Milky Way Satellite Galaxies with DES

Size: px
Start display at page:

Download "Milky Way Satellite Galaxies with DES"

Transcription

1 Milky Way Satellite Galaxies with DES Alex Drlica-Wagner DES Milky Way Working Group Coordinator! January 11, 2015

2 Milky Way Satellite Galaxies Segue 1 The Milky Way is surrounded by small satellite galaxies Close to Earth (25 kpc to 250 kpc) M. Geha Luminosities range from 10 7 L to 10 3 L Astrophysically simple Fornax Most dark matter dominated objects known Birth of near-field cosmology D. Malin (Bullock, Geha, Powell) 30 kpc 2

3 Walker et al Dark Matter Dominated The stars in dwarf galaxies are moving too fast to be explained by visible mass alone Dwarf Galaxies Moore (2009) Globular Clusters Wolf et al

4 Finding Milky Way Satellite Galaxies 4

5 Finding Milky Way Satellite Galaxies Shapley (1938) Johnson & Sandage (1956) Brightness M3 Sculptor Redness 5

6 Sculptor ESO/DSS2 6

7 Segue 1 Geha 7

8 Segue 1 Geha 8

9 Finding Milky Way Satellite Galaxies r kpc Select Stars with a 22 Characteristic 0 r 18 g r Age and Metallicity kpc 20 kpc 4 Advances in Astronomy (a) r r 18 r Advances i 0 g r (b) r kpc r Koposov et al. (2008) Walsh et14al. (2009) Willman et al. (2010) g r 1 (c) r g r (d) 20 Convolve with Spatial Kernel Figure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars at a specific distance. (a) and (c) CM filters for an old and metal-poor stellar population at a distance modulus of 16.5 and 20.0, respectively. The solid lines show Girardi isochrones for 8 and 14 Gyr populations with [Fe/H] = 1.5 and 2.3. (b) and (d) These CM filters overplotted 22 the character of the foreground contamination are from SDSS as a function of dwarf distance. Data on stars from a 1 deg2 field to illustrate DR7. g r g r g g r (a) (b) (c) (d) δ dec (degrees) δ dec (degrees) δ dec (degrees) Figure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dw at a specific distance. (a) and (c) CM filters for an old and metal-poor stellar population at a distance modulus of 16.5 and 20. The solid lines show 0 Girardi isochrones for 8 and 14 Gyr (b) and (d) These CM filte 0 populations with [Fe/H] = 1.5 and 2 onfield stars from a 1 deg field to illustrate the character of the foreground contamination as a function of dwarf distance. Data a Stellar DR7. 0 δ ra (degrees) 0 δ ra (degrees) 0 δ ra (degrees) 9

10 Discovery Timeline

11 Discovery Timeline SDSS Begins

12 Discovery Timeline DES Year 2 DECam Installed DES Year 1 SDSS Begins

13 SDSS DR10 + DES Y2 Blue - Previously discovered satellites Green - Discovered in 2015 with PanSTARRS/SDSS Red outline - DES footprint Red circles - DES Y1 satellites Red triangles - DES Y2 satellites 13

14 Open Questions 14

15 Missing Satellites 15 10

16 Missing Satellites Galaxies inhabit dark matter halos Simulations predict that the Milky Way halo should contain thousands of dark matter subhalos We only see dark matter halo that are traced by baryons, and we only know of several dozen dwarf galaxies. Where are the missing satellites? What can we learn about galaxy formation and the nature of dark matter?! Combine large photometric surveys (DES, SDSS, Pan-STARRs, etc.) Opportunities to work with Big Data, data mining, and statistics! James Bullock Understand the galaxies that we *don t see*. 16

17 Galaxy Formation 17

18 Galaxy Formation The Milky Way satellites found in DES are not distributed uniformly Is the observed distribution of satellites consistent with LCDM? Biases from the Solar position? Accretion as satellites of the Magellanic Clouds? Accretion along the same filament as the Magellanic Clouds? A plane of satellites? Need larger photometric coverage to test these various hypotheses (new Magellanic Satellites Survey) Need spectroscopy and proper motions to determine the dynamics of satellite systems. Lots of opportunities to do photometry and spectroscopy! 18

19 Origin of Heavy Elements Rapid absorption of free neutrons during explosive event Possible sites: core-collapse SNe, neutron star mergers Observed excess of r-process elements in Ret II relative to other ultra-faint dwarfs (by factor >100) suggests enrichment by a single (rare) event Consistent with neutron star merger hypothesis??? 19

20 Origin of Heavy Elements Heavy elements are formed in extreme conditions through (r)apid and (s)low neutron capture processes Satellite galaxies are nearby relics of the early universe Are r-process elements created continuously by core-collapse supernova or in rare events like neutron star mergers? Ret II Stars enriched in Eu r-process s-process Ji et al ( ) 20

21 Origin of Heavy Elements Magellan/M2FS Gemini/GMOS VLT/GIRAFFE AAT/AAOmega 21

22 Nature of Dark Matter Dark Matter Distribution Particle Propagation Particle Detection Dark Matter Annihilation DM DM? SM SM Neutral Particles (γ, ν) Charged Particles (e ±, p ±, etc.) 22

23 Nature of Dark Matter iduals Galactic Substructure: Lower statistics Lower background Galactic Center: Larger signal Larger background Residual Map: 1-3 GeV Credit: Tim Linden 23

24 Nature of Dark Matter ) 24

25 Shorter Term Projects J DES 1 J Filtered Stars J J Gru I J J (deg) DES J Tucana SMC 0 18 Tucana group of satellites (Magellan observing this semester) DES J projection of the density of stars observed in both g- and r-bands with g < 2 (deg) 2 he DES Y2Q1 footprint ( 5000 deg ). Globular clusters arestars marked with + Tidal tails around Tucana III RR Lyrae in DES Y2 dwarfs (deeper photometry) (SOAR observing this semester) 6, 2010 edition), two faint outer halo clusters are marked with symbo uque et al. 2015), Local Group galaxies known prior to DES are marked wit 25 Satellites and stream around in Y1 DES data are marke nnachie 2012), dwarf galaxy candidates discovered Fig. 9. Color-Magnitude diagram of stars within 2rh of the center of Hydra II (1 The red star indicates the location of the RR Lyrae star For reference w stars confirmed with radial velocities as members of Hydra II (Kirby et al. 201 cyan circles, while radial velocity non-members are indicated with green circles. magenta squares show the location of variable stars that could not be classified. dotted lines correspond to a 13 Gyr old, metal-poor ([Fe/H]= 2.0) isochrone (Br 2012) shifted to 151 and 134 kpc, respectively. Fornax & Sculptor (Y3 DES data)

26 Scientific Skills These projects will develop a wide range of skills. Observing Experience Photometry: DECam, SOAR, Gemini Spectroscopy: Magellan, VLT, AAT Astronomical Tools Photometry of large survey data sets (DES, SDSS, DECaLs, Pan-STARRs, ) Medium resolution spectroscopy for velocity determination High resolution spectroscopy and spectral synthesis for elemental abundances Computational Tools Parallelized processing of big data Machine learning and data mining Statistical modeling with frequentist and bayesian techniques 26

27 Working in DES The DES Collaboration provides an extensive support structure. Opportunities to meet and interact with scientists around the world. Opportunities in other science areas, public outreach, etc. Milky Way science is undersubscribed in DES DES provides a large audience, a lot of support, and little competition.! Chicago is at the heart of DES Josh Frieman (FNAL/UChicago) Rich Kron (UChicago) Brian Yanny (FNAL) Scott Dodelson (FNAL/UChicago) and many other faculty, staff, post-docs and students! 27

28 Even More Questions Optimized searches for low-luminosity dwarf galaxies beyond the MW virial radius. Satellite systems of nearby galaxies Understanding the structure of the Milky Way halo using various stellar tracers (i.e., MSTO stars, HB stars, etc.) High resolution spectroscopy of Carbon-enhanced metal poor (CEMP) stars. Identifying high proper motion stars in DES (white dwarfs?) Using internal proper motions to understand the dark matter distribution of Milky Way satellite galaxies. many, many more 28

What is an ultra-faint Galaxy?

What is an ultra-faint Galaxy? What is an ultra-faint Galaxy? UCSB KITP Feb 16 2012 Beth Willman (Haverford College) Large Magellanic Cloud, M V = -18 ~ 1/10 Milky Way luminosity image credit: Yuri Beletsky (ESO) and APOD NGC 205, M

More information

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators:

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators: The Structural Properties of Milky Way Dwarf Galaxies Ricardo Muñoz (Universidad de Chile) Milky Way inner 100 kpc Collaborators: Marla Geha (Yale) Patrick Côté (HIA/DAO) Peter Stetson (HIA/DAO) Josh Simon

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Vincent Bonnivard bonnivard@lpsc.in2p3.fr TAUP 2015 07/09/15 Collaborators: D. Maurin, C. Combet, M. G. Walker, A.

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Mia S. Bovill with Massimo Ricotti University of Maryland The Smallest Galaxies Minihalos DO NOT initiate gas condensation

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

arxiv: v1 [astro-ph] 10 May 2007

arxiv: v1 [astro-ph] 10 May 2007 A Pair of Boötes: A New Milky Way Satellite S. M. Walsh 1, H. Jerjen 1, B. Willman 2 arxiv:0705.1378v1 [astro-ph] 10 May 2007 ABSTRACT As part of preparations for a southern sky search for faint Milky

More information

New insights into the Sagittarius stream

New insights into the Sagittarius stream New insights into the Sagittarius stream EWASS, Turku July 8th, 213 Martin C. Smith Shanghai Astronomical Observatory http://hubble.shao.ac.cn/~msmith/ Sagittarius dwarf spheroidal(ish) Since its discovery

More information

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

A tool to test galaxy formation theories. Joe Wolf (UC Irvine) A tool to test galaxy formation theories Joe Wolf (UC Irvine) SF09 Cosmology Summer Workshop July 7 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo KIPAC: Louie Strigari Haverford:

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Mapping the Galactic halo with main-sequence and RR Lyrae stars

Mapping the Galactic halo with main-sequence and RR Lyrae stars EPJ Web of Conferences 19, 02002 (2012) DOI: 10.1051/epjconf/20121902002 C Owned by the authors, published by EDP Sciences, 2012 Mapping the Galactic halo with main-sequence and RR Lyrae stars B. Sesar

More information

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae The Geometry of Sagittarius Stream from PS1 3π RR Lyrae Nina Hernitschek, Caltech collaborators: Hans-Walter Rix, Branimir Sesar, Judith Cohen Swinburne-Caltech Workshop: Galaxies and their Halos, Sept.

More information

Surface Brightness of Spiral Galaxies

Surface Brightness of Spiral Galaxies Surface Brightness of Spiral Galaxies M104: SA N4535: SAB LMC: dwarf irregular,barred Normal 1/4-law+exp fits An example of surface brightness profile. The top curve is the sum of exp disk+1/4-bulge. The

More information

r-process enrichment traced by Pu and Ba near the sun and in the Draco

r-process enrichment traced by Pu and Ba near the sun and in the Draco r-process enrichment traced by Pu and Ba near the sun and in the Draco Takuji Tsujimoto (Nat. Aston. Obs. Jap.) capturing electromagnetic waves earth archives stellar spectra meteorites deep-sea crusts

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Connecting the small and large scales

Connecting the small and large scales Cosmology at the Beach Playa del Carmen, Mexico January 12 th, 2010 Connecting the small and large scales Cosmology at the Beach Playa del Carmen, Mexico January 12 th, 2010 Connecting the small and large

More information

Stellar Populations in the Galaxy

Stellar Populations in the Galaxy Stellar Populations in the Galaxy Stars are fish in the sea of the galaxy, and like fish they often travel in schools. Star clusters are relatively small groupings, the true schools are stellar populations.

More information

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Discovering Galaxies Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 05, 2016 Read: Chap 19 04/05/16 slide 1 Exam #2 Returned by next class meeting

More information

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies Phys/Astro 689: Lecture 12 The Problems with Satellite Galaxies The Problems with Satellites (1) The Missing Satellites Problem (2) The Too Big to Fail Problem We ll examine potential solutions to each

More information

Using ground based data as a precursor for Gaia-based proper motions of satellites

Using ground based data as a precursor for Gaia-based proper motions of satellites Using ground based data as a precursor for Gaia-based proper motions of satellites 102 Streams T. K. Fritz, N. Kallivayalil, J. Bovy, S.Linden, P. Zivick, R. Beaton, M. Lokken, T. Sohn, D. Angell, M. Boylan-Kolchin,

More information

Chap.6 Formation and evolution of Local Group galaxies

Chap.6 Formation and evolution of Local Group galaxies Chap.6 Formation and evolution of Local Group galaxies Properties of LG galaxies Formation history of LG galaxies Models to solve missing satellites problem Formation of Andromeda galaxy Future prospects

More information

The Star Clusters of the Magellanic Clouds

The Star Clusters of the Magellanic Clouds The Dance of Stars MODEST-14 The Star Clusters of the Magellanic Clouds Eva K. Grebel Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Star Clusters in the Magellanic Clouds!

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13 Using Globular Clusters to Omega Centauri Study Elliptical Galaxies Terry Bridges Australian Gemini Office 10,000 1,000,000 stars up to 1000 stars/pc3 typical sizes ~10 parsec Mike Beasley (IAC, Tenerife)

More information

AstroTalk: Behind the news headlines of January 2018

AstroTalk: Behind the news headlines of January 2018 AstroTalk: Behind the news headlines of January 2018 Richard de Grijs ( 何锐思 ) (Macquarie University, Sydney, Australia) Stellar refugees on galactic scales just blame gravity! Where do the stars in our

More information

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Milky Way as a Galaxy Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu November 12, 2014 Read: Chap 19 11/12/14 slide 1 Exam #2 Returned and posted tomorrow

More information

Stellar Streams Discovered in the Dark Energy Survey

Stellar Streams Discovered in the Dark Energy Survey Stellar Streams Discovered in the Dark Energy Survey arxiv:1801.03097 Nora Shipp (U. Chicago) Alex Drlica-Wagner, Eduardo Balbinot, Peter Ferguson, Denis Erkal, Ting Li DES Collaboration 1 Stellar Streams

More information

Precision kinematics Demonstration on Bootes dsph. Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others

Precision kinematics Demonstration on Bootes dsph. Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others Precision kinematics Demonstration on Bootes dsph Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others Stellar kinematics in dwarfs Dwarfs most dark matter dominated

More information

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects Observed MW satellites Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies Current Studies and Future Prospects http://marcelpawlowski.com/research/movies-astronomy/ Marcel

More information

Carbon Enhanced Metal Poor (CEMP) Stars and the Halo System of the Milky Way

Carbon Enhanced Metal Poor (CEMP) Stars and the Halo System of the Milky Way Carbon Enhanced Metal Poor (CEMP) Stars and the Halo System of the Milky Way Daniela Carollo Sydney Castiglione della Pescaia September 2013 Carbon Enhanced Metal Poor Stars (CEMP) CEMP = Carbon Enhanced

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

Observations of Globular Cluster Systems of Giant Galaxies

Observations of Globular Cluster Systems of Giant Galaxies Observations of Globular Cluster Systems of Giant Galaxies Katherine Rhode Indiana University 38 x 38 R image of Virgo elliptical NGC 4472 KITP Conference January 2009 Observations of Globular Cluster

More information

Milky Way Companions. Dave Nero. February 3, UT Astronomy Bag Lunch

Milky Way Companions. Dave Nero. February 3, UT Astronomy Bag Lunch UT Astronomy Bag Lunch February 3, 2008 Outline 1 Background 2 Cats and Dogs, Hair and a Hero 3 Theoretical Evolution of the Galactic Halo Outline Background 1 Background 2 Cats and Dogs, Hair and a Hero

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Knut Olsen DECam Community Workshop August 2011

Knut Olsen DECam Community Workshop August 2011 Knut Olsen DECam Community Workshop August 2011 Motivation The Magellanic Clouds are rich laboratories of astrophysical phenomena Their structure and stellar populations allow us to explore their evolution

More information

VST Science in Napoli Massimo Dall'Ora INAF-OACN

VST Science in Napoli Massimo Dall'Ora INAF-OACN Exploiting VST Atlas... Durham, April15th, 2014 VST Science in Napoli Massimo Dall'Ora INAF-OACN Outline Current GTO Projects in Naples KIDS ''side'' projects ATLAS and KIDS Our Pipeline INAF-OACn: A.

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

Stellar populations in the Milky Way halo

Stellar populations in the Milky Way halo Stellar populations in the Milky Way halo Paula Jofre Pfeil Max Planck Institute for Astrophysics (Achim Weiss, Ben Panter, Camilla Hansen) Introduction Todayʼs Universe Scenario: Dark matter haloes connected

More information

Dwarf galaxies vs. globular clusters: An observer s perspective

Dwarf galaxies vs. globular clusters: An observer s perspective Dwarf galaxies vs. globular clusters: An observer s perspective Jay Strader (Michigan St) with Beth Willman (Haverford) A globular cluster A galaxy Galaxy, Defined A galaxy is a gravitationally bound collection

More information

Stellar Stream map of the Milky Way Halo : Application of STREAMFINDER onto ESA/Gaia DR2

Stellar Stream map of the Milky Way Halo : Application of STREAMFINDER onto ESA/Gaia DR2 Stellar Stream map of the Milky Way Halo : Application of STREAMFINDER onto ESA/Gaia DR2 w/ Rodrigo A. Ibata and Nicolas F. Martin @kmalhan07 Khyati Malhan PhD Student Supervisor: Dr. Rodrigo Ibata Stellar

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 DES DR1

PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 DES DR1 Draft version June 8, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 DES DR1 Andrew B. Pace 1,4 and Ting S. Li 2,3 1 George

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s)

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Toshikazu Shigeyama (U. Tokyo) Based on Tsujimoto & TS 2014 Kilonova Afterglow of GRB130603B at day 9! Berger+

More information

A search for dark matter annihilation in the newly discovered dwarf galaxy Reticulum II

A search for dark matter annihilation in the newly discovered dwarf galaxy Reticulum II Note. Best-fit parameters from the maximum-likelihood fit assuming the composite isochrone described in Section 3.2. Uncertainties are calculated from the the highest density interval containing 90% of

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Chapter 15 The Milky Way Galaxy

Chapter 15 The Milky Way Galaxy Chapter 15 The Milky Way Galaxy Guidepost This chapter plays three parts in our cosmic drama. First, it introduces the concept of a galaxy. Second, it discusses our home, the Milky Way Galaxy, a natural

More information

Future prospects for finding Milky Way satellites. Amit and Carl 31 March 2010

Future prospects for finding Milky Way satellites. Amit and Carl 31 March 2010 Future prospects for finding Milky Way satellites Amit and Carl 31 March 2010 Where have all the satellites gone? The missing satellite problem! DM simulations (like Via Lactea) predict that there should

More information

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Kavli Institue for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford,

More information

Stellar Populations in the Local Group

Stellar Populations in the Local Group Stellar Populations in the Local Group Recall what we ve learned from the Milky Way: Age and metallicity tend to be correlated: older -> lower heavy element content younger -> greater heavy element content

More information

Dwarf spheroidal satellites of M31: Variable stars and stellar populations

Dwarf spheroidal satellites of M31: Variable stars and stellar populations Dwarf spheroidal satellites of M31: Variable stars and stellar populations Felice Cusano INAF-Osservatorio Astronomico di Bologna LBT Team Italy collaborators: Gisella Clementini, Alessia Garofalo, Michele

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

in the Milky NOW Way AND and THEN dwarf galaxies Stefania Salvadori

in the Milky NOW Way AND and THEN dwarf galaxies Stefania Salvadori CARBON-ENHANCED DWARF GALAXIES: METAL-POOR STARS in the Milky NOW Way AND and THEN dwarf galaxies Stefania Salvadori University of Groningen Kapteyn Astronomical Institute Netherlands Organization for

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Probing the history of star formation in the Local Group using the galactic fossil record

Probing the history of star formation in the Local Group using the galactic fossil record Probing the history of star formation in the Local Group using the galactic fossil record Brian O Shea (Michigan State University) Collaborators: Tim Beers, Carolyn Peruta, Monica Derris (MSU), Jason Tumlinson

More information

Exploring the Structure of the Milky Way with WFIRST

Exploring the Structure of the Milky Way with WFIRST Exploring the Structure of the Milky Way with WFIRST Heidi Jo Newberg Rensselaer Polytechnic Institute Simulation: Stefan Gottlöber/AIP Image Credit: Heidi Newberg Milky Way Structure we want it all: The

More information

Astro2010 Science White Paper: The Galactic Neighborhood (GAN)

Astro2010 Science White Paper: The Galactic Neighborhood (GAN) Astro2010 Science White Paper: The Galactic Neighborhood (GAN) Thomas M. Brown (tbrown@stsci.edu) and Marc Postman (postman@stsci.edu) Space Telescope Science Institute Daniela Calzetti (calzetti@astro.umass.edu)

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, give the prediction of the

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) University of Maryland December 8 th, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor

More information

THE QUEST RR LYRAE SURVEY AND HALO SUB-STRUCTURE

THE QUEST RR LYRAE SURVEY AND HALO SUB-STRUCTURE THE QUEST RR LYRAE SURVEY AND HALO SUB-STRUCTURE Kathy Vivas (CIDA, Venezuela), Bob Zinn (Yale U., USA), Sonia Duffau (U. de Chile), Yara Jaffé, Jesús Hernández, Yolimar Subero (CIDA, Venezuela), G. Carraro

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

Lecture 30. The Galactic Center

Lecture 30. The Galactic Center Lecture 30 History of the Galaxy Populations and Enrichment Galactic Evolution Spiral Arms Galactic Types Apr 5, 2006 Astro 100 Lecture 30 1 The Galactic Center The nature of the center of the Galaxy is

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 23. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September 2011 Outline The local Mass

More information

Veilleux! see MBW ! 23! 24!

Veilleux! see MBW ! 23! 24! Veilleux! see MBW 10.4.3! 23! 24! MBW pg 488-491! 25! But simple closed-box model works well for bulge of Milky Way! Outflow and/or accretion is needed to explain!!!metallicity distribution of stars in

More information

Determining the Nature of Dark Matter with Astrometry

Determining the Nature of Dark Matter with Astrometry Determining the Nature of Dark Matter with Astrometry Louie Strigari UC Irvine Center for Cosmology Fermilab, 4.16.2007 Collaborators: James Bullock, Juerg Diemand, Manoj Kaplinghat, Michael Kuhlen, Piero

More information

PISCES II & PEGASUS III: TWIN SISTERS OR ONLY GOOD FRIENDS?

PISCES II & PEGASUS III: TWIN SISTERS OR ONLY GOOD FRIENDS? PISCES II & PEGASUS III: TWIN SISTERS OR ONLY GOOD FRIENDS? ALESSIA GAROFALO 1,2 1-DIPARTIMENTO DI FISICA E ASTRONOMIA-UNIVERSITÀ DI BOLOGNA 2-INAF-OSSERVATORIO ASTRONOMICO DI BOLOGNA!! 1 TEAM WORK: MARIA

More information

WORKSHOP PROGRAM. June 27-29, 2018 Chicago, IL. Near-Field Cosmology with the Dark Energy Survey's DR1 and Beyond KICP Workshop, 2018

WORKSHOP PROGRAM. June 27-29, 2018 Chicago, IL. Near-Field Cosmology with the Dark Energy Survey's DR1 and Beyond KICP Workshop, 2018 KICP Workshop, 2018 June 27-29, 2018 Chicago, IL WORKSHOP PROGRAM http://kicp.uchicago.edu/ http://www.kavlifoundation.org/ http://www.uchicago.edu/ Stars in our Milky Way and galaxies in our Local Group

More information

II. Morphology and Structure of Dwarf Galaxies

II. Morphology and Structure of Dwarf Galaxies II. Morphology and Structure of Dwarf Galaxies Ferguson & Binggeli 1994, A&ARev 6, 67 1 1. Properties low mass : 10 6 10 10 M slow rotators : 10 100 km s -1 low luminosity : 10 6 10 10 L low surface brightness

More information

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012 The HERMES project Reconstructing Galaxy Formation Ken Freeman RSAA, ANU The metallicity distribution in the Milky Way discs Bologna May 2012 HERMES is a new high-resolution fiber-fed multi-object spectrometer

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Chapter 30. Galaxies and the Universe. Chapter 30:

Chapter 30. Galaxies and the Universe. Chapter 30: Chapter 30 Galaxies and the Universe Chapter 30: Galaxies and the Universe Chapter 30.1: Stars with varying light output allowed astronomers to map the Milky Way, which has a halo, spiral arm, and a massive

More information

Taking the census of the Milky Way Galaxy. Gerry Gilmore Professor of Experimental Philosophy Institute of Astronomy Cambridge

Taking the census of the Milky Way Galaxy. Gerry Gilmore Professor of Experimental Philosophy Institute of Astronomy Cambridge Taking the census of the Milky Way Galaxy Gerry Gilmore Professor of Experimental Philosophy Institute of Astronomy Cambridge astrophysics cannot experiment merely observe and deduce: so how do we analyse

More information

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Age-redshift relation. The time since the big bang depends on the cosmological parameters. Age-redshift relation The time since the big bang depends on the cosmological parameters. Lyman Break Galaxies High redshift galaxies are red or absent in blue filters because of attenuation from the neutral

More information

Lecture 7: the Local Group and nearby clusters

Lecture 7: the Local Group and nearby clusters Lecture 7: the Local Group and nearby clusters in this lecture we move up in scale, to explore typical clusters of galaxies the Local Group is an example of a not very rich cluster interesting topics include:

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

SkyMapper and the Southern Sky Survey

SkyMapper and the Southern Sky Survey SkyMapper and the Southern Sky Survey Stefan Keller Mt. Stromlo Observatory Brian Schmidt, Mike Bessell and Patrick Tisserand SkyMapper 1.35m telescope with a 5.7 sq. degree field of view located at Siding

More information

Local Group cosmology with ngcfht

Local Group cosmology with ngcfht Local Group cosmology with ngcfht Nicolas Martin (Strasbourg Observatory & MPIA, Heidelberg) Cosmology on galaxy scales the new frontier observed halo kpc Large scale cosmology is now largely understood

More information

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 23 Astronomy Today 8th Edition Chaisson/McMillan Chapter 23 The Milky Way Galaxy Units of Chapter 23 23.1 Our Parent Galaxy 23.2 Measuring the Milky Way Discovery 23-1 Early Computers

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW Marcel S. Pawlowski (mpawlow@astro.uni-bonn.de) Supervisor: Pavel Kroupa (Bonn) Collaborators: Jan Pflamm-Altenburg

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

Globular Clusters in LSB Dwarf Galaxies

Globular Clusters in LSB Dwarf Galaxies Globular Clusters in LSB Dwarf Galaxies New results from HST photometry and VLT spectroscopy Thomas H. Puzia Herzberg Institute of Astrophysics in collaboration with Margarita E. Sharina SAO, Russian Academy

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

The Accretion History of the Milky Way

The Accretion History of the Milky Way The Accretion History of the Milky Way Julio F. Navarro The Milky Way as seen by COBE Collaborators Mario Abadi Amina Helmi Matthias Steinmetz Ken Ken Freeman Andres Meza The Hierarchical Formation of

More information

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler The Mass of the Milky Way from its Satellites Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler Introduction As seen earlier in this conference, the Bolshoi simulation + SHAM does

More information

This Week in Astronomy

This Week in Astronomy Homework #8 Due Wednesday, April 18, 11:59PM Covers Chapters 15 and 16 Estimated time to complete: 40 minutes Read chapters, review notes before starting This Week in Astronomy Credit: NASA/JPL-Caltech

More information

Distance Measuring Techniques and The Milky Way Galaxy

Distance Measuring Techniques and The Milky Way Galaxy Distance Measuring Techniques and The Milky Way Galaxy Measuring distances to stars is one of the biggest challenges in Astronomy. If we had some standard candle, some star with a known luminosity, then

More information