed for automatc statstcs confguraton n query optmzers Whch multvarate statstcs should we keep? Need to rank the dependences (lmted space budget) Other uses nclude Schema dscovery for data ntegraton Data mnng (dependency dagrams) Root-cause analyss and system montorng Approaches to detecton and rankng: proactve and reactve 2

3 Outlne Prevous approaches Proactve approach: CORDS Reactve approaches: SASH, Correlaton analyzer Our new reactve approach Dependency detecton Handlng ncomplete feedback, nconsstences Rankng Expermental Results 3

4 A Proactve Approach: CORDS [IMH+, SIGMOD 04] Sample the relaton (or vew) and compute a contngency table: Blue Green Red Compute (robust) ch-squared statstc 2 χ 2 Declare dependency f χ > t Both t and sample sze chosen usng ch-squared theory Can rank attrbute pars by mean-square contngency dstance (MSCD) Normalzed ch-squared statstc ( 200 ( 2670 )( 2670 ) 2670) ( )( ) ( O E) = = + E

5 Reactve Approaches Query System Catalog RUNSTATS Profle Optmzer Analyss Plan Executon Est Card Act Card Populaton Feedback Warehouse Result Focus system resources on nterestng attrbutes Complement proactve approaches Can explot DB2 feedback warehouse 5

6 A Spectrum of Reactve Approaches Correlaton Analyzer (CA) [AHL+, VLDB 04] Our Approach SASH [LWV, VLDB 03] Smple and Cheap Sophstcated and Expensve 6

7 Correlaton Analyzer Uses multple observatons (actuals) for each attrbute par O 1 = {(blue,2005): 0.02, (blue): 0.2, (2005): 0.103} O 2 = {(red,2006): 0.07, (red): 0.82, (2006): 0.11} etc. Computes rato for each par and compares to 1!, e.g. [0.9,1.1] O 1 : 0.02 / (0.2 x 0.103) = 0.97 ndependent O 2 : 0.07 / (0.82 x 0.11) = 0.77 dependent Attrbute dependency f two or more observatons look dependent Ranks attrbutes by weghted sum of volatons Problems Ad hoc procedures, wasted nformaton Unstable: depends on amount, orderng of feedback 7

8 Outlne Prevous approaches Proactve approach: CORDS Reactve approaches: SASH, Correlaton analyzer Our new reactve approach Dependency detecton Handlng ncomplete feedback, nconsstences Rankng Expermental Results 8

9 A New Approach to Dependency Dscovery Lke CORDS, but uses ncomplete contngency table wth exact entres Blue Green Red ?? ?? ???? 450? Declare dependency f H M > u (where H M s our new test statstc) Crtcal value u from extenson of classcal ch-squared theory Normalze H M to get rankng metrc 9

10 The H M Statstc Set H M = M x t Qx M = number of rows n table x =(O E ) / E Q s pseudo-nverse of Σ Note: 1 [,j [ # observatons r = rank of Q fαβ = fracton of rows wth ta. = α and tb. = β (1 fα )(1 ) fβ f = j fα fβ 1 f α f j, α = αj, and β βj Σ f j = α 1 fβ f j, α αj, and β = βj fβ 1 f j, α αj, and β βj Propertes: smlar to H M 0 2 χ H M = 0 ff observatons consstent wth ndependence Larger H M u less consstent wth ndependence 10

11 Choosng the Threshhold u Superpopulaton approach Assume A and B generated by truly ndependent mechansm Theorem: Under ths model, for large # of rows, H M has approxmately a χ 2 r dstrbuton Choose u as (1 p) quantle of for small p. Then Prob χ 2 r { } Prob { χ 2 } M r H > u > u = p 11

12 Mssng Feedback Most mportant case: O = { (blue,2005): 0.02, (blue): 0.2, (2005):? } Assume optmzer estmate of (2005) frequency avalable Assume (rough) upper bound on abs(relatve error of estmate) Can obtan from feedback-warehouse records Fll n mssng frequency for (2005) Derve rough bounds on true value: l [ F (2005) [ u Make frequency as ndependent as possble (conservatve) E.g., F (2005) = 0.1 and E = r 1 = 0 Consder ALL observatons wth mssng (2005) frequency Mnmze Σ (E ) 2 (closed-form soluton avalable) 12

13 Handlng Inconsstency Problem: No full multvarate frequency dstrbuton consstent wth feedback Records collected at dfferent tme ponts Inserts/deletes/updates n between feedback observatons Soluton method 1: use tmestamps to resolve conflcts Soluton method 2: lnear programmng Obtan mnmal adjustment of frequences needed for consstency + mn w ( s + s ) s.t. F(blue,2005) + s s = 0.2 color F(2005) + s s = 0.3 F(2005,color) = F(2005) + s, s 0 for all F '(blue,2005) = F(blue,2005) s + s

14 Rankng Attrbute Pars Problem: normalze H M ( = M xt Q x) to le n [0,1] Guaranteed (conservatve) normalzaton Based on Courant-Fscher Mnmax Theorem * 2 * H η = Md x, where d = largest egenvalue of Q M Can be numercally unstable (huge values of ) Heurstc normalzatons H / z M Table Cardnalty Mnmal number of dstnct values Degrees of freedom of ch-squared dstrbuton 2 χ r 0.99 Quantle of ( effectve upper bound) 14

15 Outlne Prevous approaches Proactve approach: CORDS Reactve approaches: SASH, Correlaton analyzer Our new reactve approach Dependency detecton Handlng ncomplete feedback, nconsstences Rankng Expermental Results 15

16 Normalzaton Constants Rankngs relatvely consstent for dfferent z (choce s not too crtcal) Best results: degrees of freedom, quantles ( hgh probablty upper bound) 16

17 Rankng vs Amount of Feedback New method: Correlaton analyzer: 17

18 Dependency Measure vs Amount of Feedback New method: Correlaton analyzer: Dependency measure Dependency measure 18

19 Executon Tme O(n 3 ) theoretcal complexty Subsecond executon tme for up to 250 feedback records Tmes based on prelmnary Java mplementaton 19

20 Obtanng Practcal Executon Tmes Samplng Stable results wth small # of obs. Sub-second response tmes Incremental mantenance of H M = M x t Q x New observaton = add new row + new column to Σ Want to update Q drectly Q = pseudo-nverse of Σ Apply SVD updatng methods Σ As n latent semantc ndexng E.g., foldng-n method O(k 2 ) 20

21 Conclusons Dependence s everywhere! Query feedback s an effectve way to detect dependence Ch-squared extenson to mplement detecton Attrbutes can be n multple tables Effectve rankng methods Practcal solutons for handlng nconsstent or mssng feedback Acceptable performance usng samplng and ncremental mantenance 21

22 Future Work Hgher-level dependences 6000 Worst-case Error Factor Sngle Column 2 Columns 3 Columns Order of CG Statstcs Full ntegraton of proactve and reactve methods Cf. Aboulnaga et al. [VLDB 2004] 22

23 The End IBM Research My web page: LEO (LEarnng Optmzer) project: research.nsf/pages/r.datamgmt.nnovaton.html 23

24 The End IBM Research Backup Sldes 24

25 The H M Statstc (Based on n Observatons) fαβ fα f β Set x = for = 1,2,, n f f α β f αβ = fracton of rows wth ta. = α and tb. = β Set Σ= Σ j, where (1 fα )(1 ) fβ f = j fα fβ 1 f α f j, α = α j, and β βj Σ f j = α 1 fβ f j, α α j, and β = βj fβ 1 f j, α α j, and β βj 25

26 The H M Statstc, Contnued Symmetrc Shur decomposton: where D = dag( d, d,, d ) 1 2 Set D = dag( d, d,, d ), where d 1 2 1/ d f d > 0 = 0 f d = 0 t Set Q = G DG Set M = # rows n table Then HM = t Mx Qx n n t Σ= GDG Q s pseudo-nverse of Σ: QΣ=Σ Q = I Set r = r( Q) = # postve dagonal entres n D r 26

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2 ISQS 6348 Fnal Open notes, no books. Ponts out of 100 n parentheses. 1. The followng path dagram s gven: ε 1 Y 1 ε F Y 1.A. (10) Wrte down the usual model and assumptons that are mpled by ths dagram. Soluton:

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Adjusted Control Lmts for U Charts Copyrght 207 by Taylor Enterprses, Inc., All Rghts Reserved. Adjusted Control Lmts for U Charts Dr. Wayne A. Taylor Abstract: U charts are used

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting Onlne Appendx to: Axomatzaton and measurement of Quas-hyperbolc Dscountng José Lus Montel Olea Tomasz Strzaleck 1 Sample Selecton As dscussed before our ntal sample conssts of two groups of subjects. Group

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture k r Factorial Designs with Replication

Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture k r Factorial Designs with Replication EEC 66/75 Modelng & Performance Evaluaton of Computer Systems Lecture 3 Department of Electrcal and Computer Engneerng Cleveland State Unversty wenbng@eee.org (based on Dr. Ra Jan s lecture notes) Outlne

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Chapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J one-way layout two-way layout

Chapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J one-way layout two-way layout Serk Sagtov, Chalmers and GU, February 0, 018 Chapter 1. Analyss of varance Chapter 11: I = samples ndependent samples pared samples Chapter 1: I 3 samples of equal sze one-way layout two-way layout 1

More information

Sketching Sampled Data Streams

Sketching Sampled Data Streams Sketchng Sampled Data Streams Florn Rusu and Aln Dobra CISE Department Unversty of Florda March 31, 2009 Motvaton & Goal Motvaton Multcore processors How to use all the processng power? Parallel algorthms

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MDL-Based Unsupervised Attribute Ranking

MDL-Based Unsupervised Attribute Ranking MDL-Based Unsupervsed Attrbute Rankng Zdravko Markov Computer Scence Department Central Connectcut State Unversty New Brtan, CT 06050, USA http://www.cs.ccsu.edu/~markov/ markovz@ccsu.edu MDL-Based Unsupervsed

More information

ANOVA. The Observations y ij

ANOVA. The Observations y ij ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Informaton Search and Management Probablstc Retreval Models Prof. Chrs Clfton 7 September 2018 Materal adapted from course created by Dr. Luo S, now leadng Albaba research group 14 Why probabltes

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

Low correlation tensor decomposition via entropy maximization

Low correlation tensor decomposition via entropy maximization CS369H: Herarches of Integer Programmng Relaxatons Sprng 2016-2017 Low correlaton tensor decomposton va entropy maxmzaton Lecture and notes by Sam Hopkns Scrbes: James Hong Overvew CS369H). These notes

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experments- MODULE LECTURE - 6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Two-way classfcaton wth nteractons

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Factor models with many assets: strong factors, weak factors, and the two-pass procedure Factor models wth many assets: strong factors, weak factors, and the two-pass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGE-EI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva

More information

CSC 411 / CSC D11 / CSC C11

CSC 411 / CSC D11 / CSC C11 18 Boostng s a general strategy for learnng classfers by combnng smpler ones. The dea of boostng s to take a weak classfer that s, any classfer that wll do at least slghtly better than chance and use t

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

A Note on Test of Homogeneity Against Umbrella Scale Alternative Based on U-Statistics

A Note on Test of Homogeneity Against Umbrella Scale Alternative Based on U-Statistics J Stat Appl Pro No 3 93- () 93 NSP Journal of Statstcs Applcatons & Probablty --- An Internatonal Journal @ NSP Natural Scences Publshng Cor A Note on Test of Homogenety Aganst Umbrella Scale Alternatve

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

1 Derivation of Point-to-Plane Minimization

1 Derivation of Point-to-Plane Minimization 1 Dervaton of Pont-to-Plane Mnmzaton Consder the Chen-Medon (pont-to-plane) framework for ICP. Assume we have a collecton of ponts (p, q ) wth normals n. We want to determne the optmal rotaton and translaton

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

Statistics Spring MIT Department of Nuclear Engineering

Statistics Spring MIT Department of Nuclear Engineering Statstcs.04 Sprng 00.04 S00 Statstcs/Probablty Analyss of eperments Measurement error Measurement process systematc vs. random errors Nose propertes of sgnals and mages quantum lmted mages.04 S00 Probablty

More information