Probability and random variables

Size: px
Start display at page:

Download "Probability and random variables"

Transcription

1 Probability and random variables Events A simple event is the outcome of an experiment. For example, the experiment of tossing a coin twice has four possible outcomes: HH, HT, TH, TT. A compound event is associated with more than one outcome. For example the event first toss is H occurs as either HH or HT. In general, a compound event represents a subset of the possible outcomes. Events can be combined in the same way as sets. For example, A B is the event either A or B occurs or both, and A B (or AB) is the event both A and B occur. In our simple example, let A be the event first toss is H, and B the event one head and one tail. Then A B is the event at most one tail (HH or HT or TH) and A B is the simple event HT. Events are mutually exclusive if at most one of the events occurs on any outcome of the experiment (the corresponding sets of outcomes do not overlap). Events are exhaustive if at least one of the events occurs on any outcome of the experiment (it is impossible that none of the events occurs). If events are both mutually exclusive and exhaustive, exactly one of them occurs on any outcome of the experiment. In the coin-tossing example, the following three events are both mutually exclusive and exhaustive: no heads (TT), one head (HT or TH), and two heads (HH). Probability Each simple event E has a probability Pr(E) which measures the relative frequency with which E occurs. Each probability is a number between zero and one and the probabilities of the simple events add up to 1. The probability of a compound event A is the sum of the probabilities of the simple events constituting A. Thus, the probability of any event (simple or composite) lies between 0 (impossible event) and 1 (certain event). From considerations of symmetry, or because randomisation has been used, we can sometimes assume that the simple events are equally probable. In this case, the probability of a compound event E is N E /N, where N E is the number of simple events associated with E, and N is the total number of simple events. It follows that if A and B are mutually exclusive, Pr(A B) = Pr(A) + Pr(B). If A and B are not mutually exclusive, this equation counts the probability of each outcome in AB twice, and so in general Pr(A B) = Pr(A) + Pr(B) Pr(AB). Similarly, for three events A, B, C, Pr(A B C) = Pr(A) + Pr(B) + Pr(C) Pr(AB) Pr(AC) Pr(BC) + Pr(ABC) 1

2 Sampling with replacement Example. A sample of two balls is selected with replacement from a box containing two balls labelled H and T. There are 2 2 = 4 possible samples: HH, HT, TH, TT. (This is equivalent to tossing a coin twice.) In general, there are n s ways of selecting s objects from n, if sampling with replacement. Sampling without replacement Suppose we have a population of n objects and we select a sample of s objects, without replacement. Since the first object can be chosen in n ways, and the second in n 1, and so on, the total number of samples is n(n 1) (n s + 1) When s = n, the number of samples of size n, or the number of possible arrangements of n objects, is the product of the first n integers, written n! ( n factorial ). Each sample of size s can be ordered in s! ways, and these samples consist of the same objects. Nearly always it is only membership of the sample that is important, in which case the s! samples are indistinguishable. The number of distinguishable samples is then ( n ) = n(n 1) (n s + 1)/ s! s This is the number of ways that s objects can be selected from n when ordering is ignored ( n choose s ). Example: A box contains 4 balls numbered 1 to 4. Select two balls at random (without replacement). At random means that the mechanism used to select the balls generates each possible outcome with equal probability. Let (x, y) denote the simple event first ball is x, second ball is y. (1,2) (1,3) (1,4) (2,1) (2,3) (2,4) (3,1) (3,2) (3,4) (4,1) (4,2) (4,3) If we take account of ordering, there are 12 simple events. If we disregard ordering, there are only six: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), where, e.g., (1,2) denotes either 1 followed by 2 or 2 followed by 1. In what proportion of samples do the numbers on the two balls add up to 5? The answer, calculated in two different ways, is 2/12 = 4/24 = 1/6. The number of possible outcomes of an experiment can be very large. For example, a box contains 49 balls, numbered 1 to 49. Six are selected at random, without replacement. 2

3 Disregarding ordering, there are 13,983,816 possible outcomes (the number of ways of choosing a sample of size 6 from 49). Random sampling Random sampling is a procedure which ensures that each possible sample has a known probability of being chosen. Usually each sample has an equal probability. Example: A coin is tossed twice. The simple events are (HH, HT, TH, TT). This is equivalent to drawing a sample of two balls with replacement from a box containing two balls labelled H and T. If the coin is fair, we assign equal probabilities (1/4) to the four possible outcomes. Consider events A 0 no heads, A 1 one head, and A 2 two heads, corresponding respectively to TT, TH HT, and HH. These events are mutually exclusive and exhaustive. Therefore exactly one of the events occurs, and Pr(A 0 ) + Pr(A 1 ) + Pr(A 2 ) = 1 Probabilities for a set of mutually exclusive and exhaustive events sum to 1 and form a probability distribution. No. of heads Total Probability 1/4 1/2 1/4 1 Random variables A random variable (r.v.) is a measurement associated with each simple event. Random variables are denoted by capital letters, e.g., X. A random variable is discrete if the number of outcomes is finite, e.g., (0,1,2). In theory, a continuous r.v. can take any value: if x 1 and x 2 are possible values, so also is any value between x 1 and x 2. Examples of discrete r.v.s: number of heads in 2 tosses of a coin, number of aces in a poker hand, number of eggs laid by a hen in a day. Measurements such as height and weight are treated as continuous. Probability distributions If X is discrete with values x 1,, x n, the events X = x 1,, X = x n are mutually exclusive and exhaustive, with probabilities which add up to 1. The set of possible values and corresponding probabilities define the probability distribution of X. We have already seen one example (the number of heads obtained when a coin is tossed twice). Another example: if a single member of a large population is selected at random and his height recorded, the observed value is a random variable with a probability distribution which represents the relative frequency with which each possible value occurs in the population. 3

4 Features of distributions Here we assume that X is discrete. The continuous case is discussed later. Probability function: this comes in two versions, f(x), the probability that X is exactly equal to x, and the cumulative version F (x): f(x) = Pr(X = x), F (x) = Pr(X x) The beamer presentation has an example (the probability function for the number of heads obtained when a fair coin is tossed 16 times). Expectation (or mean) of X is the average value in the population. Usually denoted by m or E(X), it is a measure of location. Formula: xf(x). The summation is over all possible values of X. Variance: σ 2 or var(x), is the mean squared deviation from the mean. It measures the spread or dispersion of the distribution. The formula for the variance is σ 2 = E(X m) 2. A more convenient formula is E(X 2 ) m 2. The standard deviation is the positive square root of σ 2. The unit of standard deviation is the same as that of X (m, cm, kg, etc). Example: if X is the number of heads obtained when a fair coin is tossed twice, the expectation of X (mean of the distn) is 1, and the variance of X is 1/2. E(X) = 0 (1/4) + 1 (1/2) + 2 (1/4) = 1 var(x) = ( 1) 2 (1/4) + 0 (1/2) (1/4) = 1/2 The term expectation dates from 18th century games of chance. Consider the following game: you pay me $1 (the stake). A fair coin is then flipped. If it falls heads, I return the stake and pay an additional $1. If tails, I keep the stake and pay nothing. Is this a fair game? Your return is a random variable, determined by the flip of the coin. Expected return is = $1. The game is fair. Shape of a distribution Skewness measures departure from symmetry. A positive value indicates an extended right tail. For example, if I toss a fair coin ten times, the distribution of the number of heads is symmetric about the central value of 5. If the coin is biased (more likely to fall tails than heads, say), the distribution is positively skew. Kurtosis measures the thickness of the tails of a distribution. The standard for comparison is the normal distribution (see later). 4

5 Conditional probability For two events A and B, Pr(A B) is the conditional probability of the event A, given B. In general, Pr(A B) = Pr(AB)/Pr(B). Conditioning on B can have a large effect on the probability of A. E.g., A is individual dies in next year, B is individual is aged x. Or A is individual has blue eyes, B is individual has blond hair. It is sometimes easier to calculate conditional rather than unconditional probabilities. In this case, Pr(AB) can be evaluated as Pr(A B) Pr(B). This can be extended to three or more events: Pr(ABC) = Pr(A BC) Pr(BC) = Pr(A BC) Pr(B C) Pr(C) Independent events Events A and B are independent if Pr(A B) = Pr(A). For such events, Pr(AB) is simply the product of Pr(A) and Pr(B). The assumption of independence is often based on knowledge of the mechanism generating the random events. For example, if a coin is tossed twice, we assume that the outcome of the second toss is not influenced by the outcome of the first toss. (The coin does not remember the previous event). If the probabilities that the coin lands heads or tails are respectively p and q, the assumption of independence leads to the following probabilities: Pr(HH) = p 2, Pr(HT ) = Pr(T H) = pq, Pr(T T ) = q 2 Note that p 2 + 2pq + q 2 = (p + q) 2 = 1. Covariance Random variables X and Y are independent if for all possible values a and b, the events X = a and Y = b are independent, i.e. Pr(X = a, Y = b) = Pr(X = a) Pr(Y = b) If X and Y are not independent, the degree of (linear) dependence between them is measured by the covariance cov(x, Y ) = E(X m X )(Y m Y ) = E(XY ) m X m Y For independent random variables X and Y, cov(x, Y ) is zero. Dependence between r.v.s has an effect on the variance of the sum and difference: var(x ± Y ) = var(x) + var(y ) ± 2 cov(x, Y ) Likewise the variance of a sum of a number of r.v.s is the sum of the variances plus twice the sum of all the pairwise covariances. 5

6 Genetic covariance Measurements X, Y on two siblings can be represented by X = m + U + e 1, Y = m + U + e 2, where U, e 1, and e 2 are independent. U represents the family effect (shared genetic and environmental effects), e 1 and e 2 represent unshared genetic and environmental effects. Then var(x) = var(y ) = σ 2 u + σ2 (phenotypic variance), and the covariance between e siblings is cov(x, Y ) = σ 2 u. Correlation The correlation coefficient is obtained by dividing the covariance by the product of the two standard deviations. Whereas the covariance can take any value, the correlation coefficient is always less than 1 in magnitude, and is unchanged by change of scale in either X or Y. Bayes formula Suppose A 1,, A k are mutually exclusive and exhaustive events. For any event B, and any one of the events A i, Pr(A i B) = Pr(B A i ) Pr(A i ) Pr(B A 1 ) Pr(A 1 ) + + Pr(B A k ) Pr(A k ) Example: In cattle, the gene (A) giving black coat colour is dominant to that (a) giving red. Heterozygous (A 1 ) animals are black, but carry one copy of the recessive gene. The offspring of a cross between two carriers (A 1 A 1 ) has genotype A 0, A 1, or A 2 with probability 1/4, 1/2, or 1/4, respectively. Given that such a calf is black, what is the probability that it is a carrier? (The more usual notation has A 0 = aa, A 1 = Aa, A 2 = AA.) The probability that the calf is black is 1/4 + 1/2 = 3/4. The probability that the calf is both black and a carrier (i.e. the probability that the calf is a carrier) is 1/2. The probability that the calf is a carrier, given that it is black, is 1/2 divided by 3/4 (2/3). With Bayes formula, take the mutually exclusive and exhaustive events to be the three possible genotypes for the black bull, and let B be the event that the bull is black. Then Pr(B A 0 ) = 0, Pr(B A 1 ) = Pr(B A 2 ) = 1, and prior probabilities are Pr(A 0 ) = Pr(A 2 ) = 1/4, Pr(A 1 ) = 1/2. Bayes formula gives Pr(A 1 B) = (1 1/2) (0 1/ / /4) = 2 3 6

Probability and random variables. Sept 2018

Probability and random variables. Sept 2018 Probability and random variables Sept 2018 2 The sample space Consider an experiment with an uncertain outcome. The set of all possible outcomes is called the sample space. Example: I toss a coin twice,

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

Probabilities and Expectations

Probabilities and Expectations Probabilities and Expectations Ashique Rupam Mahmood September 9, 2015 Probabilities tell us about the likelihood of an event in numbers. If an event is certain to occur, such as sunrise, probability of

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

2 Chapter 2: Conditional Probability

2 Chapter 2: Conditional Probability STAT 421 Lecture Notes 18 2 Chapter 2: Conditional Probability Consider a sample space S and two events A and B. For example, suppose that the equally likely sample space is S = {0, 1, 2,..., 99} and A

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 16. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 16. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Spring 206 Rao and Walrand Note 6 Random Variables: Distribution and Expectation Example: Coin Flips Recall our setup of a probabilistic experiment as

More information

Review of Basic Probability Theory

Review of Basic Probability Theory Review of Basic Probability Theory James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 35 Review of Basic Probability Theory

More information

Notes on Mathematics Groups

Notes on Mathematics Groups EPGY Singapore Quantum Mechanics: 2007 Notes on Mathematics Groups A group, G, is defined is a set of elements G and a binary operation on G; one of the elements of G has particularly special properties

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 203 Vazirani Note 2 Random Variables: Distribution and Expectation We will now return once again to the question of how many heads in a typical sequence

More information

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 7-11 Topics 2.1 RANDOM VARIABLE 2.2 INDUCED PROBABILITY MEASURE 2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES 2.4 TYPES OF RANDOM VARIABLES: DISCRETE,

More information

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 202 Vazirani Note 4 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected in, randomly

More information

Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of

Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of repetitions. (p229) That is, probability is a long-term

More information

CHAPTER - 16 PROBABILITY Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment. Sample

More information

Formalizing Probability. Choosing the Sample Space. Probability Measures

Formalizing Probability. Choosing the Sample Space. Probability Measures Formalizing Probability Choosing the Sample Space What do we assign probability to? Intuitively, we assign them to possible events (things that might happen, outcomes of an experiment) Formally, we take

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

CS70: Jean Walrand: Lecture 15b.

CS70: Jean Walrand: Lecture 15b. CS70: Jean Walrand: Lecture 15b. Modeling Uncertainty: Probability Space 1. Key Points 2. Random Experiments 3. Probability Space Key Points Uncertainty does not mean nothing is known How to best make

More information

Econ 113. Lecture Module 2

Econ 113. Lecture Module 2 Econ 113 Lecture Module 2 Contents 1. Experiments and definitions 2. Events and probabilities 3. Assigning probabilities 4. Probability of complements 5. Conditional probability 6. Statistical independence

More information

Elementary Discrete Probability

Elementary Discrete Probability Elementary Discrete Probability MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the terminology of elementary probability, elementary rules of probability,

More information

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B)

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B) REVIEW OF MAIN CONCEPTS AND FORMULAS Boolean algebra of events (subsets of a sample space) DeMorgan s formula: A B = Ā B A B = Ā B The notion of conditional probability, and of mutual independence of two

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

Probability theory for Networks (Part 1) CS 249B: Science of Networks Week 02: Monday, 02/04/08 Daniel Bilar Wellesley College Spring 2008

Probability theory for Networks (Part 1) CS 249B: Science of Networks Week 02: Monday, 02/04/08 Daniel Bilar Wellesley College Spring 2008 Probability theory for Networks (Part 1) CS 249B: Science of Networks Week 02: Monday, 02/04/08 Daniel Bilar Wellesley College Spring 2008 1 Review We saw some basic metrics that helped us characterize

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Entropy. Probability and Computing. Presentation 22. Probability and Computing Presentation 22 Entropy 1/39

Entropy. Probability and Computing. Presentation 22. Probability and Computing Presentation 22 Entropy 1/39 Entropy Probability and Computing Presentation 22 Probability and Computing Presentation 22 Entropy 1/39 Introduction Why randomness and information are related? An event that is almost certain to occur

More information

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 Random Variables and Expectation Question: The homeworks of 20 students are collected in, randomly shuffled and returned to the students.

More information

Topic 3 Random variables, expectation, and variance, II

Topic 3 Random variables, expectation, and variance, II CSE 103: Probability and statistics Fall 2010 Topic 3 Random variables, expectation, and variance, II 3.1 Linearity of expectation If you double each value of X, then you also double its average; that

More information

Directed Reading B. Section: Traits and Inheritance A GREAT IDEA

Directed Reading B. Section: Traits and Inheritance A GREAT IDEA Skills Worksheet Directed Reading B Section: Traits and Inheritance A GREAT IDEA 1. One set of instructions for an inherited trait is a(n) a. allele. c. genotype. d. gene. 2. How many sets of the same

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Probability Basics Review

Probability Basics Review CS70: Jean Walrand: Lecture 16 Events, Conditional Probability, Independence, Bayes Rule Probability Basics Review Setup: Set notation review A B A [ B A \ B 1 Probability Basics Review 2 Events 3 Conditional

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

Example. If 4 tickets are drawn with replacement from ,

Example. If 4 tickets are drawn with replacement from , Example. If 4 tickets are drawn with replacement from 1 2 2 4 6, what are the chances that we observe exactly two 2 s? Exactly two 2 s in a sequence of four draws can occur in many ways. For example, (

More information

n N CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.)

n N CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.) CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.) S.T. is the key to understanding driving forces. e.g., determines if a process proceeds spontaneously. Let s start with entropy

More information

Lecture 8: Continuous random variables, expectation and variance

Lecture 8: Continuous random variables, expectation and variance Lecture 8: Continuous random variables, expectation and variance Lejla Batina Institute for Computing and Information Sciences Digital Security Version: autumn 2013 Lejla Batina Version: autumn 2013 Wiskunde

More information

Lecture Notes. Here are some handy facts about the probability of various combinations of sets:

Lecture Notes. Here are some handy facts about the probability of various combinations of sets: Massachusetts Institute of Technology Lecture 20 6.042J/18.062J: Mathematics for Computer Science April 20, 2000 Professors David Karger and Nancy Lynch Lecture Notes 1 Set Theory and Probability 1.1 Basic

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Chapter 2 Some Basic Probability Concepts 2.1 Experiments, Outcomes and Random Variables A random variable is a variable whose value is unknown until it is observed. The value of a random variable results

More information

Probability Space: Formalism Simplest physical model of a uniform probability space:

Probability Space: Formalism Simplest physical model of a uniform probability space: Lecture 16: Continuing Probability Probability Space: Formalism Simplest physical model of a uniform probability space: Probability Space: Formalism Simplest physical model of a non-uniform probability

More information

Chapter Learning Objectives. Random Experiments Dfiii Definition: Dfiii Definition:

Chapter Learning Objectives. Random Experiments Dfiii Definition: Dfiii Definition: Chapter 2: Probability 2-1 Sample Spaces & Events 2-1.1 Random Experiments 2-1.2 Sample Spaces 2-1.3 Events 2-1 1.4 Counting Techniques 2-2 Interpretations & Axioms of Probability 2-3 Addition Rules 2-4

More information

ECE531: Principles of Detection and Estimation Course Introduction

ECE531: Principles of Detection and Estimation Course Introduction ECE531: Principles of Detection and Estimation Course Introduction D. Richard Brown III WPI 22-January-2009 WPI D. Richard Brown III 22-January-2009 1 / 37 Lecture 1 Major Topics 1. Web page. 2. Syllabus

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Carleton University. Final Examination Fall DURATION: 2 HOURS No. of students: 195

Carleton University. Final Examination Fall DURATION: 2 HOURS No. of students: 195 Carleton University Final Examination Fall 15 DURATION: 2 HOURS No. of students: 195 Department Name & Course Number: Computer Science COMP 2804A Course Instructor: Michiel Smid Authorized memoranda: Calculator

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010 Outline Math 143 Department of Mathematics and Statistics Calvin College Spring 2010 Outline Outline 1 Review Basics Random Variables Mean, Variance and Standard Deviation of Random Variables 2 More Review

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Sociology 6Z03 Topic 10: Probability (Part I)

Sociology 6Z03 Topic 10: Probability (Part I) Sociology 6Z03 Topic 10: Probability (Part I) John Fox McMaster University Fall 2014 John Fox (McMaster University) Soc 6Z03: Probability I Fall 2014 1 / 29 Outline: Probability (Part I) Introduction Probability

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Some Concepts of Probability (Review) Volker Tresp Summer 2018

Some Concepts of Probability (Review) Volker Tresp Summer 2018 Some Concepts of Probability (Review) Volker Tresp Summer 2018 1 Definition There are different way to define what a probability stands for Mathematically, the most rigorous definition is based on Kolmogorov

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Random Variables Shiu-Sheng Chen Department of Economics National Taiwan University October 5, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I October 5, 2016

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Rebops. Your Rebop Traits Alternative forms. Procedure (work in pairs):

Rebops. Your Rebop Traits Alternative forms. Procedure (work in pairs): Rebops The power of sexual reproduction to create diversity can be demonstrated through the breeding of Rebops. You are going to explore genetics by creating Rebop babies. Rebops are creatures that have

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

MAE 493G, CpE 493M, Mobile Robotics. 6. Basic Probability

MAE 493G, CpE 493M, Mobile Robotics. 6. Basic Probability MAE 493G, CpE 493M, Mobile Robotics 6. Basic Probability Instructor: Yu Gu, Fall 2013 Uncertainties in Robotics Robot environments are inherently unpredictable; Sensors and data acquisition systems are

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2 1 Basic Probabilities The probabilities that we ll be learning about build from the set theory that we learned last class, only this time, the sets are specifically sets of events. What are events? Roughly,

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

CS70: Jean Walrand: Lecture 16.

CS70: Jean Walrand: Lecture 16. CS70: Jean Walrand: Lecture 16. Events, Conditional Probability, Independence, Bayes Rule 1. Probability Basics Review 2. Events 3. Conditional Probability 4. Independence of Events 5. Bayes Rule Probability

More information

Statistics 251: Statistical Methods

Statistics 251: Statistical Methods Statistics 251: Statistical Methods Probability Module 3 2018 file:///volumes/users/r/renaes/documents/classes/lectures/251301/renae/markdown/master%20versions/module3.html#1 1/33 Terminology probability:

More information

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES COMMON TERMS RELATED TO PROBABILITY Probability is the measure of the likelihood that an event will occur Probability values are

More information

Continuing Probability.

Continuing Probability. Continuing Probability. Wrap up: Probability Formalism. Events, Conditional Probability, Independence, Bayes Rule Probability Space: Formalism Simplest physical model of a uniform probability space: Red

More information

STAT 430/510 Probability Lecture 7: Random Variable and Expectation

STAT 430/510 Probability Lecture 7: Random Variable and Expectation STAT 430/510 Probability Lecture 7: Random Variable and Expectation Pengyuan (Penelope) Wang June 2, 2011 Review Properties of Probability Conditional Probability The Law of Total Probability Bayes Formula

More information

Topics in Discrete Mathematics

Topics in Discrete Mathematics Topics in Discrete Mathematics George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 216 George Voutsadakis (LSSU) Discrete Mathematics March 2014 1 / 72 Outline

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

Some Basic Concepts of Probability and Information Theory: Pt. 2

Some Basic Concepts of Probability and Information Theory: Pt. 2 Some Basic Concepts of Probability and Information Theory: Pt. 2 PHYS 476Q - Southern Illinois University January 22, 2018 PHYS 476Q - Southern Illinois University Some Basic Concepts of Probability and

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

3.2 Intoduction to probability 3.3 Probability rules. Sections 3.2 and 3.3. Elementary Statistics for the Biological and Life Sciences (Stat 205)

3.2 Intoduction to probability 3.3 Probability rules. Sections 3.2 and 3.3. Elementary Statistics for the Biological and Life Sciences (Stat 205) 3.2 Intoduction to probability Sections 3.2 and 3.3 Elementary Statistics for the Biological and Life Sciences (Stat 205) 1 / 47 Probability 3.2 Intoduction to probability The probability of an event E

More information

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW CHAPTER 16 PROBABILITY LEARNING OBJECTIVES Concept of probability is used in accounting and finance to understand the likelihood of occurrence or non-occurrence of a variable. It helps in developing financial

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Solutionbank S1 Edexcel AS and A Level Modular Mathematics Heinemann Solutionbank: Statistics S Page of Solutionbank S Exercise A, Question Write down whether or not each of the following is a discrete random variable. Give a reason for your answer. a The average

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Gambling at its core 16th century Cardano: Books on Games of Chance First systematic treatment of probability 17th century Chevalier de Mere posed a problem to his friend Pascal.

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Discrete Structures Prelim 1 Selected problems from past exams

Discrete Structures Prelim 1 Selected problems from past exams Discrete Structures Prelim 1 CS2800 Selected problems from past exams 1. True or false (a) { } = (b) Every set is a subset of its power set (c) A set of n events are mutually independent if all pairs of

More information

Notes on Discrete Probability

Notes on Discrete Probability Columbia University Handout 3 W4231: Analysis of Algorithms September 21, 1999 Professor Luca Trevisan Notes on Discrete Probability The following notes cover, mostly without proofs, the basic notions

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

Probability theory basics

Probability theory basics Probability theory basics Michael Franke Basics of probability theory: axiomatic definition, interpretation, joint distributions, marginalization, conditional probability & Bayes rule. Random variables:

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information