Indirect Dark Matter Detection with Dwarf Galaxies

Size: px
Start display at page:

Download "Indirect Dark Matter Detection with Dwarf Galaxies"

Transcription

1 Indirect Dark Matter Detection with Dwarf Galaxies Neelima Sehgal KIPAC-SLAC/Stanford SnowPAC, Utah 2010 Rouven Essig, NS, Louis Strigari, arxiv: , PRD 80, (2009) Rouven Essig, NS, Louis Strigari, Marla Geha, Josh Simon (to appear)

2 Indirect Dark Matter Detection Direct dark matter detection: dark matter interacts with nuclei; look for recoil signal of nuclei signal strength ρ Indirect dark matter detection: dark matter annihilates or decays producing standard model particles signal strength for annihilations ρ 2 (one reason this signal may be promising)

3 Dwarf Galaxies and Galactic Center are good targets Via Lactea II Simulation (only DM, no baryons) [Diemand et.al.] 800 kpc cube

4 Dwarf Galaxies and Galactic Center are good targets Via Lactea II Simulation (only DM, no baryons) [Diemand et.al.] visible Milky Way galaxy ~30 kpc some subhalos will form stars and become dwarf galaxies 800 kpc cube

5 Galactic center brightest, but difficult to disentangle DM signal Dwarfs at high galactic latitude are clean targets Galactic Center in Radio Fermi 1-year sky

6 Dwarf Galaxies: Advantages Large Signal relatively nearby (~20 kpc to few 100 kpc) DM dominated: high mass-to-light ratio (M/L~ ) Low background high galactic latitude small magnetic fields and little gas Also use stellar kinematics to determine dark matter distribution better than galactic center multiple dwarfs allow for confirmation of any signal

7 Known Nearby Dwarf Galaxies Classical Dwarfs (pre-2005) Ultra-faint Dwarfs (post-2005, SDSS) [Geha]

8 Existing Data Fermi observes all dwarfs [Geha]

9 Existing Data Fermi observes all dwarfs 66 kpc 38 kpc 80 kpc Blue: Observed by ACTs VERITAS, MAGIC HESS 24 kpc [Geha]

10 Existing Data Fermi observes all dwarfs 66 kpc 38 kpc 23 kpc 80 kpc Blue: Observed by ACTs VERITAS, MAGIC HESS 24 kpc IceCube data coming Segue 1: best target? [Geha] Least luminous galaxy known (M/L~1000) [Geha et.al.] (Observed by MAGIC and VERITAS and data is being analyzed )

11 Draco (discovered 1954) Segue 1 classical dwarf flux Segue 1 data on >200 stellar velocities Current analysis suggests ultra-faint dwarf (discovered 2006) determined from stellar velocities L Segue1 L Draco New stellar data is being analyzed (~65 stars) [Simon et. al.] However, this is preliminary and analysis is still ongoing!

12 Current Fermi & ACT limits [Essig, NS, Strigari, Geha, Simon] Σv cm 3 s FERMI Excl. Segue 1 (preliminary) ΧΧ bb ACT Excl. Draco ACT Prosp. Segue 1 (preliminary) Fermi data: 9 months of data [Farnier, RICAP 09] [Wang, CINC 09] m Χ GeV Σv cm 3 s 1 ACT data: VERITAS obs. of Draco [ ] ΧΧ W W ACT Excl. Draco ACT Prosp. Segue 1 (preliminary) FERMI Excl. Segue 1 (preliminary) m Χ GeV Thermal WIMP cross-section: σv = cm 3 s 1

13 Current Fermi & ACT limits [Essig, NS, Strigari, Geha, Simon] Σv cm 3 s FERMI Excl. Segue 1 (preliminary) ΧΧ bb ACT Excl. Draco ACT Prosp. Segue 1 (preliminary) Fermi data: 9 months of data [Farnier, RICAP 09] [Wang, CINC 09] m Χ GeV Σv cm 3 s 1 ACT data: VERITAS obs. of Draco [ ] ΧΧ W W ACT Excl. Draco ACT Prosp. Segue 1 (preliminary) FERMI Excl. Segue 1 (preliminary) WINO LSP [Kane et.al.] m Χ GeV Thermal WIMP cross-section: σv = cm 3 s 1

14 PAMELA e + Theory curve PAMELA Recent anomalies: e +, e - excess No excess FERMI HESS

15 Implications for DM annihilations DM mass > 1 TeV Annihilation only into charged leptons, NOT p Cross-section ~ times larger than during thermal freeze-out How can we test if anomalies are from DM? -

16 Gamma Rays guaranteed from Final State Radiation Distinctive spectrum [Beacom et.al.] [Birkedal et.al.] [Bringmann et.al] Neutrinos guaranteed if,

17 Σv cm 3 s Current Fermi & ACT limits FERMI Excl. Segue 1 (preliminary) ΧΧ Μ Μ ACT Excl. Draco m Χ GeV PAMELA and Fermi [Meade et. al.] [Essig, NS, Strigari, Geha, Simon] Fermi data: 9 months of data [Farnier, RICAP 09] [Wang, CINC 09] ACT data: VERITAS obs. of Draco [ ] Fermi better at lower masses, ACTs at higher masses

18 Prospects for MAGIC & VERITAS from Segue 1 [Essig, NS, Strigari, Geha, Simon] Σv cm 3 s ΧΧ Μ Μ FERMI Excl. ACT Excl. Draco Segue 1 ACT Prosp. Segue 1 (preliminary) (preliminary) PAMELA and Fermi [Meade et. al.] m Χ GeV

19 IceCube Prospects for in ice: [Essig, NS, Strigari, Geha, Simon] (N=Nucleus) Σv cm 3 s # of Signal Events ΧΧ Μ Μ Muon Signal Events in IceCube Segue PAMELA and Fermi [Meade et. al.] m Χ GeV Σv cm 3 s ΧΧ Μ Μ IceCube Prosp. Segue 1 ACT Prosp. Segue 1 (preliminary) PAMELA and Fermi [Meade et. al.] m Χ GeV [see also Sandick et.al.]

20 How obtain large DM annihilation cross-section? many ways... (e.g. Kane et.al., Ibe et.al.) Sommerfeld enhancement [e.g. Arkani-Hamed et.al; Pospelov, Ritz; Hisano et.al; March-Russell et.al; Cirelli et.al] new particle with m ~ GeV Produces a long-range force large today small at freeze-out signal potentially enhanced at dwarf! ( saturates when )

21 Segue 1 can constrain Sommerfeld enhancement [Essig, NS, Strigari, Geha, Simon] Σv cm 3 s ΧΧ ΦΦ e e e e ACT Prosp. Segue 1 Sommerfeld, m Φ 1 GeV, Α D 0.1 (preliminary) m Χ GeV Will probe resonances Β Segue 1 Β Milky Way PAMELA and Fermi [Meade et. al.]

22 Segue 1 can constrain Sommerfeld enhancement [Essig, NS, Strigari, Geha, Simon] Σv cm 3 s ΧΧ ΦΦ e e e e ACT Prosp. Segue 1 Sommerfeld, m Φ 0.1 GeV, Α D m Χ GeV Intriguing prospects (preliminary) Β Segue 1 Β Milky Way PAMELA and Fermi [Meade et. al.]

23 Future in Optical [LSST homepage] LSST: 6-band, 8.4 meter telescope, will survey 20,000 sq deg in southern sky with 9.6 sq deg field-of-view, 2015 first light TMT: 30 meter telescope on Mauna Kea, 10 times collecting area of KECK, 10 times better spatial resolution than Hubble with adaptive optics, completed in 2018 [TMT homepage]

24 Future in Gamma-Ray CTA: Cherenkov Telescope Array, currently European effort, order of magnitude improvement in sensitivity over current ACTs, construction of prototype in ~2011 [AGIS homepage] AGIS: Advanced Gamma-ray Imaging System, currently U.S. effort, order of magnitude improvement in sensitivity over current ACTs, improved resolution, construction should begin by 2013 [ASPERA/G.Toma/A. Saftoiu]

25 Conclusion Dwarf galaxies are good targets for indirect dark matter detection; complimentary to Galactic Center New (preliminary) stellar data for Segue 1 suggests interesting constraints already; may be good target for Fermi and ACTs Interesting prospects for constraining Sommerfeld enhanced models with dwarfs Future optical telescopes will find more dwarfs and improve stellar kinematic measurements; future gamma-ray telescopes will improve sensitivity by order of magnitude

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters Moritz Hütten (MPP Munich) for the CTA consortium "The extreme Universe viewed in very-highenergy

More information

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes Detecting or Limiting Dark Matter through Gamma-Ray Telescopes Lars Bergström The Oskar Klein Centre for Cosmoparticle Physics Dept. of Physics Stockholm University lbe@physto.se Firenze, February 9, 2009

More information

DM subhalos: The obser vational challenge

DM subhalos: The obser vational challenge DM subhalos: The obser vational challenge Hannes-S. Zechlin and Dieter Horns Inst. f. Experimentalphysik, Universität Hamburg, Germany July 26th, 2012 DM subhalos in the Milky Way concordance cosmology

More information

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration The VERITAS Dark M atter and Astroparticle Programs Benjamin Zitzer For The VERITAS Collaboration Introduction to VERITAS Array of four IACTs in Southern AZ, USA Employs ~100 Scientists in five countries

More information

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Vincent Bonnivard bonnivard@lpsc.in2p3.fr TAUP 2015 07/09/15 Collaborators: D. Maurin, C. Combet, M. G. Walker, A.

More information

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Aldo Morselli INFN Roma Tor Vergata CTA in the quest for Dark Matter and exotic phenomena

More information

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Moriond Cosmology 2018 Silvia Manconi (University of Turin & INFN) March 20, 2018 In collaboration with: Hannes Zechlin,

More information

Recent highlights from VERITAS

Recent highlights from VERITAS Recent highlights from VERITAS K. Ragan McGill University RICAP 2011, Rome, 26-May-2011 K. Ragan VERITAS RICAP '11 1 Outline Very high-energy (VHE) gamma-ray astrophysics Ground-based observations with

More information

Indirect dark matter searches with the Cherenkov Telescope Array

Indirect dark matter searches with the Cherenkov Telescope Array Indirect dark matter searches with the Cherenkov Telescope Array Jennifer Gaskins GRAPPA, University of Amsterdam for the CTA Consortium For more details, please see: arxiv:1508.06128 Carr et al. 2015

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Italy Emmanuel Moulin CTA meeting, Zürich 2009 1 Core-energy

More information

Prospects for indirect dark matter detection with Fermi and IACTs

Prospects for indirect dark matter detection with Fermi and IACTs Prospects for indirect dark matter detection with Fermi and IACTs Francesc Ferrer Washington University in St. Louis TeV Particle Astrophysics, SLAC, July 2009 Signals of Dark Matter (DM) at γ ray telescopes

More information

Update on Dark Matter and Dark Forces

Update on Dark Matter and Dark Forces Update on Dark Matter and Dark Forces Natalia Toro Perimeter Institute for Theoretical Physics (thanks to Rouven Essig, Matt Graham, Tracy Slatyer, Neal Weiner) 1 Rouven s Talk: what s new? Is Dark Matter

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

Probing Dark Matter with Cosmic Messengers

Probing Dark Matter with Cosmic Messengers Probing Dark Matter with Cosmic Messengers Andrea Albert Los Alamos National Lab 3rd KMI International Symposium January 6, 2017 Outline Indirect Detection Overview evidence for dark matter dark matter

More information

Indirect Detection of Dark Matter with Gamma Rays

Indirect Detection of Dark Matter with Gamma Rays Indirect Detection of Dark Matter with Gamma Rays Simona Murgia SLAC-KIPAC University of California, Irvine on behalf of the Fermi LAT Collaboration Dark Attack 212 Ascona, Switzerland 15-2 July 212 WIMP

More information

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration Latest Results on Dark Matter and New Physics Searches with Fermi Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration TeV Particle Astrophysics 2009 SLAC, July 13-16 2009 DM and New Physics

More information

DeepCore and Galactic Center Dark Matter

DeepCore and Galactic Center Dark Matter 2nd Low-Energy Neutrino Workshop (PSU July 1-2, 2010) DeepCore and Galactic Center Dark Matter Carsten Rott carott @ mps. ohio-state.nospamedu Center for Cosmology and AstroParticle Physics The Ohio State

More information

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias)

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) In collaboration with: F. Prada, A. Cuesta, A. Domínguez, M. Fornasa, F. Zandanel (IAA/CSIC) E. Bloom, D. Paneque (KIPAC/SLAC) M. Gómez, M.

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Gamma-ray background anisotropy from Galactic dark matter substructure

Gamma-ray background anisotropy from Galactic dark matter substructure Gamma-ray background anisotropy from Galactic dark matter substructure Shin ichiro Ando (TAPIR, Caltech) Ando, arxiv:0903.4685 [astro-ph.co] 1. Introduction Dark matter annihilation and substructure Dark

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Kavli Institue for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford,

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

The Cherenkov Telescope Array

The Cherenkov Telescope Array The Cherenkov Telescope Array Gamma-ray particle astrophysics Dark Matter Space time Cosmic rays...? Gamma-ray particle astrophysics Dark Matter Space time Cosmic rays...? Particle Dark Matter Direct Detection

More information

Recent Results on Dark Matter Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Recent Results on Dark Matter Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration Recent Results on Dark Matter Searches with Fermi Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration KITP-UCSB 8 December 2009 The Observatory Observe the gamma-ray sky in the 20 MeV to

More information

Search Results and Prospects from Atmospheric Cherenkov Telescopes. Andrew W Smith University of Marland, College Park / NASA GSFC

Search Results and Prospects from Atmospheric Cherenkov Telescopes. Andrew W Smith University of Marland, College Park / NASA GSFC Search Results and Prospects from Atmospheric Cherenkov Telescopes Andrew W Smith University of Marland, College Park / NASA GSFC From P5 report (Cosmic Frontier) Arrenberg et al. Indirect Detection probes

More information

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München Searching for spectral features in the g-ray sky Alejandro Ibarra Technische Universität München Oslo 5 November 2014 Outline Motivation Indirect dark matter searches with gamma-rays. Overcoming backgrounds

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Indirect searches for dark matter with the Fermi LAT instrument

Indirect searches for dark matter with the Fermi LAT instrument Indirect searches for dark matter with the Fermi LAT instrument M. Nicola Mazziotta INFN-Bari mazziotta@ba.infn.it 2nd international workshop on HERD Beijing Dec 2-3, 2013 Indirect Dark Matter Search +

More information

Fundamental Physics with GeV Gamma Rays

Fundamental Physics with GeV Gamma Rays Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics, Santa Cruz] Fundamental Physics with GeV Gamma Rays Based on: Kamionkowski & SP, 0810.3233 (subm.

More information

Probing Dark Matter in Galaxy Clusters using Neutrinos

Probing Dark Matter in Galaxy Clusters using Neutrinos Indirect Detection - Parallel Session I IDM 2012, Chicago Probing Dark Matter in Galaxy Clusters using Neutrinos In Collaboration with Ranjan Laha, arxiv/1206.1322 + PRD Basudeb Dasgupta CCAPP, Ohio State

More information

Future prospects for finding Milky Way satellites. Amit and Carl 31 March 2010

Future prospects for finding Milky Way satellites. Amit and Carl 31 March 2010 Future prospects for finding Milky Way satellites Amit and Carl 31 March 2010 Where have all the satellites gone? The missing satellite problem! DM simulations (like Via Lactea) predict that there should

More information

Koji Ichikawa. (In preparation) TAUP, Torino, Sep. 7-11, 2015

Koji Ichikawa. (In preparation) TAUP, Torino, Sep. 7-11, 2015 Koji Ichikawa (In preparation) In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. 1 TAUP, Torino, Sep. 7-11, 2015 Direct Detection Dark Matter Search

More information

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Lecture 14. Dark Matter. Part IV Indirect Detection Methods Dark Matter Part IV Indirect Detection Methods WIMP Miracle Again Weak scale cross section Produces the correct relic abundance Three interactions possible with DM and normal matter DM Production DM Annihilation

More information

Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai.

Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. Koji Ichikawa (In preparation) In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto and Hajime Sugai. 1 PPP2015, Kyoto, Sep. 14-18, 2015 Koji Ichikawa (In preparation)

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab.

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab. Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab. 13 eme Recontres de Vietnam: Exploring the Dark Universe 24 July 2017, Quy Nhon, Vietnam Outline 2 I. Review / Context: indirect

More information

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy Based on arxiv:1505.00785 (IAP, Paris) in collaboration with Joseph Silk (IAP) & Céline Bœhm (IPPP, Durham) PACIFIC

More information

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Fiorenza Donato @ Physics Dept., Un. Torino The gamma-ray sky - Minneapolis, October 10, 2013 Plan of my talk What

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators:

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators: The Structural Properties of Milky Way Dwarf Galaxies Ricardo Muñoz (Universidad de Chile) Milky Way inner 100 kpc Collaborators: Marla Geha (Yale) Patrick Côté (HIA/DAO) Peter Stetson (HIA/DAO) Josh Simon

More information

the CTA Consortium represented by Aldo Morselli

the CTA Consortium represented by Aldo Morselli The Dark Matter Programme of the Cherenkov Telescope Array the CTA Consortium represented by Aldo Morselli INFN Roma Tor Vergata 1 CTA PROJECT Next generation ground based Gamma-ray observatory Open observatory

More information

Dark Matter Electron Anisotropy: A universal upper limit

Dark Matter Electron Anisotropy: A universal upper limit Seminari teorici del venerdì Enrico Borriello Università degli Studi di Napoli Federico II & INFN Sezione di Napoli Dark Matter Electron Anisotropy: A universal upper limit Based on Borriello, Maccione,

More information

CMB Constraints on Dark Matter Annihilation. Neelima Sehgal Stony Brook University

CMB Constraints on Dark Matter Annihilation. Neelima Sehgal Stony Brook University CMB Constraints on Dark Matter Annihilation Neelima Sehgal Stony Brook University Outline The CMB in a Nutshell Current Dark Matter Annihilation Bounds from the CMB Outline The CMB in a Nutshell Current

More information

SUSY scans and dark matter

SUSY scans and dark matter SUSY scans and dark matter Pat Scott Oskar Klein Centre for Cosmoparticle Physics & Department of Physics, Stockholm University May 27 2010 Mostly based on: JCAP 1001:031 (2010; arxiv:0909.3300) JHEP 1004:057

More information

Searches for annihilating dark matter in the Milky Way halo with IceCube

Searches for annihilating dark matter in the Milky Way halo with IceCube Searches for annihilating dark matter in the Milky Way halo with IceCube The IceCube Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_icecube E-mail: samuel.d.flis@gmail.com We present

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Highlights from the Fermi Symposium

Highlights from the Fermi Symposium Highlights from the Fermi Symposium Aldo Morselli INFN Roma Tor Vergata 1 The LAT at 2 Years and 17 days from the 3 rd!!! 11 June 2008 2 Fermi is Making a Major Impact Science, December 2009 Breakthrough

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Dark matter annihilations and decays after the AMS-02 positron measurements

Dark matter annihilations and decays after the AMS-02 positron measurements Dark matter annihilations and decays after the AMS-02 positron measurements Anna S. Lamperstorfer Technische Universität München SISSA - International School for Advanced Studies of Trieste Workshop The

More information

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL Dark Matter Models Stephen West and Fellow\Lecturer RHUL and RAL Introduction Research Interests Important Experiments Dark Matter - explaining PAMELA and ATIC Some models to explain data Freeze out Sommerfeld

More information

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen The LHAASO-KM2A detector array and physical expectations Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen Outline 1. Introduction 2. The KM2A Detector Array 3. Physical Expectations 3.1 Sensitivity

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Koji Ichikawa. Prospects on the indirect dark matter detection and a future spectroscopic survey of dwarf spheroidal galaxies.

Koji Ichikawa. Prospects on the indirect dark matter detection and a future spectroscopic survey of dwarf spheroidal galaxies. Prospects on the indirect dark matter detection and a future spectroscopic survey of dwarf spheroidal galaxies Koji Ichikawa (In preparation) In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N.

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Status of the MAGIC telescopes

Status of the MAGIC telescopes SNOWPAC 2010 Status of the MAGIC telescopes Pierre Colin for the MAGIC collaboration Max-Planck-Institut für physik (Munich) Status of the MAGIC telescopes MAGIC-1 MAGIC-2 Outline: Recent results of the

More information

The Cherenkov Telescope Array (CTA)

The Cherenkov Telescope Array (CTA) The Cherenkov Telescope Array (CTA) The CTA Consortium1, represented by Andreas Reisenegger2 1 2 see http://www.cta observatory.org/consortium_authors/authors_2018_01.html for full author list Instituto

More information

Constraints on dark matter annihilation cross section with the Fornax cluster

Constraints on dark matter annihilation cross section with the Fornax cluster DM Workshop@UT Austin May 7, 2012 Constraints on dark matter annihilation cross section with the Fornax cluster Shin ichiro Ando University of Amsterdam Ando & Nagai, arxiv:1201.0753 [astro-ph.he] Galaxy

More information

VERITAS a Status Report. Nepomuk Otte on behalf of the VERITAS Collaboration

VERITAS a Status Report. Nepomuk Otte on behalf of the VERITAS Collaboration VERITAS a Status Report Nepomuk Otte on behalf of the VERITAS Collaboration The VERITAS Collaboration ~100 members, 20 institutions 23 non-affiliated members +35 associate members Smithsonian Astrophysical

More information

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration Searching for dark matter annihilation lines with HESS II Knut Dundas Morå for the HESS collaboration Outline Indirect Dark Matter detection Dark Matter signatures Dark Matter distributions Fermi Line

More information

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser Neutrinos from the Milky Way 18th Symposium on Astroparticle Physics in the Netherlands 23-10-2013 Erwin Visser Outline How are these neutrinos produced? Why look for them? How to look for them The ANTARES

More information

Dark matter indirect searches: Multi-wavelength and anisotropies

Dark matter indirect searches: Multi-wavelength and anisotropies Journal of Physics: Conference Series PAPER OPEN ACCESS Dark matter indirect searches: Multi-wavelength and anisotropies To cite this article: Shin ichiro Ando 2016 J. Phys.: Conf. Ser. 718 022002 Related

More information

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Meng Su (MIT)! Pappalardo/Einstein fellow!! In Collaboration with Zhiyuan Li (NJU)!! 15 Years of Science with Chandra!

More information

DARK MATTER ANNIHILATION AT THE GALACTIC CENTER?

DARK MATTER ANNIHILATION AT THE GALACTIC CENTER? Complementarity Between Dark Matter Searches and Collider Experiments, UC Irvine, June 11, 2006 DARK MATTER ANNIHILATION AT THE GALACTIC CENTER? Joel Primack University of California, Santa Cruz The Milky

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400 Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400 July 12-20, 2017, ICRC2017, Busan, Korea High-energy gamma-ray studying Distribution of 3033 discrete sources

More information

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi B. Cañadas, A. Morselli and V. Vitale on behalf of the Fermi LAT Collaboration Outline Gamma rays from Dark Matter Dark

More information

Non-Minimal Kaluza Klein Dark Matter

Non-Minimal Kaluza Klein Dark Matter Non-Minimal Kaluza Klein Dark Matter Henrik Melbéus Royal Institute of Technology, Stockholm, Sweden EPS-HEP 2011 Henrik Melbéus (KTH) Non-Minimal Kaluza Klein Dark Matter July 21, 2011 1 / 15 Introduction

More information

The Cherenkov Telescope Array. Kevin Meagher Georgia Institute of Technology

The Cherenkov Telescope Array. Kevin Meagher Georgia Institute of Technology The Cherenkov Telescope Array Kevin Meagher Georgia Institute of Technology Outline VHE Gamma Ray Astronomy CTA Overview Science Goals for CTA Schwarzschild-Couder Telescope Extension 2 Gamma-ray Astronomy

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

arxiv: v1 [astro-ph.co] 20 Feb 2009

arxiv: v1 [astro-ph.co] 20 Feb 2009 0 Dwarf Galaxies in 2010: Revealing Galaxy Formation s Threshold and Testing the Nature of Dark Matter James S. Bullock and Manoj Kaplinghat Physics & Astronomy Department, University of California, Irvine;

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

The Galactic Center Excess. Kevork N. Abazajian

The Galactic Center Excess. Kevork N. Abazajian The Galactic Center Excess Kevork N. Abazajian WIMP Annihilation gamma rays in the Galactic Center? Model Data Abazajian & Kaplinghat 2012 Canonical Weakly-Interacting Massive-Particle (WIMP) Cold Dark

More information

TeV Future: APS White Paper

TeV Future: APS White Paper TeV Future: APS White Paper APS commissioned a white paper on the "Status and Future of very high energy gamma ray astronomy. For preliminary information, see http://cherenkov.physics.iastate.edu/wp Working

More information

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 4 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. pmssm Dark Matter Searches On Ice! χ ~ 0 1 Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 1104.XXXX (next week or bust.) In case

More information

Searching for dark photon. Haipeng An Caltech Seminar at USTC

Searching for dark photon. Haipeng An Caltech Seminar at USTC Searching for dark photon Haipeng An Caltech Seminar at USTC 1 The standard model is very successful! 2 The big challenge! We just discovered a massless spin-2 particle.! We don t know how to write down

More information

Astrophysical Motivations for Dark Forces. Jefferson Lab February 19, 2010 Neal Weiner Center for Cosmology and Particle Physics New York University

Astrophysical Motivations for Dark Forces. Jefferson Lab February 19, 2010 Neal Weiner Center for Cosmology and Particle Physics New York University Astrophysical Motivations for Dark Forces Jefferson Lab February 19, 2010 Neal Weiner Center for Cosmology and Particle Physics New York University Era of data Cosmics: PAMELA, Fermi, ATIC, HESS, AMS,

More information

VERITAS. Tel 3. Tel 4. Tel 1. Tel 2

VERITAS. Tel 3. Tel 4. Tel 1. Tel 2 VHE Astrophysics with VERITAS VERITAS Tel 2 Tel 1 Tel 4 Tel 3 Rene A. Ong Caltech/Kellogg Seminar 29 Feb 2008 Outline Scientific Motivation A New Astronomy Physicist s Viewpoint Astrophysical TeV accelerators

More information

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess Instituto de Fisica Teórica, IFT-CSIC Madrid Marco Taoso DM and the Galactic Center GeV excess Frontier Objects in Astrophysics and Particle Physics Vulcano Workshop 26-05- 2016 How and where to look for

More information

Gamma-ray Observations of Galaxy Clusters!

Gamma-ray Observations of Galaxy Clusters! Gamma-ray Observations of Galaxy Clusters! a! Fabio Zandanel! (GRAPPA Institute University of Amsterdam)! f.zandanel@uva.nl! SnowCluster 2015 The Physics Of Galaxy Clusters! Snowbird (Utah, US) March 15-20,

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Recent Searches for Dark Matter with the Fermi-LAT

Recent Searches for Dark Matter with the Fermi-LAT Recent Searches for Dark Matter with the Fermi-LAT on behalf of the Fermi-LAT Collaboration CETUP* DM Workshop Deadwood, SD 7 July 2016 A One-Slide History of Dark Matter Particle Physics Astrophysics

More information

Future DM indirect detection in dwarf spheroidal galaxies and Foreground effect on the J-factor estimation Koji Ichikawa

Future DM indirect detection in dwarf spheroidal galaxies and Foreground effect on the J-factor estimation Koji Ichikawa Future DM indirect detection in dwarf spheroidal galaxies and Foreground effect on the J-factor estimation Koji Ichikawa In collaboration with Kohei Hayashi, Masahiro Ibe, Miho N. Ishigaki, Shigeki Matsumoto

More information

VERITAS: exploring the high energy Universe

VERITAS: exploring the high energy Universe VERITAS: exploring the high energy Universe K. Ragan McGill University Queen's - March '09 VERITAS 1 Outline Beyond the optical Very high-energy (VHE) gamma-ray astrophysics Ground-based observations Cherenkov

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Dark Matter Decay and Cosmic Rays

Dark Matter Decay and Cosmic Rays Dark Matter Decay and Cosmic Rays Christoph Weniger Deutsches Elektronen Synchrotron DESY in collaboration with A. Ibarra, A. Ringwald and D. Tran see arxiv:0903.3625 (accepted by JCAP) and arxiv:0906.1571

More information

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years Daniel Mazin 1 and Martin Raue 2 1: IFAE, Barcelona 2: MPIK, Heidelberg This research

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Probing the nature of Dark matter with radio astronomy. Céline Boehm

Probing the nature of Dark matter with radio astronomy. Céline Boehm Probing the nature of Dark matter with radio astronomy Céline Boehm IPPP, Durham LAPTH, Annecy SKA, Flic en Flac, May 2017 The DM Physics scale strong or weak / stable or decaying strong and stable Electromagnetic

More information

Cosmic Ray Excess From Multi-Component Dark Matter

Cosmic Ray Excess From Multi-Component Dark Matter Cosmic Ray Excess From Multi-Component Dark Matter Da Huang Physics Department, NTHU @ LeCosPA PRD89, 055021(2014) [arxiv: 1312.0366] PRD91, 095006 (2015) [arxiv: 1411.4450] Mod. Phys. Lett. A 30 (2015)

More information