Koji Ichikawa. Prospects on the indirect dark matter detection and a future spectroscopic survey of dwarf spheroidal galaxies.

Size: px
Start display at page:

Download "Koji Ichikawa. Prospects on the indirect dark matter detection and a future spectroscopic survey of dwarf spheroidal galaxies."

Transcription

1 Prospects on the indirect dark matter detection and a future spectroscopic survey of dwarf spheroidal galaxies Koji Ichikawa (In preparation) In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. TeVPa2015, Kashiwa, Oct ,

2 Direct Detection Dark Matter Search Indirect Detection DM SM DM SM Collider Production 2

3 Signal Target Milky-Way Galaxy dsphs 100 kpc 10 Mpc Extra Galaxy/ Cluster 8.5 kpc Charged CRs 3

4 dsphs: Dwarf spheroidal galaxies = Clean & DM Rich Target 1. Neighbor galaxies: 10~100kpc 2. Large Mass to Luminosity ratio = DM rich 3. Clean (no strong gamma-ray source) arxiv: v6 [astro-ph.co]

5 Current(slightly old) obs limit (ex. Wino) Collider Wino DM annihilation cross section 5

6 Current(slightly old) obs limit (ex. Wino) Collider Wino DM annihilation cross section 6

7 We Should Precisely Determine The dsph DM Halo Shape Dwarf galaxy γ-rays Observed γ-ray Flux DM Property Halo Profile (J-factor)

8 J-Factor DM Density profile ( r / r s s ) (1 r / r s 1 s (1 r / r ) 1 s ) (1 r / r 2 s ) 2 Cusp Cored Stellar Density Profile: ν(r) Jeans equation for stars 2 (Theory) l.o.s Fit 2 (obs) l.o.s Geringer-Sameth et al., arxiv:

9 Astrophysical Factor DM Density profile ( r / r s s ) (1 r / r s 1 s (1 r / r ) 1 s ) (1 r / r 2 s ) 2 Cusp Cored Stellar Density Profile: ν(r) Jeans equation for stars 2 (Theory) l.o.s 2 (obs) l.o.s Fit Classical: Well-determined Ultra-faint: Not well-determined. Prior dependence Factor 1.6 ~ 2 unc. :Conservative? 9

10 Hidden Systematics Non Spherical? => uncertainty Axisymmetric: Hayasi and Chiba., arxiv: Foreground Contamination? N < 100: O(1) uncertainty N 1000: < 0.4 By K. Hayashi-san (Preliminary) Prior Bias?/Cut? N < 100: > O(1) uncertainty Bonnivard et al., arxiv:

11 Hidden Systematics Non Spherical? => uncertainty Axisymmetric: Hayasi and Chiba., arxiv: Foreground Contamination? N < 100: O(1) uncertainty N 1000: < 0.4 Bonnivard et al., arxiv: < NMem < 100 Prior Bias?/Cut? N < 100: > O(1) uncertainty Bonnivard et al., arxiv: Nmem 1000

12 Hidden Systematics Non Spherical? => uncertainty Axisymmetric: Hayasi and Chiba., arxiv: Foreground Contamination? N < 100: O(1) uncertainty N 1000: < 0.4 Draco Segue1 Prior Bias?/Cut? N < 100: > O(1) uncertainty Martinez et al., arxiv:

13 Hidden Systematics Non Spherical? => uncertainty Axisymmetric: Hayasi and Chiba., arxiv: Foreground Contamination? N < 100: O(1) uncertainty N 1000: < 0.4 Prior Bias?/Cut? (For Ultra faint dsphs) N < 100: > O(1) uncertainty How to Reduce Them? -> Increase #NMem!

14 Prime Focus Spectrograph FoV 1.3 deg (diam) with 2394 Fiber MMFS (M. G. Walker et al,. (2007)) 14

15 Prime Focus Spectrograph FoV 1.3 deg (diam) with 2394 Fiber MMFS (M. G. Walker et al,. (2007)) 15

16 #Obs Star (<V) #Obs Star (<V) by M. Ishigaki Prime Focus Spectrograph More accurate DM profile estimation More Robust constraints

17 #Obs Star (<V) #Obs Star (<V) by M. Ishigaki Prime Focus Spectrograph More accurate DM profile estimation More Robust constraints

18 Strategy 1. Mock Observable: dsph Stellar + Foreground dsph Stellar Mock Boltzmann Equation under DM profile Foreground Mock Besancon Model (Robin+ (2003)) Member Star Mock Preliminary 2. Detector Convolution: 1. fix: dv = 3.0km/s 3. Fit: by (v, r) probability density. (unbinned) Foreground Mock Preliminary Obs 18

19 Strategy Fit without Foreground Star 1. Mock Observable: dsph Stellar + Foreground dsph Stellar Mock Boltzmann Equation under DM profile Foreground Mock Besancon Model (Robin+ (2003)) Member Star Mock Preliminary 2. Detector Convolution: 1. fix: dv = 3.0km/s 3. Fit: by (v, r) probability density. (unbinned) Foreground Mock Preliminary Obs 19

20 Foreground Contamination Outer Region = FG dominant Preliminary How to reduce the FG? => Cut ~ 10 % Contamination How to include the FG effect? => Model the FG dist. 30 < NMem < Bonnivard et al., arxiv:

21 Cut Strategy ROI Cut: 1.3 deg radius for 4 pointing Color Magnitude Cut Gravity Cut velocity Cut Teff, Chemical Cut do not so efficient Current (i ~ 20.) Member 420 FG 30 (w/o vcut: 130) PFS (i < 21) Member 700 FG 80 (w/o vcut: 550) This contamination is ignored = Biases dlogj~ 0.1 Member FG Chem. -> degenerate PFS (i < 21.5) Member 900 FG 100 (w/o vcut: 650)

22 Fit including FG model Member Fraction Prob. Dist. Of FG Member Parameter = halo information FG Parameter Can be considered to be Gaussian after several cuts. 22

23 FG func Parameters Outer Region Stars (Data w/o v cut can be used) => FG func parameter inc. its errors can be determined (errors => prior) FG Dominate dsph Dominate 1.3 deg radisu (4 pointings) ROI Preliminary Large ROI =Large FG sample = Small error of ffg params

24 Results Current Data (inc. FG contami) dlog(j) ~ 0.25? PFS (inc. FG contami) dlog(j) < 0.15? Preliminary Sum FG Mem Optimization is on-going

25 Summary Indirect detection is essential for DM search. Gamma-ray observation of dsph can give robust constraints on the DM annihilation cross section. Investigation of stellar kinematics (PFS) will play a crucial role. Reduction of foreground stars is important 25

26 Thank You! Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. TeVPa2015, Kashiwa, Oct , 2015

Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai.

Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. Koji Ichikawa (In preparation) In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. 1 PPP2015, Kyoto, Sep. 14-18, 2015 Koji Ichikawa (In preparation)

More information

Koji Ichikawa. (In preparation) TAUP, Torino, Sep. 7-11, 2015

Koji Ichikawa. (In preparation) TAUP, Torino, Sep. 7-11, 2015 Koji Ichikawa (In preparation) In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. 1 TAUP, Torino, Sep. 7-11, 2015 Direct Detection Dark Matter Search

More information

Future DM indirect detection in dwarf spheroidal galaxies and Foreground effect on the J-factor estimation Koji Ichikawa

Future DM indirect detection in dwarf spheroidal galaxies and Foreground effect on the J-factor estimation Koji Ichikawa Future DM indirect detection in dwarf spheroidal galaxies and Foreground effect on the J-factor estimation Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto

More information

Robust estimate of the dark matter halo of the Milky-way's dwarf spheroidal galaxies

Robust estimate of the dark matter halo of the Milky-way's dwarf spheroidal galaxies Robust estimate of the dark matter halo of the Milky-way's dwarf spheroidal galaxies Koji Ichikawa arxiv:1701.xxxxx arxiv:1608.01749 (submitted in MNRAS) MNRAS, 461, 2914 (1603.08046 [astroph.ga]) In collaboration

More information

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Vincent Bonnivard bonnivard@lpsc.in2p3.fr TAUP 2015 07/09/15 Collaborators: D. Maurin, C. Combet, M. G. Walker, A.

More information

Shigeki Matsumoto (Kavli IPMU)

Shigeki Matsumoto (Kavli IPMU) The weak-charged WIMP Shigeki Matsumoto (Kavli IPMU) The weak-charged WIMP, Majorana fermion with a weak charge one, is a very attractive dark matter candidate. 1. Motivation for the weak-charged WIMP

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

Sommerfeld-Enhanced J-Factors for Dwarf Spheroidal Galaxies

Sommerfeld-Enhanced J-Factors for Dwarf Spheroidal Galaxies KB, J. Kumar, L. Strigari, M.-Y. Wang (2017) Sommerfeld-Enhanced J-Factors for Dwarf Spheroidal Galaxies Kimberly Boddy, University of Hawaii TeVPA 2017, Columbus, OH 9 August 2017 OVERVIEW OF INDIRECT

More information

A search for dark matter annihilation in the newly discovered dwarf galaxy Reticulum II

A search for dark matter annihilation in the newly discovered dwarf galaxy Reticulum II Note. Best-fit parameters from the maximum-likelihood fit assuming the composite isochrone described in Section 3.2. Uncertainties are calculated from the the highest density interval containing 90% of

More information

Milky Way Satellite Galaxy Kinematics and Scaling Relations for Dark Matter Searches. Andrew B. Pace. Texas A&M University. Louie Strigari (TAMU)

Milky Way Satellite Galaxy Kinematics and Scaling Relations for Dark Matter Searches. Andrew B. Pace. Texas A&M University. Louie Strigari (TAMU) Milky Way Satellite Galaxy Kinematics and Scaling Relations for Dark Matter Searches Andrew B. Pace Texas A&M University Louie Strigari (TAMU) Identifying the Particle Nature of Dark Matter Production

More information

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Meng Su (MIT)! Pappalardo/Einstein fellow!! In Collaboration with Zhiyuan Li (NJU)!! 15 Years of Science with Chandra!

More information

Mass modelling of dwarf spheroidals. Jorge Peñarrubia

Mass modelling of dwarf spheroidals. Jorge Peñarrubia Mass modelling of dwarf spheroidals Jorge Peñarrubia Santiago de Chile 13 April 2015 Universe Composition Assumption: GR is correct WMAP7 DM particle models: Constraints 63 orders 51 orders DM particle

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

Indirect Dark Matter Detection with Dwarf Galaxies

Indirect Dark Matter Detection with Dwarf Galaxies Indirect Dark Matter Detection with Dwarf Galaxies Neelima Sehgal KIPAC-SLAC/Stanford SnowPAC, Utah 2010 Rouven Essig, NS, Louis Strigari, arxiv: 0902.4750, PRD 80, 023506 (2009) Rouven Essig, NS, Louis

More information

Constraining dark matter signal from a combined analysis of Milky Way satellites using the Fermi-LAT arxiv: v1 [astro-ph.

Constraining dark matter signal from a combined analysis of Milky Way satellites using the Fermi-LAT arxiv: v1 [astro-ph. Constraining dark matter signal from a combined analysis of Milky Way satellites using the Fermi-LAT arxiv:1102.5701v1 [astro-ph.he] 28 Feb 2011 Stockholm University E-mail: maja.garde@fysik.su.se On behalf

More information

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration The VERITAS Dark M atter and Astroparticle Programs Benjamin Zitzer For The VERITAS Collaboration Introduction to VERITAS Array of four IACTs in Southern AZ, USA Employs ~100 Scientists in five countries

More information

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Italy Emmanuel Moulin CTA meeting, Zürich 2009 1 Core-energy

More information

Chap.6 Formation and evolution of Local Group galaxies

Chap.6 Formation and evolution of Local Group galaxies Chap.6 Formation and evolution of Local Group galaxies Properties of LG galaxies Formation history of LG galaxies Models to solve missing satellites problem Formation of Andromeda galaxy Future prospects

More information

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters Moritz Hütten (MPP Munich) for the CTA consortium "The extreme Universe viewed in very-highenergy

More information

Dark Matter Halos of M31. Joe Wolf

Dark Matter Halos of M31. Joe Wolf Dark Matter Halos of M31 Galaxies Joe Wolf TASC October 24 th, 2008 Dark Matter Halos of M31 Galaxies Joe Wolf Team Irvine: Louie Strigari, James Bullock, Manoj Kaplinghat TASC October 24 th, 2008 Dark

More information

Indirect dark matter searches with the Cherenkov Telescope Array

Indirect dark matter searches with the Cherenkov Telescope Array Indirect dark matter searches with the Cherenkov Telescope Array Jennifer Gaskins GRAPPA, University of Amsterdam for the CTA Consortium For more details, please see: arxiv:1508.06128 Carr et al. 2015

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

CLUMPY: A public code for γ-ray and ν signals from dark matter structures.

CLUMPY: A public code for γ-ray and ν signals from dark matter structures. CLUMPY: A public code for γ-ray and ν signals from dark matter structures. Moritz Hütten, DESY Zeuthen for the CLUMPY developers: Vincent Bonnivard, Moritz Hütten, Emmanuel Nezri, Aldée Charbonnier, Céline

More information

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Aldo Morselli INFN Roma Tor Vergata CTA in the quest for Dark Matter and exotic phenomena

More information

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution I S I The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution Yang Huang (LAMOST Fellow, yanghuang@pku.edu.cn) N G U N I V E R P E K T Y 1 8 9 8 Peking University

More information

Recent Searches for Dark Matter with the Fermi-LAT

Recent Searches for Dark Matter with the Fermi-LAT Recent Searches for Dark Matter with the Fermi-LAT on behalf of the Fermi-LAT Collaboration CETUP* DM Workshop Deadwood, SD 7 July 2016 A One-Slide History of Dark Matter Particle Physics Astrophysics

More information

MAMPOSSt modeling of true & mock dwarf spheroidal galaxies

MAMPOSSt modeling of true & mock dwarf spheroidal galaxies MAMPOSSt modeling of true & mock dwarf spheroidal galaxies Gary Mamon (IAP), 30 Oct 2014, GAIA Challenge in Heidelberg, MAMPOSSt modeling of true & mock dwarf spheroidals 1 Motivations Mass profiles of

More information

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess Instituto de Fisica Teórica, IFT-CSIC Madrid Marco Taoso DM and the Galactic Center GeV excess Frontier Objects in Astrophysics and Particle Physics Vulcano Workshop 26-05- 2016 How and where to look for

More information

Separating Signal from Background

Separating Signal from Background 1 Department of Statistics Columbia University February 6, 2009 1 Collaborative work with Matthew Walker, Mario Mateo & Michael Woodroofe Outline Separating Signal and Foreground stars 1 Separating Signal

More information

Searching for WIMPs in deep radio observations of Gl Galactic dsphs

Searching for WIMPs in deep radio observations of Gl Galactic dsphs Searching for WIMPs in deep radio observations of Gl Galactic dsphs m x = 10 GV GeV XX e+/e D o = 0.1*MW Excluded d( (2σ) 05deg 0.5 th Kristine Spekkens (RMC) Brian Mason (NRAO), James Aguirre (UPenn),

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Two-halo Galactic Conformity as a Test of Assembly Bias

Two-halo Galactic Conformity as a Test of Assembly Bias Two-halo Galactic Conformity as a Test of Assembly Bias Angela Berti UC San Diego GalFRESCA 2018 1 Galactic Conformity Correlation between star formation rates (SFRs) of central galaxies and their satellites/neighbors

More information

Constraints on dark matter annihilation cross section with the Fornax cluster

Constraints on dark matter annihilation cross section with the Fornax cluster DM Workshop@UT Austin May 7, 2012 Constraints on dark matter annihilation cross section with the Fornax cluster Shin ichiro Ando University of Amsterdam Ando & Nagai, arxiv:1201.0753 [astro-ph.he] Galaxy

More information

Future prospects for finding Milky Way satellites. Amit and Carl 31 March 2010

Future prospects for finding Milky Way satellites. Amit and Carl 31 March 2010 Future prospects for finding Milky Way satellites Amit and Carl 31 March 2010 Where have all the satellites gone? The missing satellite problem! DM simulations (like Via Lactea) predict that there should

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) University of Maryland December 8 th, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor

More information

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

A tool to test galaxy formation theories. Joe Wolf (UC Irvine) A tool to test galaxy formation theories Joe Wolf (UC Irvine) SF09 Cosmology Summer Workshop July 7 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo KIPAC: Louie Strigari Haverford:

More information

THE MAGIC TELESCOPES. Major Atmospheric Gamma Imaging Cherenkov Telescopes

THE MAGIC TELESCOPES. Major Atmospheric Gamma Imaging Cherenkov Telescopes THE MAGIC TELESCOPES Observatorio del Roque de los Muchachos, La Palma (2200 m a.s.l.) System of two 17 m Cherenkov Telescopes for VHE γ-ray astronomy MAGIC-I operational since 2004, Stereo system since

More information

the CTA Consortium represented by Aldo Morselli

the CTA Consortium represented by Aldo Morselli The Dark Matter Programme of the Cherenkov Telescope Array the CTA Consortium represented by Aldo Morselli INFN Roma Tor Vergata 1 CTA PROJECT Next generation ground based Gamma-ray observatory Open observatory

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Mia S. Bovill with Massimo Ricotti University of Maryland The Smallest Galaxies Minihalos DO NOT initiate gas condensation

More information

Milky Way Satellite Galaxies with DES

Milky Way Satellite Galaxies with DES Milky Way Satellite Galaxies with DES Alex Drlica-Wagner kadrlica@fnal.gov! DES Milky Way Working Group Coordinator! January 11, 2015 Milky Way Satellite Galaxies Segue 1 The Milky Way is surrounded by

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Kavli Institue for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford,

More information

Precision kinematics Demonstration on Bootes dsph. Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others

Precision kinematics Demonstration on Bootes dsph. Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others Precision kinematics Demonstration on Bootes dsph Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others Stellar kinematics in dwarfs Dwarfs most dark matter dominated

More information

Galaxy Life Stories: Sheila Kannappan UNC Chapel Hill

Galaxy Life Stories: Sheila Kannappan UNC Chapel Hill Galaxy Life Stories: Growing Up in a Violent Universe Sheila Kannappan UNC Chapel Hill image credit: Charlton et al 2000 Outline Isolated Galaxy Evolution Galaxy Collisions Hierarchical Galaxy Evolution

More information

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Moriond Cosmology 2018 Silvia Manconi (University of Turin & INFN) March 20, 2018 In collaboration with: Hannes Zechlin,

More information

Dark Matter in Galaxies

Dark Matter in Galaxies Dark Matter in Galaxies Garry W. Angus VUB FWO 3rd COSPA Meeting Université de Liège Ellipticals. Old stars. Gas poor. Low star formation rate. Spiral (disk) galaxies. Often gas rich => star formation.

More information

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration Searching for dark matter annihilation lines with HESS II Knut Dundas Morå for the HESS collaboration Outline Indirect Dark Matter detection Dark Matter signatures Dark Matter distributions Fermi Line

More information

A tool to test galaxy formation arxiv: Joe Wolf (UC Irvine)

A tool to test galaxy formation arxiv: Joe Wolf (UC Irvine) A tool to test galaxy formation arxiv: 0908.2995 Joe Wolf (UC Irvine) Hunting for the Dark: The Hidden Side of Galaxy Formation Malta October 22 nd, 2009 Team Irvine: Greg Martinez James Bullock Manoj

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) September, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor Team Irvine: Greg Martinez

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab.

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab. Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab. 13 eme Recontres de Vietnam: Exploring the Dark Universe 24 July 2017, Quy Nhon, Vietnam Outline 2 I. Review / Context: indirect

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 3 Simon White Max Planck Institute for Astrophysics Shapes of halo equidensity surfaces Group Jing & Suto 2002 Galaxy δ 100 2500 6250 Shapes of halo

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Highlights from the Fermi Symposium

Highlights from the Fermi Symposium Highlights from the Fermi Symposium Aldo Morselli INFN Roma Tor Vergata 1 The LAT at 2 Years and 17 days from the 3 rd!!! 11 June 2008 2 Fermi is Making a Major Impact Science, December 2009 Breakthrough

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München Searching for spectral features in the g-ray sky Alejandro Ibarra Technische Universität München Oslo 5 November 2014 Outline Motivation Indirect dark matter searches with gamma-rays. Overcoming backgrounds

More information

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) MSSM scenario Sho IWAMOTO 15 Sep. 2016 Seminar @ Osaka University Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) The Standard Model of Particle Physics

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Connecting the small and large scales

Connecting the small and large scales Cosmology at the Beach Playa del Carmen, Mexico January 12 th, 2010 Connecting the small and large scales Cosmology at the Beach Playa del Carmen, Mexico January 12 th, 2010 Connecting the small and large

More information

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee Determination of [α/fe] and its Application to SEGUE F/G Stars Young Sun Lee Research Group Meeting on June 16, 2010 Outline Introduction Why [α/fe]? Determination of [α/fe] Validation of estimate of [α/fe]

More information

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata Whither WIMP Dark Matter Search? AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata 1/51 2/51 Planck 2015 Parameters of the Universe 3/51 Discovery of Dark Matter Fritz

More information

Sep. 13, JPS meeting

Sep. 13, JPS meeting Recent Results on Cosmic-Rays by Fermi-LAT Sep. 13, 2010 @ JPS meeting Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration 1 Outline Introduction Direct measurement of CRs CRs in

More information

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge MSSM scenario Sho IWAMOTO 7 Nov. 2016 HEP phenomenology joint Cavendish DAMTP seminar @ U. Cambridge Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) The

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse Reionization and the High-Redshift Galaxy UV Luminosity Function with Axion Dark Matter Rosemary Wyse Johns Hopkins University and University of Edinburgh Brandon Bozek, Doddy Marsh & Joe Silk Galaxy-scale

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13 Using Globular Clusters to Omega Centauri Study Elliptical Galaxies Terry Bridges Australian Gemini Office 10,000 1,000,000 stars up to 1000 stars/pc3 typical sizes ~10 parsec Mike Beasley (IAC, Tenerife)

More information

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern Spiral Structure In the mid-1960s Lin and Shu proposed that the spiral structure is caused by long-lived quasistatic density waves The density would be higher by about 10% to 20% Stars, dust and gas clouds

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

WEAVE Galactic Surveys

WEAVE Galactic Surveys WEAVE Galactic Surveys A. Vallenari INAF, Padova On behalf of the Science Team Overview WEAVE Surveys Milky Way Surveys WEAVE Characteristics Project structure Primary Science Surveys There are six primary

More information

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias)

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) In collaboration with: F. Prada, A. Cuesta, A. Domínguez, M. Fornasa, F. Zandanel (IAA/CSIC) E. Bloom, D. Paneque (KIPAC/SLAC) M. Gómez, M.

More information

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators:

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators: The Structural Properties of Milky Way Dwarf Galaxies Ricardo Muñoz (Universidad de Chile) Milky Way inner 100 kpc Collaborators: Marla Geha (Yale) Patrick Côté (HIA/DAO) Peter Stetson (HIA/DAO) Josh Simon

More information

Distinguishing Between Warm and Cold Dark Matter

Distinguishing Between Warm and Cold Dark Matter Distinguishing Between Warm and Cold Dark Matter Center for Cosmology Aspen Workshop Neutrinos in Physics & Astrophysics 2/2/2007 Collaborators: James Bullock, Manoj Kaplinghat astro-ph/0701581.. Motivations

More information

Tentative observation of a gamma-ray line at the Fermi Large Area Telescope

Tentative observation of a gamma-ray line at the Fermi Large Area Telescope Tentative observation of a gamma-ray line at the Fermi Large Area Telescope arxiv:1203.1312 with T. Bringmann, X. Huang, A. Ibarra, S. Vogl (accepted for JCAP), arxiv:1204.2797 (accepted for JCAP) Christoph

More information

Exploring the structure and evolu4on of the Milky Way disk

Exploring the structure and evolu4on of the Milky Way disk Exploring the structure and evolu4on of the Milky Way disk Results from the Gaia-ESO survey and plans for 4MOST Thomas Bensby Dept. of Astronomy and Theore3cal Physics Lund University Sweden Chemistry

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

Update on the Two Smoking Gun" Fermi LAT Searches for Dark Matter- Milky Way Dwarfs and Lines

Update on the Two Smoking Gun Fermi LAT Searches for Dark Matter- Milky Way Dwarfs and Lines Update on the Two Smoking Gun" Fermi LAT Searches for Dark Matter- Milky Way Dwarfs and Lines Elliott Bloom KIPAC-SLAC, Stanford University On Behalf of the Fermi-LAT Collaboration What We are Learning

More information

Astroparticle Anomalies

Astroparticle Anomalies Astroparticle Anomalies Current Hints of Possible Dark Matter Signals Sheldon Campbell University of California, Irvine What is this talk really about? Isn t discussion of low-significance anomalies just

More information

Mario Juric Institute for Advanced Study, Princeton

Mario Juric Institute for Advanced Study, Princeton Mapping Galactic density, metallicity and kinematics. Mario Juric Institute for Advanced Study, Princeton with Zeljko Ivezic, Nick Bond, Branimir Sesar, Robert Lupton and the SDSS Collaboration Dissecting

More information

PoS(ICRC2017)904. The VERITAS Dark Matter Program. Benjamin Zitzer. for the VERITAS Collaboration Affiliation

PoS(ICRC2017)904. The VERITAS Dark Matter Program. Benjamin Zitzer. for the VERITAS Collaboration Affiliation The VERITAS Dark Matter Program McGill University E-mail: bzitzer@physics.mcgill.ca for the VERITAS Collaboration Affiliation E-mail: bzitzer@physics.mcgill.ca In the cosmological paradigm, cold dark matter

More information

Dark Matter searches with astrophysics

Dark Matter searches with astrophysics Marco Taoso IPhT CEA-Saclay Dark Matter searches with astrophysics IAP 24 February 2013 The cosmological pie Non baryonic Dark Matter dominates the matter content of the Universe Motivation to search for

More information

The tidal stirring model and its application to the Sagittarius dwarf

The tidal stirring model and its application to the Sagittarius dwarf The tidal stirring model and its application to the Sagittarius dwarf Ewa L. Łokas Copernicus Center, Warsaw Stelios Kazantzidis (Ohio State) Lucio Mayer (University of Zurich) Collaborators: Steven Majewski

More information

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam Annihilation Phenomenology Christoph Weniger GRAPPA, University of Amsterdam Thursday 26th March 2015, Effective Field Theories and Dark Matter, Mainz 1 Overview Galactic center excess & PCA Best fit DM

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Dark Forces in the Sky: Signals from Z and the Dark Higgs

Dark Forces in the Sky: Signals from Z and the Dark Higgs Dark Forces in the Sky: Signals from Z and the Dark Higgs Nicole Bell The University of Melbourne with Yi Cai & Rebecca Leane arxiv:1605.09382 (JCAP 2016), arxiv:1610.03063 (JCAP 2017) TEVPA 2017 COLUMBUS

More information

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects Observed MW satellites Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies Current Studies and Future Prospects http://marcelpawlowski.com/research/movies-astronomy/ Marcel

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Indirect Detection of Dark Matter with Gamma Rays

Indirect Detection of Dark Matter with Gamma Rays Indirect Detection of Dark Matter with Gamma Rays Simona Murgia SLAC-KIPAC University of California, Irvine on behalf of the Fermi LAT Collaboration Dark Attack 212 Ascona, Switzerland 15-2 July 212 WIMP

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

ROSAT Roentgen Satellite. Chandra X-ray Observatory

ROSAT Roentgen Satellite. Chandra X-ray Observatory ROSAT Roentgen Satellite Joint facility: US, Germany, UK Operated 1990 1999 All-sky survey + pointed observations Chandra X-ray Observatory US Mission Operating 1999 present Pointed observations How do

More information