Gibbs Sampler Componentwise sampling directly from the target density π(x), x R n. Define a transition kernel

Size: px
Start display at page:

Download "Gibbs Sampler Componentwise sampling directly from the target density π(x), x R n. Define a transition kernel"

Transcription

1 Gibbs Sampler Componentwise sampling directly from the target density π(x), x R n. Define a transition kernel K(x, y) = n π(y i y 1,..., y i 1, x i+1,..., x m ), i=1 and we set r(x) = 0. (move every time) This transition kernel does not in general satisfy the detailed balance equation, π(y)k(y, x) = π(x)k(x, y), but it satisfies the balance equation, π(y)k(y, x)dx = π(x)k(x, y)dx. 0-0

2 Proof in two dimensions π(y)k(y, x)dx = π(y) K(y, x)dx. We have and therefore K(x, y) = π(y 1 x 2 )π(y 2 y 1 ), K(y, x) = π(x 1 y 2 )π(x 2 x 1 ). Integrate with respect to x: K(y, x)dx = = = π(x 1 y 2 )π(x 2 x 1 )dx 1 dx 2 dx 1 π(x 1 y 2 ) π(x 2 x 1 )dx 2 } {{ } =1 π(x 1 y 2 )dx 1 =

3 Hence, π(y)k(y, x)dx = π(y). Right hand side: so π(x)k(x, y) = π(x)π(y 1 x 2 )π(y 2 y 1 ), π(x)k(x, y)dx 1 = π(y 1 x 2 )π(y 2 y 1 ) π(x 1, x 2 )dx 1 } {{ } =π(x 2 ) = π(y 1 x 2 )π(x 2 )(π(y 2 y 1 ) }{{} =π(y 1,x 2 ) = π(y 1, x 2 )π(y 2 y 1 ). 0-2

4 Integrating with respect to x 2, we obtain π(y 1, x 2 )π(y 2 y 1 )dx 2 = π(y 2 y 1 ) π(y 1, x 2 )dx 2 } {{ } π(y 1 ) and the proof is complete. = π(y 2 y 1 )π(y 1 ) = π(y 2, y 1 ) = π(y), 0-3

5 Algorithm Componentwise updating: 1. Initialize x = x 1 and set k = Update x k x k+1 : Draw x k+1 1 from t π(t, x k 2, x k 3,, x k n), Draw x k+1 2 from t π(x k+1 1, t, x k 3,, x k n),.. Draw x k+1 n from t π(x k+1 1 x k+1 2,, x k+1 n 1, t). 3. Increase k k + 1 and repeat from 2. until a desired sample size is reached. 0-4

6 Consider the following particular case: Implementation: an example Observation model b = Ax + e, e N (0, σ 2 I). Whitening of the noise: Observe that w = 1 e N (0, I), σ so the observation equation is equivalent to b = A x + w, w N (0, I), where A = 1 σ A, b = 1 σ b. 0-5

7 Without loss of generality, we may assume therefore that σ = 1. Likelihood density is π(b x) exp ( 12 ) Ax b 2. Prior: assume that we have an a priori inequality constraint Cx r, the inequality understood componentwise. Example: v j x j u j, 1 j n, can be written as [ ] [ ] I v x. I u }{{}}{{} =C =r 0-6

8 The prior can be written as π prior (x) Θ(Cx r), where Θ is the multivariate Heaviside step function. Observe: the prior may be an improper density, i.e., it may be that the integral is not finite. Write π post (x) = π(x b) π(b x)π prior (x). 0-7

9 Updating of the jth component: we need the conditional densities π(x j x 1, x 2,..., x j 1, x j+1,..., x n, b) }{{}}{{} updated old that is, we have to consider the mapping x j π post (x 1, x 2,..., x j 1, x j, x j+1,..., x n ), }{{}}{{} updated old where all the other components except for the jth one are fixed. 0-8

10 Likelihood: Write Then Denote A = [ ] a 1 a 2 a n n Ax = x k a k. k=1 A j = matrix A with jth column eliminated, a j = jth column of A, x j = vector x with the jth entry eliminated. 0-9

11 We have Ax b = x j a j + n k=1,k j x k a k b = x j a j + A j x j b = x j a j b j, where b j = b A j x j. 0-10

12 Now, Ax b 2 = x j a j b j 2 Therefore, by denoting = a j 2 x 2 j 2x j a T j b j + b j 2 = = ( a j x j at j b j a j ) 2 + b j 2 (at j b j) 2 a j 2. t j = a j x j, t j = at j b j a j, we have π(x j x j, b) exp ( 12 ) (t j t j )

13 Prior, i.e., the bounds for t j, assuming that x j is given: Again, we write C j = matrix C with jth column eliminated, c j = jth column of C, so the bound constraints Cx = x j c j + C j x j r implies x j c j r C j x j, and by scaling with a j, we have t j c j q, q = a j ( ) r C j x j. (1) 0-12

14 Denote c j = c 1j c 2j.. c Nj RN. Make a permutation of the elements c ij of c j and q so that the C ij s are in decreasing order. Assume that the l first elements are positive, c 1j c lj > 0, while the entries starting from the k + 1, k l are negative, 0 > c k+1,j c Nj. 0-13

15 Writing the inequality (1) component by component and taking the signs into account, we obtain and c ij t j q i, or t j q i c ij, 1 i l, c ij t j q i, or t j q i c ij, k + 1 i N. In addition, one should check that the inequalities corresponding to zero entries are valid, that is, 0 r i, l + 1 i k. This is a consistency check, and has no contribution to the sampling strategy. 0-14

16 We therefore have lower and upper bounds for t j, ( ) ( ) qi qi t j,min = max, t j,max = min. 1 i l c ij k+1 i n c ij The conditional probability density of t j is π(t j x j, b) exp ( 12 ) (t j t j ) 2, t j,min t j t j,max, and the random draw has to be done from this density. 0-15

17 To do the draws properly, we have to consider three possibilities, each one treated below separately. 1. t j > t j,max. This means that we have to draw from the left tail of the Gaussian distribution. The maximum value of this tail is achieved at t j = t j,max. We scale the density so that this maximum value equals one: ( π(t j ) = exp 1 ) 2 (t j t j ) 2 + p, p = 1 2 (t j,max t j ) 2. We seek the effective interval where this density is bigger than a prescribed threshold value δ >

18 Write π(t j ) = δ, take logarithm of both sides to obtain 1 2 (t j t j ) 2 p = log 1 δ, and solve for t j, bearing in mind that t j < t j, t j = t = t j Hence, the effective draw interval is ( 2p + 2 log 1 δ ) 1/2. max(t j,min, t ) t j t j,max. 0-17

19 2. t j < t j,min. This time, we need to draw from the right tail of the distribution. The maximum is attained at t j = t j,min, and the scaled density now is ( π(t j ) = exp 1 ) 2 (t j t j ) 2 + p, p = 1 2 (t j,min t j ) 2. Again, we seek the effective interval, that in this time is t j,min t j min(t, t j,max ), where t = t j + ( 2p + 2 log 1 δ ) 1/

20 3. t j,min t j t j,max, the maximum thus being within the interval. In this case, the scaled density is directly π(t j ) = exp ( 12 ) (t j t j ) 2, and solving the equation leads to the solutions π(t j ) = δ t j = t ± = t j ± so the active interval for t j in this case is ( 2 log 1 δ ) 1/2, max(t j,min, t, ) t j min(t j,max, t,+ ). Assume now that we have updated the interval to be the effective interval. 0-19

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density Marginal density If the unknown is of the form x = x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density πx 1 y) = πx 1, x 2 y)dx 2 = πx 2 )πx 1 y, x 2 )dx 2 needs to be

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Inverse Problems in the Bayesian Framework

Inverse Problems in the Bayesian Framework Inverse Problems in the Bayesian Framework Daniela Calvetti Case Western Reserve University Cleveland, Ohio Raleigh, NC, July 2016 Bayes Formula Stochastic model: Two random variables X R n, B R m, where

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

MAT Inverse Problems, Part 2: Statistical Inversion

MAT Inverse Problems, Part 2: Statistical Inversion MAT-62006 Inverse Problems, Part 2: Statistical Inversion S. Pursiainen Department of Mathematics, Tampere University of Technology Spring 2015 Overview The statistical inversion approach is based on the

More information

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 4 Problem: Density Estimation We have observed data, y 1,..., y n, drawn independently from some unknown

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 1 Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 2 MOVING AVERAGE SPATIAL MODELS Kernel basis representation for spatial processes z(s) Define m basis functions

More information

Week 15-16: Combinatorial Design

Week 15-16: Combinatorial Design Week 15-16: Combinatorial Design May 8, 2017 A combinatorial design, or simply a design, is an arrangement of the objects of a set into subsets satisfying certain prescribed properties. The area of combinatorial

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

Markov Random Fields

Markov Random Fields Markov Random Fields 1. Markov property The Markov property of a stochastic sequence {X n } n 0 implies that for all n 1, X n is independent of (X k : k / {n 1, n, n + 1}), given (X n 1, X n+1 ). Another

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Gibbs Sampling in Linear Models #1

Gibbs Sampling in Linear Models #1 Gibbs Sampling in Linear Models #1 Econ 690 Purdue University Justin L Tobias Gibbs Sampling #1 Outline 1 Conditional Posterior Distributions for Regression Parameters in the Linear Model [Lindley and

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1].

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1]. Topics: Linear operators MODULE 7 We are going to discuss functions = mappings = transformations = operators from one vector space V 1 into another vector space V 2. However, we shall restrict our sights

More information

MATH 220 solution to homework 4

MATH 220 solution to homework 4 MATH 22 solution to homework 4 Problem. Define v(t, x) = u(t, x + bt), then v t (t, x) a(x + u bt) 2 (t, x) =, t >, x R, x2 v(, x) = f(x). It suffices to show that v(t, x) F = max y R f(y). We consider

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Rotation of Axes. By: OpenStaxCollege

Rotation of Axes. By: OpenStaxCollege Rotation of Axes By: OpenStaxCollege As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions,

More information

The problem is to infer on the underlying probability distribution that gives rise to the data S.

The problem is to infer on the underlying probability distribution that gives rise to the data S. Basic Problem of Statistical Inference Assume that we have a set of observations S = { x 1, x 2,..., x N }, xj R n. The problem is to infer on the underlying probability distribution that gives rise to

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J.

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J. Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox fox@physics.otago.ac.nz Richard A. Norton, J. Andrés Christen Topics... Backstory (?) Sampling in linear-gaussian hierarchical

More information

An introduction to adaptive MCMC

An introduction to adaptive MCMC An introduction to adaptive MCMC Gareth Roberts MIRAW Day on Monte Carlo methods March 2011 Mainly joint work with Jeff Rosenthal. http://www2.warwick.ac.uk/fac/sci/statistics/crism/ Conferences and workshops

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Markov Chain Monte Carlo Lecture 4

Markov Chain Monte Carlo Lecture 4 The local-trap problem refers to that in simulations of a complex system whose energy landscape is rugged, the sampler gets trapped in a local energy minimum indefinitely, rendering the simulation ineffective.

More information

Lecture 3: QR-Factorization

Lecture 3: QR-Factorization Lecture 3: QR-Factorization This lecture introduces the Gram Schmidt orthonormalization process and the associated QR-factorization of matrices It also outlines some applications of this factorization

More information

Semi-Parametric Importance Sampling for Rare-event probability Estimation

Semi-Parametric Importance Sampling for Rare-event probability Estimation Semi-Parametric Importance Sampling for Rare-event probability Estimation Z. I. Botev and P. L Ecuyer IMACS Seminar 2011 Borovets, Bulgaria Semi-Parametric Importance Sampling for Rare-event probability

More information

2. Matrix Algebra and Random Vectors

2. Matrix Algebra and Random Vectors 2. Matrix Algebra and Random Vectors 2.1 Introduction Multivariate data can be conveniently display as array of numbers. In general, a rectangular array of numbers with, for instance, n rows and p columns

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

SUPPLEMENT TO EXTENDING THE LATENT MULTINOMIAL MODEL WITH COMPLEX ERROR PROCESSES AND DYNAMIC MARKOV BASES

SUPPLEMENT TO EXTENDING THE LATENT MULTINOMIAL MODEL WITH COMPLEX ERROR PROCESSES AND DYNAMIC MARKOV BASES SUPPLEMENT TO EXTENDING THE LATENT MULTINOMIAL MODEL WITH COMPLEX ERROR PROCESSES AND DYNAMIC MARKOV BASES By Simon J Bonner, Matthew R Schofield, Patrik Noren Steven J Price University of Western Ontario,

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

TEST CODE: MIII (Objective type) 2010 SYLLABUS

TEST CODE: MIII (Objective type) 2010 SYLLABUS TEST CODE: MIII (Objective type) 200 SYLLABUS Algebra Permutations and combinations. Binomial theorem. Theory of equations. Inequalities. Complex numbers and De Moivre s theorem. Elementary set theory.

More information

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved Fundamentals of Linear Algebra Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 PREFACE Linear algebra has evolved as a branch of mathematics with wide range of applications to the natural

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Problem Set # 1 Solution, 18.06

Problem Set # 1 Solution, 18.06 Problem Set # 1 Solution, 1.06 For grading: Each problem worths 10 points, and there is points of extra credit in problem. The total maximum is 100. 1. (10pts) In Lecture 1, Prof. Strang drew the cone

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

ax 2 + bx + c = 0 where

ax 2 + bx + c = 0 where Chapter P Prerequisites Section P.1 Real Numbers Real numbers The set of numbers formed by joining the set of rational numbers and the set of irrational numbers. Real number line A line used to graphically

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

MTH 202 : Probability and Statistics

MTH 202 : Probability and Statistics MTH 202 : Probability and Statistics Lecture 9 - : 27, 28, 29 January, 203 4. Functions of a Random Variables 4. : Borel measurable functions Similar to continuous functions which lies to the heart of

More information

Math 163: Lecture notes

Math 163: Lecture notes Math 63: Lecture notes Professor Monika Nitsche March 2, 2 Special functions that are inverses of known functions. Inverse functions (Day ) Go over: early exam, hw, quizzes, grading scheme, attendance

More information

Solving Systems of Equations Row Reduction

Solving Systems of Equations Row Reduction Solving Systems of Equations Row Reduction November 19, 2008 Though it has not been a primary topic of interest for us, the task of solving a system of linear equations has come up several times. For example,

More information

Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors

Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors Division of Engineering & Applied Science Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors IPAM, UCLA, November 14, 2017 Matt Dunlop Victor Chen (Caltech) Omiros Papaspiliopoulos (ICREA,

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Section 9.2: Matrices.. a m1 a m2 a mn

Section 9.2: Matrices.. a m1 a m2 a mn Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in

More information

Point spread function reconstruction from the image of a sharp edge

Point spread function reconstruction from the image of a sharp edge DOE/NV/5946--49 Point spread function reconstruction from the image of a sharp edge John Bardsley, Kevin Joyce, Aaron Luttman The University of Montana National Security Technologies LLC Montana Uncertainty

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Lecture 8: Path Technology

Lecture 8: Path Technology Counting and Sampling Fall 07 Lecture 8: Path Technology Lecturer: Shayan Oveis Gharan October 0 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Block Diagonal Majorization on C 0

Block Diagonal Majorization on C 0 Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 2 (2013), pp 131-136 Block Diagonal Majorization on C 0 A. Armandnejad and F. Passandi Department of Mathematics, Vali-e-Asr University

More information

Generalized Rejection Sampling Schemes and Applications in Signal Processing

Generalized Rejection Sampling Schemes and Applications in Signal Processing Generalized Rejection Sampling Schemes and Applications in Signal Processing 1 arxiv:0904.1300v1 [stat.co] 8 Apr 2009 Luca Martino and Joaquín Míguez Department of Signal Theory and Communications, Universidad

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Exam 4 Review 1. Trig substitution

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers

Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers Sampling Distributions Allen & Tildesley pgs. 345-351 and Numerical Recipes on random numbers Today I explain how to generate a non-uniform probability distributions. These are used in importance sampling

More information

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3)

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3) Diff. Eqns. Problem Set 6 Solutions. Solve the boundary-value problems or else show that no solutions exist. a y + y 6y, y, y 4 b y + 9y x + e x, y, yπ a Assuming y e rx is a solution, we get the characteristic

More information

Lecture 15: Algebraic Geometry II

Lecture 15: Algebraic Geometry II 6.859/15.083 Integer Programming and Combinatorial Optimization Fall 009 Today... Ideals in k[x] Properties of Gröbner bases Buchberger s algorithm Elimination theory The Weak Nullstellensatz 0/1-Integer

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

Overlapping block proposals for latent Gaussian Markov random fields

Overlapping block proposals for latent Gaussian Markov random fields NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Overlapping block proposals for latent Gaussian Markov random fields by Ingelin Steinsland and Håvard Rue PREPRINT STATISTICS NO. 8/3 NORWEGIAN UNIVERSITY

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline.

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline. MFM Practitioner Module: Risk & Asset Allocation September 11, 2013 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

STAT215: Solutions for Homework 2

STAT215: Solutions for Homework 2 STAT25: Solutions for Homework 2 Due: Wednesday, Feb 4. (0 pt) Suppose we take one observation, X, from the discrete distribution, x 2 0 2 Pr(X x θ) ( θ)/4 θ/2 /2 (3 θ)/2 θ/4, 0 θ Find an unbiased estimator

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Calculus II Study Guide Fall 2015 Instructor: Barry McQuarrie Page 1 of 8

Calculus II Study Guide Fall 2015 Instructor: Barry McQuarrie Page 1 of 8 Calculus II Study Guide Fall 205 Instructor: Barry McQuarrie Page of 8 You should be expanding this study guide as you see fit with details and worked examples. With this extra layer of detail you will

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han Math for Machine Learning Open Doors to Data Science and Artificial Intelligence Richard Han Copyright 05 Richard Han All rights reserved. CONTENTS PREFACE... - INTRODUCTION... LINEAR REGRESSION... 4 LINEAR

More information

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008 Ages of stellar populations from color-magnitude diagrams Paul Baines Department of Statistics Harvard University September 30, 2008 Context & Example Welcome! Today we will look at using hierarchical

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information