Blind Attacks on Machine Learners

Size: px
Start display at page:

Download "Blind Attacks on Machine Learners"

Transcription

1 Blind Attacks on Machine Learners Alex Beatson 1 Zhaoran Wang 1 Han Liu 1 1 Princeton University NIPS, 2016/ Presenter: Anant Kharkar NIPS, 2016/ Presenter: Anant Kharkar 1

2 Outline 1 Introduction Motivation 2 Bounds Minimax Problem Scenarios 3 Results Informed Learner Blind Learner 4 Summary NIPS, 2016/ Presenter: Anant Kharkar 2

3 Outline 1 Introduction Motivation 2 Bounds Minimax Problem Scenarios 3 Results Informed Learner Blind Learner 4 Summary NIPS, 2016/ Presenter: Anant Kharkar 3

4 Motivation Context: data injection attack (adversarial data added to existing distribution) Past work assumes attacker has knowledge of learner s algorithm (or can query for it) Here, consider both informed and blind attacker Statistical privacy - users may want to protect data via noise Objective: adversary makes it difficult to estimate distr. params NIPS, 2016/ Presenter: Anant Kharkar 4

5 Notation Distribution of interest: F θ density f θ, family F, data X i Malicious distribution: G φ density g φ, family G, data X i Combined dataset: Z, distribution P p(z) = αf θ (z) + (1 α)g φ (z) NIPS, 2016/ Presenter: Anant Kharkar 5

6 Outline 1 Introduction Motivation 2 Bounds Minimax Problem Scenarios 3 Results Informed Learner Blind Learner 4 Summary NIPS, 2016/ Presenter: Anant Kharkar 6

7 Minimax Minimax risk - worst-case bound on population risk of estimator: M n = inf ˆψ sup E Z1:n Pψ n L(ψ, ˆψ n ) ψ Ψ Intuitively: minimum worst-case risk = minimum worst-case expected l2-norm KL-Divergence - deviation between two distributions Mutual information I (Z, V ) - measure of dependence between random variables NIPS, 2016/ Presenter: Anant Kharkar 7

8 Bounds Le Cam: Fano: [ 1 M n L(ψ 1, ψ 2 ) 2 1 ] nd 2 KL (P φ1, P φ2 2 [ M n δ 1 I (Z ] 1:n; V ) + log2 log V I (Z, V ) upper-bounded by D KL NIPS, 2016/ Presenter: Anant Kharkar 8

9 Outline 1 Introduction Motivation 2 Bounds Minimax Problem Scenarios 3 Results Informed Learner Blind Learner 4 Summary NIPS, 2016/ Presenter: Anant Kharkar 9

10 Blind Attacker, Informed Learner Attacker knows F but not F θ, learner knows G φ Objective: maximize M n by choice of G φ φ = argmax φ M n = argmax φ inf ˆψ Minimize KL-Divergence ˆφ = argmin φ θ i V θ j V sup E Z1:n Pψ n L(ψ, ˆψ n ) ψ Ψ D KL (P θi,φ P θj,φ) V 2 n I (Z n ; θ) NIPS, 2016/ Presenter: Anant Kharkar 1

11 Blind Attacker, Blind Learner Learner does not know G φ, but knows G Ĝ = argmin G G = argmaxinf ˆθ (θ i,φ i ) V (θ j,φ j ) V sup (F θ,g φ ) F G E Z1:n L(θ, ˆθ) D KL (P θi,φ i P θj,φ j ) V 2 n I (Z n ; θ) NIPS, 2016/ Presenter: Anant Kharkar 1

12 Outline 1 Introduction Motivation 2 Bounds Minimax Problem Scenarios 3 Results Informed Learner Blind Learner 4 Summary NIPS, 2016/ Presenter: Anant Kharkar 1

13 Informed Learner D KL (P i P j ) + D KL (P j P i ) α2 (1 α) F i F j 2 TV Vol(Z) Le Cam bound: ( ) 1 M n L(θ 1, θ 2 ) α 2 2 (1 α) n F 1 F 2 2 TV Vol(Z) Fano bound: M n δ ( 1 α 2 (1 α) ) Vol(Z)nτδ + log2 log V Uniform attack bounds effective sample size at n α2 (1 α) Vol(Z) NIPS, 2016/ Presenter: Anant Kharkar 1

14 Outline 1 Introduction Motivation 2 Bounds Minimax Problem Scenarios 3 Results Informed Learner Blind Learner 4 Summary NIPS, 2016/ Presenter: Anant Kharkar 1

15 Informed Learner For α attacker can make learning impossible (KL-divergences sum to 0) Mimic attack: (G φ = F θ ) D KL (P i P j ) + D KL (P j P i ) (2α 1)2 (1 α) F i F j 2 TV 4 α4 1 α F 1 F 2 2 TV KL-divergence 0 as α 1 2 NIPS, 2016/ Presenter: Anant Kharkar 1

16 Summary Injection attacks against ML models 2 cases: blind learner, informed learner (attacker always blind) 2 attacks: uniform injection, mimic Attacker maximizes lower bounds on minimax risk NIPS, 2016/ Presenter: Anant Kharkar 1

Blind Attacks on Machine Learners

Blind Attacks on Machine Learners Blind Attacks on Machine Learners Alex Beatson Department of Computer Science Princeton University abeatson@princetonedu Zhaoran Wang Department of Operations Research and Financial Engineering Princeton

More information

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture : Mutual Information Method Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar, 06 Ed. Mar 9 Quick review: Assouad s lemma

More information

3.0.1 Multivariate version and tensor product of experiments

3.0.1 Multivariate version and tensor product of experiments ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 3: Minimax risk of GLM and four extensions Lecturer: Yihong Wu Scribe: Ashok Vardhan, Jan 28, 2016 [Ed. Mar 24]

More information

Machine Teaching. for Personalized Education, Security, Interactive Machine Learning. Jerry Zhu

Machine Teaching. for Personalized Education, Security, Interactive Machine Learning. Jerry Zhu Machine Teaching for Personalized Education, Security, Interactive Machine Learning Jerry Zhu NIPS 2015 Workshop on Machine Learning from and for Adaptive User Technologies Supervised Learning Review D:

More information

Nishant Gurnani. GAN Reading Group. April 14th, / 107

Nishant Gurnani. GAN Reading Group. April 14th, / 107 Nishant Gurnani GAN Reading Group April 14th, 2017 1 / 107 Why are these Papers Important? 2 / 107 Why are these Papers Important? Recently a large number of GAN frameworks have been proposed - BGAN, LSGAN,

More information

Distirbutional robustness, regularizing variance, and adversaries

Distirbutional robustness, regularizing variance, and adversaries Distirbutional robustness, regularizing variance, and adversaries John Duchi Based on joint work with Hongseok Namkoong and Aman Sinha Stanford University November 2017 Motivation We do not want machine-learned

More information

Adversarial Label Flips Attack on Support Vector Machines

Adversarial Label Flips Attack on Support Vector Machines Adversarial Label Flips Attack on Support Vector Machines Han Xiao, Huang Xiao, Claudia Eckert Institute of Informatics TU München xiaoh@in.tum.de August 26, 2012 Overview 1 Causative Attack 2 Problem

More information

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk)

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk) 10-704: Information Processing and Learning Spring 2015 Lecture 21: Examples of Lower Bounds and Assouad s Method Lecturer: Akshay Krishnamurthy Scribes: Soumya Batra Note: LaTeX template courtesy of UC

More information

21.1 Lower bounds on minimax risk for functional estimation

21.1 Lower bounds on minimax risk for functional estimation ECE598: Information-theoretic methods in high-dimensional statistics Spring 016 Lecture 1: Functional estimation & testing Lecturer: Yihong Wu Scribe: Ashok Vardhan, Apr 14, 016 In this chapter, we will

More information

Information Theory Based Estimator of the Number of Sources in a Sparse Linear Mixing Model

Information Theory Based Estimator of the Number of Sources in a Sparse Linear Mixing Model Information heory Based Estimator of the Number of Sources in a Sparse Linear Mixing Model Radu Balan University of Maryland Department of Mathematics, Center for Scientific Computation And Mathematical

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Sample complexity bounds for differentially private learning

Sample complexity bounds for differentially private learning Sample complexity bounds for differentially private learning Kamalika Chaudhuri University of California, San Diego Daniel Hsu Microsoft Research Outline 1. Learning and privacy model 2. Our results: sample

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

Lecture 17: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 31, 2016 [Ed. Apr 1]

Lecture 17: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 31, 2016 [Ed. Apr 1] ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 3, 06 [Ed. Apr ] In last lecture, we studied the minimax

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

Lecture 2: Statistical Decision Theory (Part I)

Lecture 2: Statistical Decision Theory (Part I) Lecture 2: Statistical Decision Theory (Part I) Hao Helen Zhang Hao Helen Zhang Lecture 2: Statistical Decision Theory (Part I) 1 / 35 Outline of This Note Part I: Statistics Decision Theory (from Statistical

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

Hands-On Learning Theory Fall 2016, Lecture 3

Hands-On Learning Theory Fall 2016, Lecture 3 Hands-On Learning Theory Fall 016, Lecture 3 Jean Honorio jhonorio@purdue.edu 1 Information Theory First, we provide some information theory background. Definition 3.1 (Entropy). The entropy of a discrete

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

16.1 Bounding Capacity with Covering Number

16.1 Bounding Capacity with Covering Number ECE598: Information-theoretic methods in high-dimensional statistics Spring 206 Lecture 6: Upper Bounds for Density Estimation Lecturer: Yihong Wu Scribe: Yang Zhang, Apr, 206 So far we have been mostly

More information

Lecture 3 January 28

Lecture 3 January 28 EECS 28B / STAT 24B: Advanced Topics in Statistical LearningSpring 2009 Lecture 3 January 28 Lecturer: Pradeep Ravikumar Scribe: Timothy J. Wheeler Note: These lecture notes are still rough, and have only

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses Information and Coding Theory Autumn 07 Lecturer: Madhur Tulsiani Lecture 9: October 5, 07 Lower bounds for minimax rates via multiple hypotheses In this lecture, we extend the ideas from the previous

More information

Lecture 20: Introduction to Differential Privacy

Lecture 20: Introduction to Differential Privacy 6.885: Advanced Topics in Data Processing Fall 2013 Stephen Tu Lecture 20: Introduction to Differential Privacy 1 Overview This lecture aims to provide a very broad introduction to the topic of differential

More information

4 Invariant Statistical Decision Problems

4 Invariant Statistical Decision Problems 4 Invariant Statistical Decision Problems 4.1 Invariant decision problems Let G be a group of measurable transformations from the sample space X into itself. The group operation is composition. Note that

More information

On Bayes Risk Lower Bounds

On Bayes Risk Lower Bounds Journal of Machine Learning Research 17 (2016) 1-58 Submitted 4/16; Revised 10/16; Published 12/16 On Bayes Risk Lower Bounds Xi Chen Stern School of Business New York University New York, NY 10012, USA

More information

Worst-Case Bounds for Gaussian Process Models

Worst-Case Bounds for Gaussian Process Models Worst-Case Bounds for Gaussian Process Models Sham M. Kakade University of Pennsylvania Matthias W. Seeger UC Berkeley Abstract Dean P. Foster University of Pennsylvania We present a competitive analysis

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Optimal Estimation of a Nonsmooth Functional

Optimal Estimation of a Nonsmooth Functional Optimal Estimation of a Nonsmooth Functional T. Tony Cai Department of Statistics The Wharton School University of Pennsylvania http://stat.wharton.upenn.edu/ tcai Joint work with Mark Low 1 Question Suppose

More information

How hard is this function to optimize?

How hard is this function to optimize? How hard is this function to optimize? John Duchi Based on joint work with Sabyasachi Chatterjee, John Lafferty, Yuancheng Zhu Stanford University West Coast Optimization Rumble October 2016 Problem minimize

More information

Lecture 21: Minimax Theory

Lecture 21: Minimax Theory Lecture : Minimax Theory Akshay Krishnamurthy akshay@cs.umass.edu November 8, 07 Recap In the first part of the course, we spent the majority of our time studying risk minimization. We found many ways

More information

Target Localization in Wireless Sensor Networks with Quantized Data in the Presence of Byzantine Attacks

Target Localization in Wireless Sensor Networks with Quantized Data in the Presence of Byzantine Attacks Target Localization in Wireless Sensor Networks with Quantized Data in the Presence of Byzantine Attacks Keshav Agrawal, Aditya Vempaty, Hao Chen and Pramod K. Varshney Electrical Engineering Department,

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 3 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a)

More information

A Note on the Expectation-Maximization (EM) Algorithm

A Note on the Expectation-Maximization (EM) Algorithm A Note on the Expectation-Maximization (EM) Algorithm ChengXiang Zhai Department of Computer Science University of Illinois at Urbana-Champaign March 11, 2007 1 Introduction The Expectation-Maximization

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Bayesian Dropout. Tue Herlau, Morten Morup and Mikkel N. Schmidt. Feb 20, Discussed by: Yizhe Zhang

Bayesian Dropout. Tue Herlau, Morten Morup and Mikkel N. Schmidt. Feb 20, Discussed by: Yizhe Zhang Bayesian Dropout Tue Herlau, Morten Morup and Mikkel N. Schmidt Discussed by: Yizhe Zhang Feb 20, 2016 Outline 1 Introduction 2 Model 3 Inference 4 Experiments Dropout Training stage: A unit is present

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Stochastic Gradient Descent with Variance Reduction

Stochastic Gradient Descent with Variance Reduction Stochastic Gradient Descent with Variance Reduction Rie Johnson, Tong Zhang Presenter: Jiawen Yao March 17, 2015 Rie Johnson, Tong Zhang Presenter: JiawenStochastic Yao Gradient Descent with Variance Reduction

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks Stefano Ermon, Aditya Grover Stanford University Lecture 10 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 10 1 / 17 Selected GANs https://github.com/hindupuravinash/the-gan-zoo

More information

Energy-Based Generative Adversarial Network

Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network J. Zhao, M. Mathieu and Y. LeCun Learning to Draw Samples: With Application to Amoritized MLE for Generalized Adversarial

More information

Sample and Computationally Efficient Active Learning. Maria-Florina Balcan Carnegie Mellon University

Sample and Computationally Efficient Active Learning. Maria-Florina Balcan Carnegie Mellon University Sample and Computationally Efficient Active Learning Maria-Florina Balcan Carnegie Mellon University Machine Learning is Shaping the World Highly successful discipline with lots of applications. Computational

More information

1 Hoeffding s Inequality

1 Hoeffding s Inequality Proailistic Method: Hoeffding s Inequality and Differential Privacy Lecturer: Huert Chan Date: 27 May 22 Hoeffding s Inequality. Approximate Counting y Random Sampling Suppose there is a ag containing

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

Extremal Mechanisms for Local Differential Privacy

Extremal Mechanisms for Local Differential Privacy Extremal Mechanisms for Local Differential Privacy Peter Kairouz Sewoong Oh 2 Pramod Viswanath Department of Electrical & Computer Engineering 2 Department of Industrial & Enterprise Systems Engineering

More information

Robustness in GANs and in Black-box Optimization

Robustness in GANs and in Black-box Optimization Robustness in GANs and in Black-box Optimization Stefanie Jegelka MIT CSAIL joint work with Zhi Xu, Chengtao Li, Ilija Bogunovic, Jonathan Scarlett and Volkan Cevher Robustness in ML noise Generator Critic

More information

Robustness and duality of maximum entropy and exponential family distributions

Robustness and duality of maximum entropy and exponential family distributions Chapter 7 Robustness and duality of maximum entropy and exponential family distributions In this lecture, we continue our study of exponential families, but now we investigate their properties in somewhat

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

Minimax lower bounds I

Minimax lower bounds I Minimax lower bounds I Kyoung Hee Kim Sungshin University 1 Preliminaries 2 General strategy 3 Le Cam, 1973 4 Assouad, 1983 5 Appendix Setting Family of probability measures {P θ : θ Θ} on a sigma field

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Extremal Mechanisms for Local Differential Privacy

Extremal Mechanisms for Local Differential Privacy Journal of Machine Learning Research 7 206-5 Submitted 4/5; Published 4/6 Extremal Mechanisms for Local Differential Privacy Peter Kairouz Department of Electrical and Computer Engineering University of

More information

Permuation Models meet Dawid-Skene: A Generalised Model for Crowdsourcing

Permuation Models meet Dawid-Skene: A Generalised Model for Crowdsourcing Permuation Models meet Dawid-Skene: A Generalised Model for Crowdsourcing Ankur Mallick Electrical and Computer Engineering Carnegie Mellon University amallic@andrew.cmu.edu Abstract The advent of machine

More information

Surrogate regret bounds for generalized classification performance metrics

Surrogate regret bounds for generalized classification performance metrics Surrogate regret bounds for generalized classification performance metrics Wojciech Kotłowski Krzysztof Dembczyński Poznań University of Technology PL-SIGML, Częstochowa, 14.04.2016 1 / 36 Motivation 2

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

U Logo Use Guidelines

U Logo Use Guidelines Information Theory Lecture 3: Applications to Machine Learning U Logo Use Guidelines Mark Reid logo is a contemporary n of our heritage. presents our name, d and our motto: arn the nature of things. authenticity

More information

Finding the best mismatched detector for channel coding and hypothesis testing

Finding the best mismatched detector for channel coding and hypothesis testing Finding the best mismatched detector for channel coding and hypothesis testing Sean Meyn Department of Electrical and Computer Engineering University of Illinois and the Coordinated Science Laboratory

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

Lecture 8: Minimax Lower Bounds: LeCam, Fano, and Assouad

Lecture 8: Minimax Lower Bounds: LeCam, Fano, and Assouad 40.850: athematical Foundation of Big Data Analysis Spring 206 Lecture 8: inimax Lower Bounds: LeCam, Fano, and Assouad Lecturer: Fang Han arch 07 Disclaimer: These notes have not been subjected to the

More information

Gaussian Estimation under Attack Uncertainty

Gaussian Estimation under Attack Uncertainty Gaussian Estimation under Attack Uncertainty Tara Javidi Yonatan Kaspi Himanshu Tyagi Abstract We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

Asymptotics of minimax stochastic programs

Asymptotics of minimax stochastic programs Asymptotics of minimax stochastic programs Alexander Shapiro Abstract. We discuss in this paper asymptotics of the sample average approximation (SAA) of the optimal value of a minimax stochastic programming

More information

Monte-Carlo Tree Search by. MCTS by Best Arm Identification

Monte-Carlo Tree Search by. MCTS by Best Arm Identification Monte-Carlo Tree Search by Best Arm Identification and Wouter M. Koolen Inria Lille SequeL team CWI Machine Learning Group Inria-CWI workshop Amsterdam, September 20th, 2017 Part of...... a new Associate

More information

Differentially Private Machine Learning

Differentially Private Machine Learning Differentially Private Machine Learning Theory, Algorithms, and Applications Kamalika Chaudhuri (UCSD) Anand D. Sarwate (Rutgers) Logistics and Goals Tutorial Time: 2 hr (15 min break after first hour)

More information

Unsupervised Anomaly Detection for High Dimensional Data

Unsupervised Anomaly Detection for High Dimensional Data Unsupervised Anomaly Detection for High Dimensional Data Department of Mathematics, Rowan University. July 19th, 2013 International Workshop in Sequential Methodologies (IWSM-2013) Outline of Talk Motivation

More information

LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO

LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO Chunyuan Li, Jianqiao Li, Guoyin Wang & Lawrence Carin Duke University {chunyuan.li,jianqiao.li,guoyin.wang,lcarin}@duke.edu ABSTRACT We link

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Wasserstein Training of Boltzmann Machines

Wasserstein Training of Boltzmann Machines Wasserstein Training of Boltzmann Machines Grégoire Montavon, Klaus-Rober Muller, Marco Cuturi Presenter: Shiyu Liang December 1, 2016 Coordinated Science Laboratory Department of Electrical and Computer

More information

A Minimax Approach to Supervised Learning

A Minimax Approach to Supervised Learning A Minimax Approach to Supervised Learning Farzan Farnia farnia@stanford.edu David Tse dntse@stanford.edu Abstract Given a task of predicting Y from X, a loss function L, and a set of probability distributions

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Why (Bayesian) inference makes (Differential) privacy easy

Why (Bayesian) inference makes (Differential) privacy easy Why (Bayesian) inference makes (Differential) privacy easy Christos Dimitrakakis 1 Blaine Nelson 2,3 Aikaterini Mitrokotsa 1 Benjamin Rubinstein 4 Zuhe Zhang 4 1 Chalmers university of Technology 2 University

More information

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence:

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence: A Omitted Proofs from Section 3 Proof of Lemma 3 Let m x) = a i On Acceleration with Noise-Corrupted Gradients fxi ), u x i D ψ u, x 0 ) denote the function under the minimum in the lower bound By Proposition

More information

Minimax Rates. Homology Inference

Minimax Rates. Homology Inference Minimax Rates for Homology Inference Don Sheehy Joint work with Sivaraman Balakrishan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman Something like a joke. Something like a joke. What is topological

More information

1.1 Basis of Statistical Decision Theory

1.1 Basis of Statistical Decision Theory ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 1: Introduction Lecturer: Yihong Wu Scribe: AmirEmad Ghassami, Jan 21, 2016 [Ed. Jan 31] Outline: Introduction of

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

Reward-modulated inference

Reward-modulated inference Buck Shlegeris Matthew Alger COMP3740, 2014 Outline Supervised, unsupervised, and reinforcement learning Neural nets RMI Results with RMI Types of machine learning supervised unsupervised reinforcement

More information

Measuring nuisance parameter effects in Bayesian inference

Measuring nuisance parameter effects in Bayesian inference Measuring nuisance parameter effects in Bayesian inference Alastair Young Imperial College London WHOA-PSI-2017 1 / 31 Acknowledgements: Tom DiCiccio, Cornell University; Daniel Garcia Rasines, Imperial

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

EM Algorithm LECTURE OUTLINE

EM Algorithm LECTURE OUTLINE EM Algorithm Lukáš Cerman, Václav Hlaváč Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 4: ML Models (Overview) Cho-Jui Hsieh UC Davis April 17, 2017 Outline Linear regression Ridge regression Logistic regression Other finite-sum

More information

Communication-efficient and Differentially-private Distributed SGD

Communication-efficient and Differentially-private Distributed SGD 1/36 Communication-efficient and Differentially-private Distributed SGD Ananda Theertha Suresh with Naman Agarwal, Felix X. Yu Sanjiv Kumar, H. Brendan McMahan Google Research November 16, 2018 2/36 Outline

More information

FORMULATION OF THE LEARNING PROBLEM

FORMULATION OF THE LEARNING PROBLEM FORMULTION OF THE LERNING PROBLEM MIM RGINSKY Now that we have seen an informal statement of the learning problem, as well as acquired some technical tools in the form of concentration inequalities, we

More information

Quantifying Cyber Security for Networked Control Systems

Quantifying Cyber Security for Networked Control Systems Quantifying Cyber Security for Networked Control Systems Henrik Sandberg ACCESS Linnaeus Centre, KTH Royal Institute of Technology Joint work with: André Teixeira, György Dán, Karl H. Johansson (KTH) Kin

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Asymptotics for Nonlinear GMM

Asymptotics for Nonlinear GMM Asymptotics for Nonlinear GMM Eric Zivot February 13, 2013 Asymptotic Properties of Nonlinear GMM Under standard regularity conditions (to be discussed later), it can be shown that where ˆθ(Ŵ) θ 0 ³ˆθ(Ŵ)

More information

Class Prior Estimation from Positive and Unlabeled Data

Class Prior Estimation from Positive and Unlabeled Data IEICE Transactions on Information and Systems, vol.e97-d, no.5, pp.1358 1362, 2014. 1 Class Prior Estimation from Positive and Unlabeled Data Marthinus Christoffel du Plessis Tokyo Institute of Technology,

More information

Unlabeled Data: Now It Helps, Now It Doesn t

Unlabeled Data: Now It Helps, Now It Doesn t institution-logo-filena A. Singh, R. D. Nowak, and X. Zhu. In NIPS, 2008. 1 Courant Institute, NYU April 21, 2015 Outline institution-logo-filena 1 Conflicting Views in Semi-supervised Learning The Cluster

More information

Infinitely Imbalanced Logistic Regression

Infinitely Imbalanced Logistic Regression p. 1/1 Infinitely Imbalanced Logistic Regression Art B. Owen Journal of Machine Learning Research, April 2007 Presenter: Ivo D. Shterev p. 2/1 Outline Motivation Introduction Numerical Examples Notation

More information

Differential Privacy without Sensitivity

Differential Privacy without Sensitivity Differential Privacy without Sensitivity Kentaro Minami The University of Tokyo kentaro minami@mist.i.u-tokyo.ac.jp Hiromi Arai The University of Tokyo arai@dl.itc.u-tokyo.ac.jp Issei Sato The University

More information

The Optimal Mechanism in Differential Privacy

The Optimal Mechanism in Differential Privacy The Optimal Mechanism in Differential Privacy Quan Geng Advisor: Prof. Pramod Viswanath 11/07/2013 PhD Final Exam of Quan Geng, ECE, UIUC 1 Outline Background on Differential Privacy ε-differential Privacy:

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Information Theory and Distribution Modeling Why do we model distributions and conditional distributions using the following objective

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 3: Linear Models I (LFD 3.2, 3.3) Cho-Jui Hsieh UC Davis Jan 17, 2018 Linear Regression (LFD 3.2) Regression Classification: Customer record Yes/No Regression: predicting

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information