Cosmological Constraints! on! Very Dark Photons

Size: px
Start display at page:

Download "Cosmological Constraints! on! Very Dark Photons"

Transcription

1 Cosmological Constraints on Very Dark Photons Anthony Fradette work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 204 (arxiv: ) Cosmo Chicago, IL

2 Plan Dark Photon review and motivation Very Dark Photon (VDP) thermal production VDP and Big Bang Nucleosynthesis VDP and Cosmic Microwave Background Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 2

3 Motivation Standard Model Dark Sector Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 3

4 Motivation Hello? Standard Model Dark Sector Portals Leading SM coupling to Neutral Hidden Sector Scalar Right-Handed neutrino U() O s H H LHN R B µ V µ Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 4

5 Motivation Hello? Standard Model Dark Sector Portals Leading SM coupling to Neutral Hidden Sector Scalar Right-Handed neutrino U() O s H H LHN R B µ V µ Dark Photon For m V m Z, only mixes kinetically with photons L Vint = apple 2 F µ V µ = eapplev µ J µ em L Vmass B. Holdom, Phys. Lett. B 66, 96 (986) Stueckelberg Higgs e 0 = applee e = apple 2 Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 5

6 Dark Photon Landscape 2 a µ a µ,fav WASA KLOE 4 a e E4 APEX/ MAMI BABAR U70 6 CHARM See Review from: Essig et al., Snowmass E37 LSND SN m V < 2m e m V (M ev ) m V > 2m e -6-6 Log e Log m Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 6

7 Very Dark Photon? 2 a µ a µ,fav WASA KLOE Can we use the Universe as a detector? 4 a e E4 APEX/ MAMI U70 BABAR 6 CHARM 8 E37 LSND SN m V (M ev ) 3 4 Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 7

8 Very Dark Photon? 2 a µ a µ,fav WASA KLOE Can we use the Universe as a detector? 4 a e E4 APEX/ MAMI U70 BABAR V ' 3 e m V =6 5 yr MeV m V 35 e 6 8 CHARM E37 LSND Recombination Very Dark SN -2 V [s] m V (M ev ) 3 4 Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 8

9 Very Dark Photon? 2 a µ a µ,fav WASA KLOE Can we use the Universe as a detector? 4 a e E4 APEX/ MAMI U70 BABAR V ' 3 e m V =6 5 yr MeV m V 35 e 6 8 CHARM E37 LSND Recombination Very Dark SN -2 Postma and Redondo, 2008 No explicit bounds derived 2 V [s] -6 BBN? Can it been seen on Earth? e + e prod e E 2 c.m. V cm CMB? 2 m V (M ev ) 3 4 Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 9

10 VDP Thermal Production Dominant contribution from coalescence sẏ = Y = n V s The Boltzmann equation Y i=l, l,v Z d 3 p i (2 ) 3 (N l N l N V )(2 ) 4 (4) (p l + p l p V ) X M 2E l l 2 i is modified because of darkness l l κ A µ V µ time Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette -

11 Abundance found by integrating the Boltzmann equation for the reaction in fig. VDP Thermal Production Thermal bath induces a resonant production through the photon self-energy Dominant contribution from coalescence Tranverse and longitudinal modes behave di erently The Boltzmann d 2 equation prod sẏ = Y = n V s m 4 v m 4 v dêdt à 3 mv 2 L mv 2 T 2 Subleading due to T r,t (L) & 8.m v,parametricallyhigher i=l, l,v Y Z d 3 p i (2 ) 3 2E i (N l N l N V )(2 ) 4 (4) (p l + p l p V ) X M l l 2 is modified than bulkbecause production of darkness [2] l l A µ V µ V not in equilibrium κ time Freeze-in production -8 0 transverse longitudinal dy v /dωdt (MeV -2 ) m v = MeV m v = 20 MeV d 2 Log(T r /m v ) 50 prod 30 ddt / m 4 V m 2 V L m 4 V m 2 V T T (MeV) Log(ω/m v ) Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette -

12 2 a µ WASA KLOE VDP Thermal Production 4 a e a µ,fav E4 APEX/ MAMI BABAR Basic QCD transition model Free meson gas Free quarks T c = 57 MeV 6 8 U70 CHARM E37 LSND SN E p.b. (ev) 0. total e + e - µ + µ - τ + τ - π + π - K + K - u/d + u/d - s + s - c + c - α eff = n V n b E p.b. (ev) Γ V - = 4 s m V (MeV) m V (M ev ) 3 4 Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 2

13 VDP and Big Bang Nucleosynthesis BBN is a good probe for New Physics Minimal assumptions b parameter : (Planck, WMAP) Pospelov and Pradler, 20 Provides constraints on any modification to nuclear reaction network e.g. energy injection from non-sm particle decays t/sec H Db.n. N SBBN f.o. ν dec. n/p dec. e ± ann. Y p D/H 3 He/H T/H 7 Be/H 7 Li/H 6 Li/H 00 0 T/keV p n p n D D p DD 3 He 7 Be 3 He D 4 He 3 He 4 He 3 He n 7 Be n m V < 2m Electromagnetic energy injection m V > 2m Hadronic energy injection DD2 T T D 4 He T 7 Li p 7 Li Opposing trends in Y V V Localized constraints in m V apple Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 3

14 VDP and Big Bang Nucleosynthesis Injection of e + e (µ + µ ) quickly transfers energy to photons via inverse Compton scattering + bgd e + e allowed for E & m 2 e/22t For smaller E, the energy is dissipated through photodestruction of nuclei t ph ' m V < 2m : EM energy injection 8 < : 2 4 s, 7 Be + 3 He + 4 He (.59 MeV), 5 4 s, D+ n + p (2.22 MeV), 4 6 s, 4 He + 3 He/T+n/p (20 MeV), Region Ia Reduction of 7 Li (3-4 x - ) Underproduction of D D/H =(2.53 ± 0.04) 5 3 He/D < Cooke et al., Ia Region Ib Increase of 6 Li by O(0) Not a constraint Region Ic Creation of 3 He ruled out by 3 He/D < Ib Ic 2 m V (M ev ) He 3 He/ D D/ H 7 Li/H 6 Li/H V /sec n V /n b Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 4

15 VDP and Big Bang Nucleosynthesis m V > 2m : Hadronic energy injection Simplified by considering long-lived mesons ±, K ±, KL 0 and (anti-)nucleons Important reactions κ Ia II III 4 He 3 He/D D/H 7 Li/H 6 Li/H τ V / sec n V /n b Charge exchange Lithium depletion + p 0 + n 7 Be + n 7 Li + p Ib Ic 7 Li + p 4 He + 4 He Region II 5 2 m V (MeV) Region III Short lifetime Extra neutrons from (before D-bottleneck) or indirect production Additional p $ n, n/p rises Lithium depletion Y p apple 0.26 Extra neutrons yield more D D/H apple 3 5 D/H apple V n n 4 Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 5

16 VDP and Cosmic Microwave Background The CMB is an integrated image over the recombination epoch Provides constraints on any modification to visibility function e.g. energy injection from non-sm particle decays eg.: Chen and Kamionkowski, 2004 Slatyer et al., 2009 Planck, 203 Partial reionization enhances late scatterings of CMB photons Washes out small scale TT correlation X e CDM m V = MeV, = 2x z Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 6 C TT l(l+)/2 e-09 9e- 8e- 7e- 6e- 5e- 4e- 3e- 2e- e- 0 m V = MeV, = 2x -7 CDM 0 00 l

17 VDP and Cosmic Microwave Background Generic constraints on decaying particle Energy output f eff Br e + e - µ + µ - π + π - total de dtdv =3 m p m V (MeV) e ionization heating Energy is not deposited right away For eg. Zhang et al., 2007 t Slatyer, 202 κ Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette Planck + WMAP 9 Pol WMAP 7 + SPT WMAP 3 Planck forecast (2007) [sec - ] Planck WMAP7 0 m V (MeV) τ V n v /n b

18 2 a µ WASA KLOE Summary 4 a e a µ,fav E4 APEX/ MAMI BABAR U70 The Universe is a great particle detector Minimal assumptions V T O( 00 MeV) Additional contributions can only strengthen constraints Present-day decays? Abundance falls short by many orders of magnitude (antimatter, gamma-ray, neutrino signals ) κ CMB BBN CHARM E37 LSND SN Planck 4 He 3 He/D D/H 7 Li/H m V (MeV) Cosmo Chicago, IL Cosmological Constraints on Very Dark Photons - Anthony Fradette - 8 8

Very Dark Photons! (in Cosmology) Anthony Fradette. work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 2014 (arxiv:1407.

Very Dark Photons! (in Cosmology) Anthony Fradette. work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 2014 (arxiv:1407. Very Dark Photons (in Cosmology) Anthony Fradette work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 204 (arxiv:407.0993) Theoretical Perspective on New Physics at the Intensity Frontier

More information

arxiv: v2 [hep-ph] 10 Jul 2014

arxiv: v2 [hep-ph] 10 Jul 2014 Cosmological Constraints on ery Dark Photons Anthony Fradette, Maxim Pospelov,, 2 Josef Pradler, 3 and Adam Ritz Department of Physics and Astronomy, University of ictoria, ictoria, BC 8P 5C2, Canada 2

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12 Big Bang Nucleosynthesis introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12.1 The Early Universe According to the accepted cosmological theories: The Universe has cooled during its expansion

More information

Hot Big Bang model: early Universe and history of matter

Hot Big Bang model: early Universe and history of matter Hot Big Bang model: early Universe and history of matter nitial soup with elementary particles and radiation in thermal equilibrium. adiation dominated era (recall energy density grows faster than matter

More information

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007 Cosmological Constraints on high energy neutrino injection KEKPH07 March 1-3, 2007 Toru Kanzaki, Masahiro Kawasaki, Kazunori Kohri and Takeo Moroi Institute for Cosmic Ray Research Introduction physics

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

Dark Photon Dark Matter: Theory and Constraints

Dark Photon Dark Matter: Theory and Constraints Dark Photon Dark Matter: Theory and Constraints Josef Pradler Vienna Institute of High Energy Physics, Austrian Academy of Sciences May 31, 2015 Beyond WIMPs: From Theory to Detection Looking for new species

More information

Dark Photon: Stellar Constraints and Direct Detection

Dark Photon: Stellar Constraints and Direct Detection Dark Photon: Stellar Constraints and Direct Detection Haipeng An Perimeter Institute In collaboration with Maxim Pospelov and Josef Pradler 1302.3844, 1304.3461 Motivations Related to the dark sector Dark

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

Lecture 19 Big Bang Nucleosynthesis

Lecture 19 Big Bang Nucleosynthesis Lecture 19 Big Bang Nucleosynthesis As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. The CMB as seen by the WMAP satellite.!2

More information

Updating Standard Big-Bang Nucleosynthesis after Planck

Updating Standard Big-Bang Nucleosynthesis after Planck Updating Standard Big-Bang Nucleosynthesis after Planck Institut d Astrophysique de Paris, CNRS, Université Pierre et Marie Curie, 98 bis Bd Arago, 75014 Paris, France E-mail: vangioni@iap.fr Alain Coc

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER 16 December 2011 ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER Paolo Ciarcelluti Motivation of this research We are now in the ERA OF PRECISION COSMOLOGY and... Motivation of this research We are now

More information

Matter vs. Antimatter in the Big Bang. E = mc 2

Matter vs. Antimatter in the Big Bang. E = mc 2 Matter vs. Antimatter in the Big Bang Threshold temperatures If a particle encounters its corresponding antiparticle, the two will annihilate: particle + antiparticle ---> radiation * Correspondingly,

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

Plasma Universe. The origin of CMB

Plasma Universe. The origin of CMB Plasma Universe As we go back in time, temperature goes up. T=2.73(1+z) K At z~1100, T~3000 K About the same temperature as M-dwarfs Ionization of hydrogen atoms H + photon! p + e - Inverse process: recombination

More information

Physics from 1-2 GeV

Physics from 1-2 GeV Physics from 1-2 GeV Caterina Bloise INFN, Frascati Laboratory, Italy What next LNF: Perspectives of fundamental physics at the Frascati Laboratory Frascati, November 11, 2014 1 / 19 1 Introduction 2 Kaon

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Cosmological Production of Dark Matter

Cosmological Production of Dark Matter Dark Matter & Neutrino School ICTP-SAIFR July 23-27, 2018 Cosmological Production of Dark Matter Farinaldo Queiroz International Institute of Physics & ICTP-SAIFR Outline 1. Introduction Cold and hot thermal

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Mass (Energy) in the Universe:

Mass (Energy) in the Universe: Mass (Energy) in the Universe: smooth (vacuum) clumping Parameters of our Universe present values H = (71±4)km/s/Mpc = 1.0±0.0 m = 0.7±0.0 incl. b = 0.044±0.004 and < 0.014 photons r = 4.9-5 dark energy

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Dark Radiation from Particle Decay

Dark Radiation from Particle Decay Dark Radiation from Particle Decay Jörn Kersten University of Hamburg Based on Jasper Hasenkamp, JK, JCAP 08 (2013), 024 [arxiv:1212.4160] Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay

More information

Lecture 17: the CMB and BBN

Lecture 17: the CMB and BBN Lecture 17: the CMB and BBN As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Peering out/back into the Universe As

More information

Lecture 24: Cosmology: The First Three Minutes. Astronomy 111 Monday November 27, 2017

Lecture 24: Cosmology: The First Three Minutes. Astronomy 111 Monday November 27, 2017 Lecture 24: Cosmology: The First Three Minutes Astronomy 111 Monday November 27, 2017 Reminders Last star party of the semester tomorrow night! Online homework #11 due Monday at 3pm The first three minutes

More information

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3)

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3) Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3) Key Ideas Physics of the Early Universe Informed by experimental & theoretical physics Later stages confirmed by observations

More information

Universo Primitivo (1º Semestre)

Universo Primitivo (1º Semestre) Universo Primitivo 2018-2019 (1º Semestre) Mestrado em Física - Astronomia Chapter 7 7 Recombination and Decoupling Initial conditions; Equilibrium abundances: the Saha equation; Hydrogen recombination;

More information

The Four Basic Ways of Creating Dark Matter Through a Portal

The Four Basic Ways of Creating Dark Matter Through a Portal The Four Basic Ways of Creating Dark Matter Through a Portal DISCRETE 2012: Third Symposium on Prospects in the Physics of Discrete Symmetries December 4th 2012, Lisboa Based on arxiv:1112.0493, with Thomas

More information

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29 Learning from WIMPs Manuel Drees Bonn University Learning from WIMPs p. 1/29 Contents 1 Introduction Learning from WIMPs p. 2/29 Contents 1 Introduction 2 Learning about the early Universe Learning from

More information

Nucleosíntesis primordial

Nucleosíntesis primordial Tema 5 Nucleosíntesis primordial Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela Big Bang cosmology 1.1 The Universe today The present state of the Universe

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL Thermalisation of Sterile Neutrinos Thomas Tram LPPC/ITP EPFL Outline Introduction to ev sterile neutrinos. Bounds from Cosmology. Standard sterile neutrino thermalisation. Thermalisation suppression by

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 11 Nov. 13, 2015 Today Cosmic Microwave Background Big Bang Nucleosynthesis Assignments This week: read Hawley and Holcomb,

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 7/67 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

Chiral Dark Sector. Keisuke Harigaya (UC Berkeley, LBNL) KH, Yasunori Nomura Raymond Co, KH, Yasunori Nomura 1610.

Chiral Dark Sector. Keisuke Harigaya (UC Berkeley, LBNL) KH, Yasunori Nomura Raymond Co, KH, Yasunori Nomura 1610. 04/21/2017 Lattice for BSM Chiral Dark Sector Keisuke Harigaya (UC Berkeley, LBNL) KH, Yasunori Nomura 1603.03430 Raymond Co, KH, Yasunori Nomura 1610.03848 Plan of Talk Introduction Set up of our model

More information

Neutrino Mass Limits from Cosmology

Neutrino Mass Limits from Cosmology Neutrino Physics and Beyond 2012 Shenzhen, September 24th, 2012 This review contains limits obtained in collaboration with: Emilio Ciuffoli, Hong Li and Xinmin Zhang Goal of the talk Cosmology provides

More information

Making Light from the Dark Universe

Making Light from the Dark Universe Oxford University Physics Society, 1st May 2014 Talk Structure 1. Prelude: What is Dark Radiation? 2. Experimental motivation for dark radiation: CMB and BBN 3. Theoretical motivation for dark radiation:

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

Physics of the hot universe!

Physics of the hot universe! Cosmology Winter School 5/12/2011! Lecture 2:! Physics of the hot universe! Jean-Philippe UZAN! The standard cosmological models! a 0!! Eq. state! Scaling Scale factor! radiation! w=1/3! a -4! t 1/2! Matter

More information

Time Evolution of the Hot Hagedorn Universe

Time Evolution of the Hot Hagedorn Universe Time Evolution of the Results obtained in collaboration with Jeremiah Birrell The University of Arizona 1965: Penzias and Wilson discover Alpher-Gamov CMB 1966-1968: Hot Big-Bang becoming conventional

More information

Searching for dark photon. Haipeng An Caltech Seminar at USTC

Searching for dark photon. Haipeng An Caltech Seminar at USTC Searching for dark photon Haipeng An Caltech Seminar at USTC 1 The standard model is very successful! 2 The big challenge! We just discovered a massless spin-2 particle.! We don t know how to write down

More information

Neutrinos in Cosmology (II)

Neutrinos in Cosmology (II) Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Cinvestav 8-12 June 2015 Outline Prologue: the physics of (massive) neutrinos IntroducAon: neutrinos and the history of the Universe Basics of

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Gravitino LSP as Dark Matter in the Constrained MSSM

Gravitino LSP as Dark Matter in the Constrained MSSM Gravitino LSP as Dark Matter in the Constrained MSSM Ki Young Choi The Dark Side of the Universe, Madrid, 20-24 June 2006 Astro-Particle Theory and Cosmology Group The University of Sheffield, UK In collaboration

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Chapter 22 Back to the Beginning of Time

Chapter 22 Back to the Beginning of Time Chapter 22 Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Back to the Big Bang The early Universe was both dense and hot. Equivalent mass density of radiation (E=mc

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

arxiv: v1 [hep-ph] 5 Sep 2017

arxiv: v1 [hep-ph] 5 Sep 2017 IPMU17-0117 UT-17-29 September, 2017 arxiv:1709.01211v1 [hep-ph] 5 Sep 2017 Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles Masahiro Kawasaki (a,b), Kazunori Kohri (c,d,e),

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis Grazia Luparello PhD Course Physics of the early Universe Grazia Luparello 1 / 24 Summary 1 Introduction 2 Neutron - proton ratio (at T1MeV) 3 Reactions for the

More information

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack Astro/Phys 224 Spring 2012 Origin and Evolution of the Universe Week 3 - Part 2 Recombination and Dark Matter Joel Primack University of California, Santa Cruz http://pdg.lbl.gov/ In addition to the textbooks

More information

Dark Matter from Decays

Dark Matter from Decays Dark Matter from Decays Manoj Kaplinghat Center for Cosmology University of California, Irvine Collaborators James Bullock, Arvind Rajaraman, Louie Strigari Cold Dark Matter: Theory Most favored candidate

More information

4 The Big Bang, the genesis of the Universe, the origin of the microwave background

4 The Big Bang, the genesis of the Universe, the origin of the microwave background 4 The Big Bang, the genesis of the Universe, the origin of the microwave background a(t) = 0 The origin of the universe: a(t) = 0 Big Bang coined by Fred Hoyle he calculated the ratio of elements created

More information

Coherent scattering of light objects on nuclei. Maxim Pospelov Perimeter Institute/U of Victoria

Coherent scattering of light objects on nuclei. Maxim Pospelov Perimeter Institute/U of Victoria Coherent scattering of light objects on nuclei Maxim Pospelov Perimeter Institute/U of Victoria Cui, Pospelov, Pradler, 207, PRD Bringmann, Pospelov, 208, subm to PRL Earlier papers with Deniverville,

More information

Search for Lμ-Lτ gauge boson at Belle-II

Search for Lμ-Lτ gauge boson at Belle-II Search for Lμ-Lτ gauge boson at Belle-II Takashi Shimomura (Miyazaki U.) in collaboration with Yuya Kaneta (Niigata U.) On the possibility of search for Lμ Lτ gauge boson at Belle-II and neutrino beam

More information

Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy

Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy 11/14/12 Katsushi Arisaka 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Seven Phases of Cosmic Evolution 11/14/12 Katsushi Arisaka

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang Re-cap from last lecture Discovery of the CMB- logic From Hubble s observations, we know the Universe is expanding This can be understood theoretically in terms of solutions of GR equations Earlier in

More information

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3. Announcements SEIs! Quiz 3 Friday. Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3. Lecture today, Wednesday, next Monday. Final Labs Monday & Tuesday next week. Quiz 3

More information

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

Dark matter Andreas Goudelis. Journée Théorie CPTGA 2017, Grenoble. LPTHE - Jussieu

Dark matter Andreas Goudelis. Journée Théorie CPTGA 2017, Grenoble. LPTHE - Jussieu Dark matter 2017 Journée Théorie, Grenoble LPTHE - Jussieu Wednesday 24/5/2017 What I ll try to summarise Why we need dark matter and what we know about it The most popular ways to look for it What we

More information

The Early Universe. Overview: The Early Universe. Accelerators recreate the early universe. Simple Friedmann equation for the radiation era:

The Early Universe. Overview: The Early Universe. Accelerators recreate the early universe. Simple Friedmann equation for the radiation era: The Early Universe Notes based on Teaching Company lectures, and associated undergraduate text with some additional material added. ) From µs to s: quark confinement; particle freezout. 2) From s to 3

More information

Prospects for the Direct Detection of the Cosmic Neutrino Background

Prospects for the Direct Detection of the Cosmic Neutrino Background Prospects for the Direct Detection of the Cosmic Neutrino Background Andreas Ringwald http://www.desy.de/ ringwald DESY PANIC 2008 November 9 14, 2008, Eilat, Israel Prospects for the Direct Detection

More information

MICROPHYSICS AND THE DARK UNIVERSE

MICROPHYSICS AND THE DARK UNIVERSE MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007 20 June 07 Feng 1 WHAT IS THE UNIVERSE MADE OF? Recently there have been remarkable advances

More information

Matter-antimatter asymmetry in the Universe

Matter-antimatter asymmetry in the Universe Matter-antimatter asymmetry in the Universe Wan-il Park (KIAS) APCTP-TRP, Nov. 30 - Dec. 01 (2012), APCTP, Seoul 1 Plan Lecture 1 - Our universe - Birth of antimatter - Matter vs. antimatter - Baryon asymmetry

More information

4. Nucleosynthesis. I. Aretxaga

4. Nucleosynthesis. I. Aretxaga 4. Nucleosynthesis I. Aretxaga 2017 Radiation era We have that ρ M R -3 ρ rad R -4 There must be a z at which ρ M = ρ rad Taking into account that nucleosynthesis predicts n ν =0.68 n γ, then Ω rad =4.2

More information

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE Mitchell Workshop on Collider, Dark Matter, and Neutrino Physics Texas A&M Jonathan Feng, UC Irvine 23 May 2016 23 May 2016 Feng 1 COLLABORATORS Jonathan Feng Bart

More information

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Cosmology Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Energy density versus scale factor z=1/a-1 Early times,

More information

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction IL NUOVO CIMENTO 40 C (2017) 54 DOI 10.1393/ncc/i2017-17054-1 Colloquia: IFAE 2016 The SHiP experiment A. Paoloni( ) on behalf of the SHiP Collaboration INFN, Laboratori Nazionali di Frascati - Frascati

More information

arxiv: v3 [hep-ph] 3 Dec 2018

arxiv: v3 [hep-ph] 3 Dec 2018 IPMU17-0117 UT-17-29 September, 2017 arxiv:1709.01211v3 [hep-ph] 3 Dec 2018 Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles Masahiro Kawasaki (a,b), Kazunori Kohri (c,d),

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

The Higgs field as the Origin of the Big Bang The first second of the Universe (and the following years!)

The Higgs field as the Origin of the Big Bang The first second of the Universe (and the following years!) The Higgs field as the Origin of the Big Bang The first second of the Universe (and the following 13.700.000.000 years!) Daniel G. Figueroa CERN, Theory Division Cosmology = Study of the Universe as a

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

Fundamental Particles

Fundamental Particles Fundamental Particles Standard Model of Particle Physics There are three different kinds of particles. Leptons - there are charged leptons (e -, μ -, τ - ) and uncharged leptons (νe, νμ, ντ) and their

More information

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University Particle Cosmology V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University Topics Basics of Hot Big Bang cosmology Dark matter: WIMPs Axions Warm

More information

Nuclear Astrophysics Topics: With Connections to Strong Interaction Physics

Nuclear Astrophysics Topics: With Connections to Strong Interaction Physics Nuclear Astrophysics Topics: With Connections to Strong Interaction Physics 1. Introduction: timeline, astrophysics epochs II. The cosmological inventory III. BBN and cosmological neutrinos IV. Solar neutrinos,

More information

Search for Lμ-Lτ gauge boson at Belle-II and Neutrino beam experiments

Search for Lμ-Lτ gauge boson at Belle-II and Neutrino beam experiments Search for Lμ-Lτ gauge boson at Belle-II and Neutrino beam experiments Takashi Shimomura (Miyazaki U.) in collaboration with Yuya Kaneta (Niigata U.) On the possibility of search for Lμ Lτ gauge boson

More information

Phys/Astro 689: Lecture 1. Evidence for Dark Matter

Phys/Astro 689: Lecture 1. Evidence for Dark Matter Phys/Astro 689: Lecture 1 Evidence for Dark Matter Why? This class is primarily a consideration of whether Cold Dark Matter theory can be reconciled with galaxy observations. Spoiler: CDM has a small scale

More information

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL Dark Matter Models Stephen West and Fellow\Lecturer RHUL and RAL Introduction Research Interests Important Experiments Dark Matter - explaining PAMELA and ATIC Some models to explain data Freeze out Sommerfeld

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

CMB & Light Degrees of Freedom

CMB & Light Degrees of Freedom CMB & Light Degrees of Freedom Joel Meyers Canadian Institute for Theoretical Astrophysics SLAC Summer Institute 2017 Cosmic Opportunities August 21, 2017 Image Credits: Planck, ANL Light Relics What and

More information

Chapter 46 Solutions

Chapter 46 Solutions Chapter 46 Solutions 46.1 Assuming that the proton and antiproton are left nearly at rest after they are produced, the energy of the photon E, must be E = E 0 = (938.3 MeV) = 1876.6 MeV = 3.00 10 10 J

More information

Chapter 27 The Early Universe Pearson Education, Inc.

Chapter 27 The Early Universe Pearson Education, Inc. Chapter 27 The Early Universe Units of Chapter 27 27.1 Back to the Big Bang 27.2 The Evolution of the Universe More on Fundamental Forces 27.3 The Formation of Nuclei and Atoms 27.4 The Inflationary Universe

More information

Cosmology with Planck: Nucleosynthesis and neutron life-time constraints

Cosmology with Planck: Nucleosynthesis and neutron life-time constraints Cosmology with Planck: Nucleosynthesis and neutron life-time constraints Luca Pagano Sapienza University of Rome Torino 07-09-2015 Outline Big Bang Nucleosynthesis as cosmological probe Big Bang Nucleosynthesis

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

14 Lecture 14: Early Universe

14 Lecture 14: Early Universe PHYS 652: Astrophysics 70 14 Lecture 14: Early Universe True science teaches us to doubt and, in ignorance, to refrain. Claude Bernard The Big Picture: Today we introduce the Boltzmann equation for annihilation

More information

Major Topics. J.M. Lattimer AST 346, Galaxies, Part 1

Major Topics. J.M. Lattimer AST 346, Galaxies, Part 1 Major Topics 1. Introduction Stars, the Milky Way, Other Galaxies, Cosmology 2. The Galaxy and its Components Luminosity/Mass Functions, Distances, Clusters, Rotation 3. The Interstellar Medium Gas, Dust,

More information

Ay1 Lecture 18. The Early Universe and the Cosmic Microwave Background

Ay1 Lecture 18. The Early Universe and the Cosmic Microwave Background Ay1 Lecture 18 The Early Universe and the Cosmic Microwave Background 18.1 Basic Ideas, and the Cosmic Microwave background The Key Ideas Pushing backward in time towards the Big Bang, the universe was

More information

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos Yasaman Farzan IPM, Tehran Outline Motivation for the KATRIN experiment Effect of neutrinos on cosmological scales and

More information

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe ASTR 1120 General Astronomy: Stars & Galaxies FINAL: Saturday, Dec 12th, 7:30pm, HERE ALTERNATE FINAL: Monday, Dec 7th, 5:30pm in Muenzinger E131 Last OBSERVING session, Tue, Dec.8th, 7pm Please check

More information

On Symmetric/Asymmetric Light Dark Matter

On Symmetric/Asymmetric Light Dark Matter On Symmetric/Asymmetric Light Dark Matter Hai-Bo Yu University of Michigan, Ann Arbor Exploring Low-Mass Dark Matter Candidates PITT PACC, 11/16/2011 Motivations Traditionally, we focus on O(100 GeV) dark

More information

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 1 Matter Particles Quarks: Leptons: Anti-matter Particles Anti-quarks: Anti-leptons: Hadrons Stable bound states of quarks Baryons:

More information

Chapter 22: Cosmology - Back to the Beginning of Time

Chapter 22: Cosmology - Back to the Beginning of Time Chapter 22: Cosmology - Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Future of universe depends on the total amount of dark and normal matter Amount of matter

More information