Genetic simplex model in the classical twin design. Conor Dolan & Sanja Franic. Boulder Workshop 2016

Size: px
Start display at page:

Download "Genetic simplex model in the classical twin design. Conor Dolan & Sanja Franic. Boulder Workshop 2016"

Transcription

1 Genetic simplex model in the classical twin design Conor Dolan & Sanja Franic Boulder Workshop 206 boulder 206 dolan & franic simplex model

2 Two general approaches to longitudinal modeling (not mutually exclusive) Markov models: (Vector) autoregressive models for continuous data (Hidden) Markov transition models discrete data Growth curve models: Focus on linear and non linear growth curves Typically multilevel or random effects model Which to use? Use the model that fit the theory / data / hypotheses boulder 206 dolan & franic simplex model 2

3 Growth curve modeling? If you re interested in growth trajectories. Linear or non linear: Autoregressive modeling? If you re mainly interested in stability. Can be combined (this afternoon) boulder 206 dolan & franic simplex model 3

4 First order autoregression model. A (quasi) simplex model (var(e)>0). x x x b2, b3,2 b4,3 x x2 x3 x4 y y2 y3 y4 e e2 e3 e4 b 0 b 02 b 03 b 04 boulder 206 dolan & franic simplex model 4

5 First order autoregression model. A quasi simplex model (var(e)>0). var(x ) true score var(e ) error y ti = b 0t + x ti + e ti x ti = b t,t x t i + x ti var(y t ) = var(x t ) + var(e t ) var(x t ) = b t,t2 var(x t ) + var( x t ) cov(x t,x t ) = b t,t var(x t ) cov(y t,y t ) = b t,t var(x t ) boulder 206 dolan & franic simplex model 5

6 First order autoregression model. var(e ) var(e 4 ) Identification issue: var(e ) and var(e t ) are not identified. Solution set to zero, or equate var(e ) = var(e 2 ), var(e 3 ) = var(e 4 ) boulder 206 dolan & franic simplex model 6

7 var(y t ) = var(x t ) + var(e t ) var(x t ) = b t,t2 var(x t ) + var( x t ) cov(x t,x t ) = b t,t var(x t ) cov(y t,y t ) = b t,t var(x t ) Standardized stats part I: Reliability at each t, rel(y t ) : rel(y t ) = var(x t ) / {var(x t ) + var(e t )} Interpretation: % of variance in y t due to latent x t boulder 206 dolan & franic simplex model 7

8 var(y t ) = var(x t ) + var(e t ) var(x t ) = b t,t2 var(x t ) + var( x t ) cov(x t,x t ) = b t,t var(x t ) cov(y t,y t ) = b t,t var(x t ) Standardized stats part II: Stability at level of X, stab(x t,x t ): b t,t2 var(x t ) / {b t,t2 var(x t ) + var( x t )} Interpretation: % of the variance in x t due to x t boulder 206 dolan & franic simplex model 8

9 var(y t ) = var(x t ) + var(e t ) var(x t ) = b t,t2 var(x t ) + var( x t ) cov(x t,x t ) = b t,t var(x t ) cov(y t,y t ) = b t,t var(x t ) Standardized stats part III: Correlation t,t, cor(t,t ): b t,t var(x t ) / {sd(y t ) * sd(y t )} sd(y t ) = (var(x t ) + var(e t )) var(x t ) = b t,t var(x t ) + var( x t ) Interpretation: strength of linear relationship boulder 206 dolan & franic simplex model 9

10 x x x x x2 x3 x4 y y2 y3 y4.25 e e e 3 e 4 Covariance matrix Correlation matrix boulder 206 dolan & franic simplex model 0

11 reliability: rel(x t ) = var(x t ) / {var(x t ) + var(e t )} = / (+.25) = /.25 =.8 R 2 : b t,t2 var(x t ) / {b t,t2 var(x t ) + var( x t )} = {.7 2 * } / (.7 2 * +.5) =.49/ =.49 cor(t,t+) : b t,t var(x t ) / {sd(y t ) * sd(y t )} ={.7 * } / {.25*.25} =.56 boulder 206 dolan & franic simplex model

12 0 0 0 x2 x3 x4 x x2 x3 x4 y y2 y3 y4 e e2 e3 e4 What happens if var( xt) = 0? boulder 206 dolan & franic simplex model 2

13 Special case: factor model var( x t ) (t=2,3,4) = 0 b 2, b 3,2 b 4,3 x x2 x3 x4 y y2 y3 y4 e e2 e3 e4 x y y2 y3 y4 e e2 e3 e4 boulder 206 dolan & franic simplex model 3

14 Multivariate decomposition of phenotypic covariance matrix (TxT, say T=4): ph = A + C + ph ph2 ph2 ph2 = A + C + r A + C + r A + C + A + C + (r= or.5) boulder 206 dolan & franic simplex model 4

15 ph = A + C + stimate A using a Cholesky decomp A = A A t A = boulder 206 dolan & franic simplex model 5

16 ph = A + C + Model A using a simplex model A = A A A t A boulder 206 dolan & franic simplex model 6

17 A = A A A t A A = b A b A b A43 0 boulder 206 dolan & franic simplex model 7

18 A = A A A t A A = var(a ) var( A2 ) var( A3 ) var( A4 ) boulder 206 dolan & franic simplex model 8

19 A = A A A A A = var(a ) var(a 2 ) var(a 3 ) var(a 4 ) required: var(a) = var(a2) var(a3) = var(a4) boulder 206 dolan & franic simplex model 9

20 The genetic A simplex boulder 206 dolan & franic simplex model 20

21 boulder 206 dolan & franic simplex model 2

22 Occasion specific effects required: var(a) = var(a2) var(a3) = var(a4) var(e) = var(e2) var(e3) = var(e4) var(c) = var(c2) var(c3) = var(c4) boulder 206 dolan & franic simplex model 22

23 Question: h 2, c 2, and e 2 at each time point? var(y t ) = {var(a t ) + var(a t )} + {var(c t ) + var(c t )} + {var( t ) + var(e t )} h 2 = {var(a t ) + var(a t )} / var(y t ) c 2 = {var(c t ) + var(c t )} / var(y t ) e 2 = {var( t ) + var(e t )} / var(y t ) boulder 206 dolan & franic simplex model 23

24 contributions to stability (A,C,) t to t b At,t2 var(a t ) / {b At,t2 var(a t ) + var( A t )} b Ct,t2 var(c t ) / {b Ct,t2 var(c t ) + var( C t )} b t,t2 var( t ) / {b t,t2 var( t ) + var( t )} boulder 206 dolan & franic simplex model 24

25 contributions of A to Phenotypic stability t to t b At,t2 var(a t ) {b At,t2 var(a t ) + var( A t )} + {b Ct,t2 var(c t ) + var( C t )} + {b t,t2 var( t ) + var( t )} boulder 206 dolan & franic simplex model 25

26 A = A = y = A + A = h 2 at t=? answer:.2 (e 2 =.8) h 2 at t=2? answer:.2 (r 2 =.8) correlation between A and A2?.84 / (.2*.2) =.92 correlation between and 2?. 4 / (.8*.8) =.50 covariance between Y and Y2?.584 contribution of A to covariance Y and Y2?.84/.584 =.35 contribution of to covariance Y and Y2?.4/.584 =.685 boulder 206 dolan & franic simplex model 26

27 Nivard et al, 204 Anx/dep stability due to A and from 3y to 63 years boulder 206 dolan & franic simplex model 27

28 Sanja s Practical: the genetic simplex model applied to FSIQ at 4 occasions. But first... Variations on the theme boulder 206 dolan & franic simplex model 28

29 Hottenga, etal. Twin Research and Human Genetics, 2005 boulder 206 dolan & franic simplex model 29

30 Birley et al. Behav boulder 206 Genet dolan & franic 2005 simplex model 30

31 Niche picking During development children seek out and create and are furnished surrounding () that fit their phenotype. A smart child growing up will pick the niche that fits her/her phenotypic intelligence. A anxious child growing up may pick out the niche that least aggrevates his / her phenotypic anxiety. Phenotype of twin at time t > environment of twin at time t+ boulder 206 dolan & franic simplex model 3

32 Mutual influences During development children s behavior may contribute to the environment of their siblings. A smart child growing up will pick the niche that fits her/her phenotypic intelligence and in so doing may influence (contriibute to) the environment of his or her sibling. A behavior of an anxious child may be a source of stress for his or her siblings. Phenotype of twin at time t > environment of twin 2 at time t+ boulder 206 dolan & franic simplex model 32

33 a a a A A A A y e y e y e y c c c C C C C e e e y y y y A A A A a a a A, C, uncorrelated boulder 206 dolan & franic simplex model 33

34 A A A A A A A y y y y y y y y A A A A A A A boulder 206 dolan & franic simplex model 34

35 boulder 206 dolan & franic simplex model 35

36 nvironments selected by genotypes (Scarr & McCartny, 983; Plomin, DeFries & Loehlin, 977) Sibling effects (Carey, 986, Behav Genet 6:39 34) boulder 206 dolan & franic simplex model 36

37 boulder 206 dolan & franic simplex model 37

38 boulder 206 dolan & franic simplex model 38

39 boulder 206 dolan & franic simplex model 39

40 boulder 206 dolan & franic simplex model 40

41 Mi chael boulder 206 dolan & franic simplex model 4

Accommodation of genotypeenvironment

Accommodation of genotypeenvironment Netherlands Journal of Psychology GE covariance in a longitudinal twin design 81 Accommodation of genotypeenvironment covariance in a longitudinal twin design In the classical twin study, genetic and environmental

More information

Continuously moderated effects of A,C, and E in the twin design

Continuously moderated effects of A,C, and E in the twin design Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Sanja Franić Boulder Twin Workshop March 8, 2016 Includes slides by Sophie van der Sluis & Marleen de Moor 1977 Acta Genet

More information

Continuously moderated effects of A,C, and E in the twin design

Continuously moderated effects of A,C, and E in the twin design Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Michel Nivard Boulder Twin Workshop March, 208 Standard AE model s 2 A or.5s 2 A A E A E s 2 A s 2 E s 2 A s 2 E m pheno

More information

The Cholesky Approach: A Cautionary Note

The Cholesky Approach: A Cautionary Note Behavior Genetics, Vol. 26, No. 1, 1996 The Cholesky Approach: A Cautionary Note John C. Loehlin I Received 18 Jan. 1995--Final 27 July 1995 Attention is called to a common misinterpretation of a bivariate

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

Introduction to Multivariate Genetic Analysis. Meike Bartels, Hermine Maes, Elizabeth Prom-Wormley and Michel Nivard

Introduction to Multivariate Genetic Analysis. Meike Bartels, Hermine Maes, Elizabeth Prom-Wormley and Michel Nivard Introduction to Multivariate Genetic nalysis Meike Bartels, Hermine Maes, Elizabeth Prom-Wormley and Michel Nivard im and Rationale im: to examine the source of factors that make traits correlate or co-vary

More information

Advanced Structural Equations Models I

Advanced Structural Equations Models I This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Latent Trait Reliability

Latent Trait Reliability Latent Trait Reliability Lecture #7 ICPSR Item Response Theory Workshop Lecture #7: 1of 66 Lecture Overview Classical Notions of Reliability Reliability with IRT Item and Test Information Functions Concepts

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

Describing Change over Time: Adding Linear Trends

Describing Change over Time: Adding Linear Trends Describing Change over Time: Adding Linear Trends Longitudinal Data Analysis Workshop Section 7 University of Georgia: Institute for Interdisciplinary Research in Education and Human Development Section

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 An Introduction to Multilevel Models PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 Today s Class Concepts in Longitudinal Modeling Between-Person vs. +Within-Person

More information

Model building & assumptions. Matt Keller, Sarah Medland, Hermine Maes TC21 March 2008

Model building & assumptions. Matt Keller, Sarah Medland, Hermine Maes TC21 March 2008 Model building & assumptions Matt Keller, Sarah Medland, Hermine Maes TC2 March 2008 cknowledgments John Jinks David Fulker Robert Cloninger John DeFries Lindon aves Nick Martin Dorret Boomsma Michael

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Multivariate Regression Analysis

Multivariate Regression Analysis Matrices and vectors The model from the sample is: Y = Xβ +u with n individuals, l response variable, k regressors Y is a n 1 vector or a n l matrix with the notation Y T = (y 1,y 2,...,y n ) 1 x 11 x

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

Quantitative characters II: heritability

Quantitative characters II: heritability Quantitative characters II: heritability The variance of a trait (x) is the average squared deviation of x from its mean: V P = (1/n)Σ(x-m x ) 2 This total phenotypic variance can be partitioned into components:

More information

Probability and random variables

Probability and random variables Probability and random variables Events A simple event is the outcome of an experiment. For example, the experiment of tossing a coin twice has four possible outcomes: HH, HT, TH, TT. A compound event

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

Lecture 6: Selection on Multiple Traits

Lecture 6: Selection on Multiple Traits Lecture 6: Selection on Multiple Traits Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 2018 1 Genetic vs. Phenotypic correlations Within an individual, trait values

More information

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance Covariance Lecture 0: Covariance / Correlation & General Bivariate Normal Sta30 / Mth 30 We have previously discussed Covariance in relation to the variance of the sum of two random variables Review Lecture

More information

Stat 5101 Notes: Algorithms (thru 2nd midterm)

Stat 5101 Notes: Algorithms (thru 2nd midterm) Stat 5101 Notes: Algorithms (thru 2nd midterm) Charles J. Geyer October 18, 2012 Contents 1 Calculating an Expectation or a Probability 2 1.1 From a PMF........................... 2 1.2 From a PDF...........................

More information

HW5 Solutions. (a) (8 pts.) Show that if two random variables X and Y are independent, then E[XY ] = E[X]E[Y ] xy p X,Y (x, y)

HW5 Solutions. (a) (8 pts.) Show that if two random variables X and Y are independent, then E[XY ] = E[X]E[Y ] xy p X,Y (x, y) HW5 Solutions 1. (50 pts.) Random homeworks again (a) (8 pts.) Show that if two random variables X and Y are independent, then E[XY ] = E[X]E[Y ] Answer: Applying the definition of expectation we have

More information

Comparing Bayesian Networks and Structure Learning Algorithms

Comparing Bayesian Networks and Structure Learning Algorithms Comparing Bayesian Networks and Structure Learning Algorithms (and other graphical models) marco.scutari@stat.unipd.it Department of Statistical Sciences October 20, 2009 Introduction Introduction Graphical

More information

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Monte Carlo Methods Appl, Vol 6, No 3 (2000), pp 205 210 c VSP 2000 Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Daniel B Rowe H & SS, 228-77 California Institute of

More information

PROPENSITY SCORE MATCHING. Walter Leite

PROPENSITY SCORE MATCHING. Walter Leite PROPENSITY SCORE MATCHING Walter Leite 1 EXAMPLE Question: Does having a job that provides or subsidizes child care increate the length that working mothers breastfeed their children? Treatment: Working

More information

Lecture 7a: Vector Autoregression (VAR)

Lecture 7a: Vector Autoregression (VAR) Lecture 7a: Vector Autoregression (VAR) 1 2 Big Picture We are done with univariate time series analysis Now we switch to multivariate analysis, that is, studying several time series simultaneously. VAR

More information

Matrix Factorizations

Matrix Factorizations 1 Stat 540, Matrix Factorizations Matrix Factorizations LU Factorization Definition... Given a square k k matrix S, the LU factorization (or decomposition) represents S as the product of two triangular

More information

Go to Faculty/marleen/Boulder2012/Moderating_cov Copy all files to your own directory

Go to Faculty/marleen/Boulder2012/Moderating_cov Copy all files to your own directory Go to Faculty/marleen/Boulder01/Moderating_cov Copy all files to your own directory Go to Faculty/sanja/Boulder01/Moderating_covariances _IQ_SES Copy all files to your own directory Moderating covariances

More information

STA 431s17 Assignment Eight 1

STA 431s17 Assignment Eight 1 STA 43s7 Assignment Eight The first three questions of this assignment are about how instrumental variables can help with measurement error and omitted variables at the same time; see Lecture slide set

More information

Ability Bias, Errors in Variables and Sibling Methods. James J. Heckman University of Chicago Econ 312 This draft, May 26, 2006

Ability Bias, Errors in Variables and Sibling Methods. James J. Heckman University of Chicago Econ 312 This draft, May 26, 2006 Ability Bias, Errors in Variables and Sibling Methods James J. Heckman University of Chicago Econ 312 This draft, May 26, 2006 1 1 Ability Bias Consider the model: log = 0 + 1 + where =income, = schooling,

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models EPSY 905: Multivariate Analysis Spring 2016 Lecture #12 April 20, 2016 EPSY 905: RM ANOVA, MANOVA, and Mixed Models

More information

Machine Learning for Data Science (CS4786) Lecture 19

Machine Learning for Data Science (CS4786) Lecture 19 Machine Learning for Data Science (CS4786) Lecture 19 Hidden Markov Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2017fa/ Quiz Quiz Two variables can be marginally independent but not

More information

Phenotypic factor analysis

Phenotypic factor analysis 1 Phenotypic factor analysis Conor V. Dolan & Michel Nivard VU, Amsterdam Boulder Workshop - March 2018 2 Phenotypic factor analysis A statistical technique to investigate the dimensionality of correlated

More information

Power and Sample Size + Principles of Simulation. Benjamin Neale March 4 th, 2010 International Twin Workshop, Boulder, CO

Power and Sample Size + Principles of Simulation. Benjamin Neale March 4 th, 2010 International Twin Workshop, Boulder, CO Power and Sample Size + Principles of Simulation Benjamin Neale March 4 th, 2010 International Twin Workshop, Boulder, CO What is power? What affects power? How do we calculate power? What is simulation?

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Lecture 7a: Vector Autoregression (VAR)

Lecture 7a: Vector Autoregression (VAR) Lecture 7a: Vector Autoregression (VAR) 1 Big Picture We are done with univariate time series analysis Now we switch to multivariate analysis, that is, studying several time series simultaneously. VAR

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Review of Basic Probability Theory

Review of Basic Probability Theory Review of Basic Probability Theory James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 35 Review of Basic Probability Theory

More information

Variance Component Models for Quantitative Traits. Biostatistics 666

Variance Component Models for Quantitative Traits. Biostatistics 666 Variance Component Models for Quantitative Traits Biostatistics 666 Today Analysis of quantitative traits Modeling covariance for pairs of individuals estimating heritability Extending the model beyond

More information

Sex-limited expression of genetic or environmental

Sex-limited expression of genetic or environmental Multivariate Genetic Analysis of Sex Limitation and G E Interaction Michael C. Neale, 1 Espen Røysamb, 2 and Kristen Jacobson 3 1 Virginia Institute for Psychiatric and Behavioral Genetics,Virginia Commonwealth

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data Today s Class: Review of concepts in multivariate data Introduction to random intercepts Crossed random effects models

More information

Simultaneous Genetic Analysis of Longitudinal Means and Covariance Structure in the Simplex Model Using Twin Data

Simultaneous Genetic Analysis of Longitudinal Means and Covariance Structure in the Simplex Model Using Twin Data Behavior Genetics, VoL 21, No. 1, 1991 Simultaneous Genetic Analysis of Longitudinal Means and Covariance Structure in the Simplex Model Using Twin Data Conor V. Dolan, 1 Peter C. M. Molenaar, 1 and Dorret

More information

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2 Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution Defn: Z R 1 N(0,1) iff f Z (z) = 1 2π e z2 /2 Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) (a column

More information

Chapter 1 Handout: Descriptive Statistics

Chapter 1 Handout: Descriptive Statistics Preview Chapter 1 Handout: Descriptive Statistics Describing a Single Data Variable o Introduction to Distributions o Measure of the Distribution Center: Mean (Average) o Measures of the Distribution Spread:

More information

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1 FUNCTIONAL DATA ANALYSIS Contribution to the International Handbook (Encyclopedia) of Statistical Sciences July 28, 2009 Hans-Georg Müller 1 Department of Statistics University of California, Davis One

More information

Introduction to Confirmatory Factor Analysis

Introduction to Confirmatory Factor Analysis Introduction to Confirmatory Factor Analysis Multivariate Methods in Education ERSH 8350 Lecture #12 November 16, 2011 ERSH 8350: Lecture 12 Today s Class An Introduction to: Confirmatory Factor Analysis

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 2 - Probability Models Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 34 Agenda 1 Introduction 2 Stochastic Process Definition 1 Stochastic Definition

More information

Factor Analysis. -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD

Factor Analysis. -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD Factor Analysis -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 From PCA to factor analysis Remember: PCA tries to estimate a transformation of the data such that: 1. The maximum amount

More information

Introduction to Factor Analysis

Introduction to Factor Analysis to Factor Analysis Lecture 10 August 2, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #10-8/3/2011 Slide 1 of 55 Today s Lecture Factor Analysis Today s Lecture Exploratory

More information

TMA4267 Linear Statistical Models V2017 [L3]

TMA4267 Linear Statistical Models V2017 [L3] TMA4267 Linear Statistical Models V2017 [L3] Part 1: Multivariate RVs and normal distribution (L3) Covariance and positive definiteness [H:2.2,2.3,3.3], Principal components [H11.1-11.3] Quiz with Kahoot!

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

General structural model Part 1: Covariance structure and identification. Psychology 588: Covariance structure and factor models

General structural model Part 1: Covariance structure and identification. Psychology 588: Covariance structure and factor models General structural model Part 1: Covariance structure and identification Psychology 588: Covariance structure and factor models Latent variables 2 Interchangeably used: constructs --- substantively defined

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

white noise Time moving average

white noise Time moving average 1.3 Time Series Statistical Models 13 white noise w 3 1 0 1 0 100 00 300 400 500 Time moving average v 1.5 0.5 0.5 1.5 0 100 00 300 400 500 Fig. 1.8. Gaussian white noise series (top) and three-point moving

More information

Mathematical Preliminaries

Mathematical Preliminaries Mathematical Preliminaries Economics 3307 - Intermediate Macroeconomics Aaron Hedlund Baylor University Fall 2013 Econ 3307 (Baylor University) Mathematical Preliminaries Fall 2013 1 / 25 Outline I: Sequences

More information

Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

More information

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs Questions and Answers on Unit Roots, Cointegration, VARs and VECMs L. Magee Winter, 2012 1. Let ɛ t, t = 1,..., T be a series of independent draws from a N[0,1] distribution. Let w t, t = 1,..., T, be

More information

The returns to schooling, ability bias, and regression

The returns to schooling, ability bias, and regression The returns to schooling, ability bias, and regression Jörn-Steffen Pischke LSE October 4, 2016 Pischke (LSE) Griliches 1977 October 4, 2016 1 / 44 Counterfactual outcomes Scholing for individual i is

More information

1 Motivation for Instrumental Variable (IV) Regression

1 Motivation for Instrumental Variable (IV) Regression ECON 370: IV & 2SLS 1 Instrumental Variables Estimation and Two Stage Least Squares Econometric Methods, ECON 370 Let s get back to the thiking in terms of cross sectional (or pooled cross sectional) data

More information

Probability and random variables. Sept 2018

Probability and random variables. Sept 2018 Probability and random variables Sept 2018 2 The sample space Consider an experiment with an uncertain outcome. The set of all possible outcomes is called the sample space. Example: I toss a coin twice,

More information

Models with multiple random effects: Repeated Measures and Maternal effects

Models with multiple random effects: Repeated Measures and Maternal effects Models with multiple random effects: Repeated Measures and Maternal effects 1 Often there are several vectors of random effects Repeatability models Multiple measures Common family effects Cleaning up

More information

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM YOUR NAME: KEY: Answers in Blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they

More information

Variances and covariances

Variances and covariances Page 1 Chapter 4 Variances and covariances variance The expected value of a random variable gives a crude measure of the center of location of the distribution of that random variable. For instance, if

More information

Prediction. Prediction MIT Dr. Kempthorne. Spring MIT Prediction

Prediction. Prediction MIT Dr. Kempthorne. Spring MIT Prediction MIT 18.655 Dr. Kempthorne Spring 2016 1 Problems Targets of Change in value of portfolio over fixed holding period. Long-term interest rate in 3 months Survival time of patients being treated for cancer

More information

ARMA Estimation Recipes

ARMA Estimation Recipes Econ. 1B D. McFadden, Fall 000 1. Preliminaries ARMA Estimation Recipes hese notes summarize procedures for estimating the lag coefficients in the stationary ARMA(p,q) model (1) y t = µ +a 1 (y t-1 -µ)

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, 008 Statistical Theory and Methods I Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

SEM 2: Structural Equation Modeling

SEM 2: Structural Equation Modeling SEM 2: Structural Equation Modeling Week 2 - Causality and equivalent models Sacha Epskamp 15-05-2018 Covariance Algebra Let Var(x) indicate the variance of x and Cov(x, y) indicate the covariance between

More information

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment.

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Course information: Instructor: Tim Hanson, Leconte 219C, phone 777-3859. Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Text: Applied Linear Statistical Models (5th Edition),

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 MA 575 Linear Models: Cedric E Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 1 Revision: Probability Theory 11 Random Variables A real-valued random variable is

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Online Appendices for: Modeling Latent Growth With Multiple Indicators: A Comparison of Three Approaches

Online Appendices for: Modeling Latent Growth With Multiple Indicators: A Comparison of Three Approaches Online Appendices for: Modeling Latent Growth With Multiple Indicators: A Comparison of Three Approaches Jacob Bishop and Christian Geiser Utah State University David A. Cole Vanderbilt University Contents

More information

3/10/03 Gregory Carey Cholesky Problems - 1. Cholesky Problems

3/10/03 Gregory Carey Cholesky Problems - 1. Cholesky Problems 3/10/03 Gregory Carey Cholesky Problems - 1 Cholesky Problems Gregory Carey Department of Psychology and Institute for Behavioral Genetics University of Colorado Boulder CO 80309-0345 Email: gregory.carey@colorado.edu

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Model II (or random effects) one-way ANOVA:

Model II (or random effects) one-way ANOVA: Model II (or random effects) one-way ANOVA: As noted earlier, if we have a random effects model, the treatments are chosen from a larger population of treatments; we wish to generalize to this larger population.

More information

Lesson 4: Stationary stochastic processes

Lesson 4: Stationary stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Stationary stochastic processes Stationarity is a rather intuitive concept, it means

More information

Multiple random effects. Often there are several vectors of random effects. Covariance structure

Multiple random effects. Often there are several vectors of random effects. Covariance structure Models with multiple random effects: Repeated Measures and Maternal effects Bruce Walsh lecture notes SISG -Mixed Model Course version 8 June 01 Multiple random effects y = X! + Za + Wu + e y is a n x

More information

BTRY 4830/6830: Quantitative Genomics and Genetics Fall 2014

BTRY 4830/6830: Quantitative Genomics and Genetics Fall 2014 BTRY 4830/6830: Quantitative Genomics and Genetics Fall 2014 Homework 4 (version 3) - posted October 3 Assigned October 2; Due 11:59PM October 9 Problem 1 (Easy) a. For the genetic regression model: Y

More information

Comparing IRT with Other Models

Comparing IRT with Other Models Comparing IRT with Other Models Lecture #14 ICPSR Item Response Theory Workshop Lecture #14: 1of 45 Lecture Overview The final set of slides will describe a parallel between IRT and another commonly used

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Simultaneous Genetic Analysis of Means and Covariance Structure: Pearson-Lawley Selection Rules

Simultaneous Genetic Analysis of Means and Covariance Structure: Pearson-Lawley Selection Rules Behavior Genetics, VoL 24, No. 1, 1994 Simultaneous Genetic Analysis of Means and Covariance Structure: Pearson-Lawley Selection Rules Conor V. Dolan, ~ Peter C. M. Molenaar, ~ and Dorret I. Boomsma 2

More information

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx INDEPENDENCE, COVARIANCE AND CORRELATION Independence: Intuitive idea of "Y is independent of X": The distribution of Y doesn't depend on the value of X. In terms of the conditional pdf's: "f(y x doesn't

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Biostatistics Workshop Longitudinal Data Analysis. Session 4 GARRETT FITZMAURICE

Biostatistics Workshop Longitudinal Data Analysis. Session 4 GARRETT FITZMAURICE Biostatistics Workshop 2008 Longitudinal Data Analysis Session 4 GARRETT FITZMAURICE Harvard University 1 LINEAR MIXED EFFECTS MODELS Motivating Example: Influence of Menarche on Changes in Body Fat Prospective

More information

Analytic power calculation for QTL linkage analysis of small pedigrees

Analytic power calculation for QTL linkage analysis of small pedigrees (2001) 9, 335 ± 340 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE for QTL linkage analysis of small pedigrees FruÈhling V Rijsdijk*,1, John K Hewitt

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Advising on Research Methods: A consultant's companion. Herman J. Ader Gideon J. Mellenbergh with contributions by David J. Hand

Advising on Research Methods: A consultant's companion. Herman J. Ader Gideon J. Mellenbergh with contributions by David J. Hand Advising on Research Methods: A consultant's companion Herman J. Ader Gideon J. Mellenbergh with contributions by David J. Hand Contents Preface 13 I Preliminaries 19 1 Giving advice on research methods

More information

Midterm Exam 1 (Solutions)

Midterm Exam 1 (Solutions) EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran February 3, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name

More information

Fundamental concepts of functional data analysis

Fundamental concepts of functional data analysis Fundamental concepts of functional data analysis Department of Statistics, Colorado State University Examples of functional data 0 1440 2880 4320 5760 7200 8640 10080 Time in minutes The horizontal component

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information