Self-force from equivalent periodic sources

Size: px
Start display at page:

Download "Self-force from equivalent periodic sources"

Transcription

1 Self-force from equivalent periodic sources Barak Kol Hebrew University, Jerusalem Capra 16 Dublin, July 2013 Based on arxiv:1307.xxxx

2 Self-force from equivalent periodic sources Barak Kol Hebrew University, Jerusalem Capra 16 Dublin, July 2013 Outline Based on arxiv:1307.xxxx Orbits and frequencies Equivalent sources Regularization Discussion

3 Issues

4 Issues Regularization MiSaTaQuWa Mode sum Regularization (Barack & Ori) Detweiler-Whiting decomposition

5 Issues Regularization MiSaTaQuWa Mode sum Regularization (Barack & Ori) Detweiler-Whiting decomposition Computational cost

6 Issues Regularization MiSaTaQuWa Mode sum Regularization (Barack & Ori) Detweiler-Whiting decomposition Computational cost Characterization of conservative sector Hinderer-Flanagan Brinholtz-Hadar-BK

7 Goal

8 Goal Trajectory Parameters (E, l, t 0, 0)

9 Goal Trajectory Parameters (E, l, t 0, 0) Obtain the adiabatic flow in the space of trajectories - first order EMR Osculating orbits

10 Orbits and frequencies

11 Orbits and frequencies Quasi periodic frequency spectrum! mn = m + n r r = 2 P t = P P t

12 Orbits and frequencies Quasi periodic frequency spectrum! mn = m + n r r = 2 P t = P P t Frequency requirement - constructive interference in azimuthal direction

13 A stroboscope

14 A stroboscope Imagine a stroboscope flashing every P mn

15 A stroboscope Imagine a stroboscope flashing every P mn The body traces a curve

16 A stroboscope Imagine a stroboscope flashing every P mn The body traces a curve It is equivalent to folding the trajectory over a periodic time coordinate

17 (m,n) equivalent source

18 (m,n) equivalent source ergodic: time average to ensemble average

19 (m,n) equivalent source ergodic: time average to ensemble average equation 0= (r, )=! mn t(r)+m ( (r))

20 (m,n) equivalent source ergodic: time average to ensemble average equation 0= (r, )=! mn t(r)+m ( (r)) parametric form = m = n + ( ) P 2

21 (m,n) equivalent source ergodic: time average to ensemble average equation 0= (r, )=! mn t(r)+m ( (r)) parametric form = m = n + ( ) P 2 winds (-m) times around phi and n times around r

22 Examples (00) (01) (10) (11) (20) 0 Ω r Ω Φ Ω Φ Ω r 2Ω Φ

23 Zero frequency

24 Zero frequency Is in the conservative sector

25 Zero frequency Is in the conservative sector := h i t = q 2 P t r (dr/d ) (z)

26 Zero frequency Is in the conservative sector := h i t = q 2 P t r (dr/d ) (z) Only (phi 0,t 0 ) drift

27 Zero frequency Is in the conservative sector := h i t = q 2 P t r (dr/d ) (z) Only (phi 0,t 0 ) drift The dissipative part 0 :=

28 Solving the field equations

29 Solving the field equations 4 f 2 t =4

30 Solving the field equations 4 f 2 t =4 Frequency domain - natural here, elliptic equations

31 Solving the field equations 4 f 2 t =4 Frequency domain - natural here, elliptic equations Time domain

32 Regularization

33 Regularization Singular source

34 Regularization Singular source Less singular (1d density) for aperiodic motion and equivalent source

35 Regularization Singular source Less singular (1d density) for aperiodic motion and equivalent source Zero freq. sector: surface charge density

36 Regularization Singular source Less singular (1d density) for aperiodic motion and equivalent source Zero freq. sector: surface charge density In frequency space - similar to electrostatics with singular source

37 Electrostatics

38 = S + R Electrostatics

39 Electrostatics = S + R 4 R := 4 [4 + f 1! 2 ] S

40 Electrostatics = S + R 4 R := 4 [4 + f 1! 2 ] S [4 + f 1! 2 ] R =4 R

41 Electrostatics = S + R 4 R := 4 [4 + f 1! 2 ] S [4 + f 1! 2 ] R =4 R Time domain in Progress - generalizing Hadamard s local construction S log

42 Edge

43 Edge Charge density near r min (or r max ) (x, y, z) = 1/2 p x (z) x 0

44 Edge Charge density near r min (or r max ) (x, y, z) = 1/2 p x (z) x 0 Solution =2 1/2 < p w w = x + iz

45 Outgoing radiation and self-force

46 Outgoing radiation and self-force Outgoing radiation 1 (, ) r e i! r +0 e i! r for r!1

47 Outgoing radiation and self-force Outgoing radiation 1 (, ) r e i! r +0 e i! r for r!1 Self-force throughout trajectory: drift in (E, l, t 0, 0)

48 Method summary

49 Method summary Goal: drift in trajectory parameters

50 Method summary Goal: drift in trajectory parameters Equivalent periodic source

51 Method summary Goal: drift in trajectory parameters Equivalent periodic source Conservative is zero frequency

52 Method summary Goal: drift in trajectory parameters Equivalent periodic source Conservative is zero frequency Regularization

53 Method summary Goal: drift in trajectory parameters Equivalent periodic source Conservative is zero frequency Regularization Self-force computed throughout at once

54 Generalizations

55 Generalizations Electromagnetism and gravity: source, waves

56 Generalizations Electromagnetism and gravity: source, waves Rotating BH (Kerr)

57 Generalizations Electromagnetism and gravity: source, waves Rotating BH (Kerr) Higher EMR orders

58 Range of usefulness

59 Range of usefulness Relativistic - or else hierarchy of scales

60 Range of usefulness Relativistic - or else hierarchy of scales For freq. space: few freq. (low eccen.)

61 Range of usefulness Relativistic - or else hierarchy of scales For freq. space: few freq. (low eccen.) Nearly incommensurate - the rational w. smallest denominator within the freq. ratio range

62 Paths for continuation

63 Paths for continuation Gauge choice

64 Paths for continuation Gauge choice Invitation for collaboration: Numerical evaluation

65 Paths for continuation Gauge choice Invitation for collaboration: Numerical evaluation Time domain regularization - local expansion generalizing Hadamard

66 Paths for continuation Gauge choice Invitation for collaboration: Numerical evaluation Time domain regularization - local expansion generalizing Hadamard Formulate conservative sector of EMR

67 Thank you for your attention!

68 Givat Brenner My home Kibbutz (village) Thank you for your attention!

Self-force: Numerical Implementations

Self-force: Numerical Implementations Self-force: Numerical Implementations Barry Wardell University College Dublin 15th Capra Meeting On Radiation Reaction In General Relativity, University Of Maryland EMRIs A major goal of the Capra programme

More information

Time Domain Schemes for Gravitational Self Force. Sam Dolan. University of Southampton, Capra 15, Univ. of Maryland, June 2012

Time Domain Schemes for Gravitational Self Force. Sam Dolan. University of Southampton, Capra 15, Univ. of Maryland, June 2012 Time Domain Schemes for Gravitational Self Force Sam Dolan University of Southampton, UK @ Capra 15, Univ. of Maryland, June 2012 Talk Outline 1 Motivation Why compute GSF on Kerr? 2 Formulation Linearized

More information

15 Capra Ranch Meeting. Self-force driven inspiral of a scalar point particle into a Schwarzschild black hole: a progress report. Roland Haas Caltech

15 Capra Ranch Meeting. Self-force driven inspiral of a scalar point particle into a Schwarzschild black hole: a progress report. Roland Haas Caltech 15 Capra Ranch Meeting th Self-force driven inspiral of a scalar point particle into a Schwarzschild black hole: a progress report Roland Haas Caltech 1 Extreme Mass Ratio Inspirals Solar-mass, compact

More information

4. MiSaTaQuWa force for radiation reaction

4. MiSaTaQuWa force for radiation reaction 4. MiSaTaQuWa force for radiation reaction [ ] g = πgt G 8 g = g ( 0 ) + h M>>μ v/c can be large + h ( ) M + BH μ Energy-momentum of a point particle 4 μ ν δ ( x z( τ)) μ dz T ( x) = μ dτ z z z = -g dτ

More information

Progress on orbiting particles in a Kerr background

Progress on orbiting particles in a Kerr background Progress on orbiting particles in a Kerr background John Friedman Capra 15 Abhay Shah, Toby Keidl I. Intro II. Summary of EMRI results in a Kerr spacetime A. Dissipative ( adiabatic ) approximation (only

More information

Self-consistent motion of a scalar charge around a Schwarzschild black hole

Self-consistent motion of a scalar charge around a Schwarzschild black hole Self-consistent motion of a scalar charge around a Schwarzschild black hole Ian Vega 1 Peter Diener 2 Barry Wardell 3 Steve Detweiler 4 1 University of Guelph 2 Louisiana State University 3 University

More information

Comparisons between post-newtonian and self-force ISCO calculations. Marc Favata JPL/Caltech

Comparisons between post-newtonian and self-force ISCO calculations. Marc Favata JPL/Caltech Comparisons between post-newtonian and self-force ISCO calculations Marc Favata JPL/Caltech Conservative correction to the ISCO: Recently, Barack & Sago have computed the self-force along eccentric geodesics

More information

Jonathan Thornburg. Barry Wardell

Jonathan Thornburg. Barry Wardell Scalar self-force for highly eccentric orbits in Kerr spacetime Jonathan Thornburg in collaboration with Barry Wardell Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington,

More information

Indirect (source-free) integration method for EMRIs: waveforms from geodesic generic orbits and self-force consistent radial fall

Indirect (source-free) integration method for EMRIs: waveforms from geodesic generic orbits and self-force consistent radial fall Indirect (source-free) integration method for EMRIs: waveforms from geodesic generic orbits and self-force consistent radial fall Alessandro Spallicci 1 Luca Bonetti 1,Stéphane Cordier 2, Richard Emilion

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole.

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole. How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole. Marc Favata (Cornell) Daniel Holz (U. Chicago) Scott Hughes (MIT) The

More information

Gravitational waves from compact objects inspiralling into massive black holes

Gravitational waves from compact objects inspiralling into massive black holes Gravitational waves from compact objects inspiralling into massive black holes Éanna Flanagan, Cornell University American Physical Society Meeting Tampa, Florida, 16 April 2005 Outline Extreme mass-ratio

More information

POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS

POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Rencontres du Vietnam Hot Topics in General Relativity & Gravitation POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris

More information

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran Classical and Quantum Dynamics in a Black Hole Background Chris Doran Thanks etc. Work in collaboration with Anthony Lasenby Steve Gull Jonathan Pritchard Alejandro Caceres Anthony Challinor Ian Hinder

More information

Higher Dimensions & Higher Orders in EFT for Gravitational Waves. Ofek Birnholtz. 14 July th Marcel Grossmann Meeting, La Sapienza, Roma

Higher Dimensions & Higher Orders in EFT for Gravitational Waves. Ofek Birnholtz. 14 July th Marcel Grossmann Meeting, La Sapienza, Roma Higher Dimensions & Higher Orders in EFT for Gravitational Waves a OB, Shahar Hadar & Barak Kol, Phys. Rev. D 88, 104037 (2013) OB & Shahar Hadar, Phys. Rev. D 89, 045003 (2014) OB, Shahar Hadar & Barak

More information

Black Hole fusion in the extreme mass-ratio limit

Black Hole fusion in the extreme mass-ratio limit Black Hole fusion in the extreme mass-ratio limit Roberto Emparan ICREA & UBarcelona YKIS2018a Symposium YITP Kyoto 20 Feb 2018 Work with Marina Martínez arxiv:1603.00712 and with Marina Martínez & Miguel

More information

Self-force: foundations and formalism

Self-force: foundations and formalism University of Southampton June 11, 2012 Motivation Extreme-mass-ratio inspirals solar-mass neutron star or black hole orbits supermassive black hole m emits gravitational radiation, loses energy, spirals

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

arxiv:gr-qc/ v2 15 Dec 1998

arxiv:gr-qc/ v2 15 Dec 1998 Bohr s Correspondence Principle and The Area Spectrum of Quantum Black Holes Shahar Hod The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel (February 4, 2008) arxiv:gr-qc/9812002v2

More information

Thermodynamics of a Black Hole with Moon

Thermodynamics of a Black Hole with Moon Thermodynamics of a Black Hole with Moon Laboratoire Univers et Théories Observatoire de Paris / CNRS In collaboration with Sam Gralla Phys. Rev. D 88 (2013) 044021 Outline ➀ Mechanics and thermodynamics

More information

October Entrance Examination: Condensed Matter Multiple choice quizzes

October Entrance Examination: Condensed Matter Multiple choice quizzes October 2013 - Entrance Examination: Condensed Matter Multiple choice quizzes 1 A cubic meter of H 2 and a cubic meter of O 2 are at the same pressure (p) and at the same temperature (T 1 ) in their gas

More information

Gravitational Waves in any dimension

Gravitational Waves in any dimension How are Gravitational Waves in any dimension like a bead on a string? with S. Hadar and B. Kol O.B., S.H. & B.K., Phys. Rev. D 88, 104037 (2013) O.B. & S.H., Phys. Rev. D 89, 045003 (2014) O.B., S.H. &

More information

The laws of binary black hole mechanics: An update

The laws of binary black hole mechanics: An update The laws of binary black hole mechanics: An update Laboratoire Univers et Théories Observatoire de Paris / CNRS A 1 Ω κ 2 z 2 Ω Ω m 1 κ A z m The laws of black hole mechanics [Hawking 1972, Bardeen, Carter

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS Journée Gravitation et Physique Fondamentale Meudon, 27 May 2014 Isabel Cordero-Carrión Laboratoire Univers et Théories (LUTh), Observatory

More information

Ballistic orbits for Gravitational Waves

Ballistic orbits for Gravitational Waves for Gravitational Waves Giuseppe d'ambrosi Jan-Willem van Holten [arxiv:1406.4282] Kyoto 02-07-2015 18th Capra meeting on Radiation Reaction in GR 1 2 3 Giuseppe d'ambrosi for Gravitational Waves 2 Black

More information

Gauge-invariant quantity. Monday, June 23, 2014

Gauge-invariant quantity. Monday, June 23, 2014 Gauge-invariant quantity U Topics that will be covered Gauge-invariant quantity, U, (reciprocal of the red-shift invariant, z), the 1 st order (in mass-ratio) change in u t. For eccentric orbits it can

More information

Test bodies and naked singularities: is the self-force the cosmic censor?

Test bodies and naked singularities: is the self-force the cosmic censor? Test bodies and naked singularities: is the self-force the cosmic censor? Enrico Barausse (University of Guelph) in collaboration with V. Cardoso (CENTRA, Lisbon) & G. Khanna (UMass Darmouth) based on

More information

Angular momentum conservation of bursting shell during the Type I X-ray burst

Angular momentum conservation of bursting shell during the Type I X-ray burst On the angular momentum conservation of bursting shell during the Type I X-ray bursts Vahid Rezania Theoretical Physics Institute Department of Physics University of Alberta Edmonton, Alberta Based on:

More information

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College Black Hole-Neutron Star Binaries in General Relativity Thomas Baumgarte Bowdoin College Keisuke Taniguchi, Joshua Faber, Stu Shapiro University of Illinois Numerical Relativity Solve Einstein s equations

More information

A Rigorous Derivation of Gravitational Self-force. II

A Rigorous Derivation of Gravitational Self-force. II A Rigorous Derivation of Gravitational Self-force. II Samuel E. Gralla and Robert M. Wald Capra 11, Orléans Perturbed Motion: two preliminary remarks 1. The definition of a world line for an extended body

More information

The post-adiabatic correction to the phase of gravitational wave for quasi-circular extreme mass-ratio inspirals.

The post-adiabatic correction to the phase of gravitational wave for quasi-circular extreme mass-ratio inspirals. The post-adiabatic correction to the phase of gravitational wave for quasi-circular extreme mass-ratio inspirals. Based on unpublished, still progressing works Soichiro Isoyama (Yukawa Institute for Theoretical

More information

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Mohamed OULD EL HADJ Université de Corse, Corte, France Projet : COMPA

More information

Structure of nuclei of extragalactic radio sources and the link with GAIA

Structure of nuclei of extragalactic radio sources and the link with GAIA Structure of nuclei of extragalactic radio sources and the link with GAIA J Roland, IAP & S Lambert, SYRTE I General properties of extragalactic radio sources Radio galaxies : associated with elliptical

More information

Quantization of Entropy spectra of black holes ( 黑洞谱熵量子化 )

Quantization of Entropy spectra of black holes ( 黑洞谱熵量子化 ) Quantization of Entropy spectra of black holes ( 黑洞谱熵量子化 ) Soonkeon Nam ( 南淳建 ) Kyung Hee University ( 庆熙大 ) (In collaboration with Yongjoon Kwon) 2012.6.26, Hefei (Based on Class.Quant.Grav.27: 125007

More information

Coalescing binary black holes in the extreme mass ratio limit

Coalescing binary black holes in the extreme mass ratio limit Coalescing binary black holes in the extreme mass ratio limit Alessandro Nagar Relativity and Gravitation Group, Politecnico di Torino and INFN, sez. di Torino www.polito.it/relgrav/ alessandro.nagar@polito.it

More information

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Relativity Physics 102 11 April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations

More information

Tidal deformation and dynamics of compact bodies

Tidal deformation and dynamics of compact bodies Department of Physics, University of Guelph Capra 17, Pasadena, June 2014 Outline Goal and motivation Newtonian tides Relativistic tides Relativistic tidal dynamics Conclusion Goal and motivation Goal

More information

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Mauricio Martinez Guerrero In collaboration with Stefan Floerchinger arxiv:1507.05569 Correlations and Fluctuations

More information

7 Asymptotics for Meromorphic Functions

7 Asymptotics for Meromorphic Functions Lecture G jacques@ucsd.edu 7 Asymptotics for Meromorphic Functions Hadamard s Theorem gives a broad description of the exponential growth of coefficients in power series, but the notion of exponential

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

An action for reaction:

An action for reaction: : From a bead on a string to Gravitational Waves with S. Hadar and B. Kol O.B., S.H. & B.K., Phys. Rev. D 88, 104037 (2013) O.B. & S.H., Phys. Rev. D 89, 045003 (2014) O.B., S.H. & B.K., arxiv:1402.2610

More information

Wave extraction using Weyl scalars: an application

Wave extraction using Weyl scalars: an application Wave extraction using Weyl scalars: an application In collaboration with: Chris Beetle, Marco Bruni, Lior Burko, Denis Pollney, Virginia Re Weyl scalars as wave extraction tools The quasi Kinnersley frame

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Self-forces and self-torques in arbitrary dimensions: Part II

Self-forces and self-torques in arbitrary dimensions: Part II Self-forces and self-torques in arbitrary dimensions: Part II Abraham Harte (with Éanna Flanagan & Peter Taylor) Max Planck Institute for Gravitational Physics Albert Einstein Institute Potsdam, Germany

More information

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 30 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Fundamentals of wave kinetic theory

Fundamentals of wave kinetic theory Fundamentals of wave kinetic theory Introduction to the subject Perturbation theory of electrostatic fluctuations Landau damping - mathematics Physics of Landau damping Unmagnetized plasma waves The plasma

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

Measuring the Whirling of Spacetime

Measuring the Whirling of Spacetime Measuring the Whirling of Spacetime Lecture series on Experimental Gravity (revised version) Kostas Glampedakis Prologue: does spin gravitate? M 1 M 2 System I: F = GM 1M 2 r 2 J 1 J 2 System II: M 1?

More information

Information Loss in the CGHS Model

Information Loss in the CGHS Model Information Loss in the CGHS Model Fethi Mübin Ramazanoğlu PRINCETON UNIVERSITY DEPARTMENT of PHYSICS ILQGS, 03/09/2010 collaborators Abhay Ashtekar, PennState Frans Pretorius, Princeton 2 / 30 Outline

More information

BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge

BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge Alessandro Nagar INFN (Italy) and IHES (France) Small mass limit: Nagar Damour Tartaglia 2006 Damour

More information

arxiv: v1 [gr-qc] 17 Dec 2013

arxiv: v1 [gr-qc] 17 Dec 2013 The gravitational two-body problem in the vicinity of the light ring: Insights from the black-hole-ring toy model Shahar Hod The Ruppin Academic Center, Emeq Hefer 40250, Israel and arxiv:32.4969v [gr-qc]

More information

Natural Inflation and Quantum Gravity

Natural Inflation and Quantum Gravity Natural Inflation and Quantum Gravity Raman Sundrum University of Maryland Based on arxiv:1412.3457 (to appear in PRL) with Anton de la Fuente and Prashant Saraswat 1 Natural Inflation and Quantum Gravity

More information

Testing astrophysical black holes. Cosimo Bambi Fudan University

Testing astrophysical black holes. Cosimo Bambi Fudan University Testing astrophysical black holes Cosimo Bambi Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/ 29 October 2015 Interdisciplinary Center for Theoretical Studies (USTC, Hefei) Plan of

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Quantum Evaporation of 2-d Black Holes

Quantum Evaporation of 2-d Black Holes p. Quantum Evaporation of 2-d Black Holes Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State CGHS Black holes: A conceptually new angle and high precision numerics. This talk will put

More information

Spin and mass of the nearest supermassive black hole

Spin and mass of the nearest supermassive black hole Spin and mass of the nearest supermassive black hole Vyacheslav I. Dokuchaev Institute for Nuclear Research, Russian Academy of Sciences Moscow, Russia 16th Lomonosov Conference MSU, 2013 Rotating (a 1)

More information

Principles of Electron Optics

Principles of Electron Optics Principles of Electron Optics Volume 1 Basic Geometrical Optics by P. W. HAWKES CNRS Laboratory of Electron Optics, Toulouse, France and E. KASPER Institut für Angewandte Physik Universität Tübingen, Federal

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Testing the Kerr Black Hole Hypothesis. Cosimo Bambi (Ludwig-Maximilians-Universität München) 5 June 2012, ESAC Madrid, Spain

Testing the Kerr Black Hole Hypothesis. Cosimo Bambi (Ludwig-Maximilians-Universität München) 5 June 2012, ESAC Madrid, Spain Testing the Kerr Black Hole Hypothesis Cosimo Bambi (Ludwig-Maximilians-Universität München) 5 June 2012, ESAC Madrid, Spain Plan of the talk Motivations Theoretical and observational facts How can we

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Autonomous Systems A set of coupled autonomous 1st-order ODEs. Here "autonomous" means that the right hand side of the equations does not explicitly

More information

Luc Blanchet, JGRG 22(2012) The first law of binary black hole dynamics RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22

Luc Blanchet, JGRG 22(2012) The first law of binary black hole dynamics RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 Luc Blanchet, JGRG 22(2012)111503 The first law of binary black hole dynamics RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November 12-16 2012 Koshiba Hall, The University of Tokyo, Hongo,

More information

Measuring EMRIs: A reality check

Measuring EMRIs: A reality check Measuring EMRIs: A reality check Image: Steve Drasco, CalPoly What modeling and data analysis work must be done in order to achieve the science that has been promised for extreme mass ratio inspiral measurements?

More information

Black-Hole Binary Initial Data: Getting the Spin Right

Black-Hole Binary Initial Data: Getting the Spin Right Black-Hole Binary Initial Data: Getting the Spin Right Gregory B. Cook Wake Forest University November 4, 2005 Abstract Using the conformal thin-sandwich approach for constructing initial data together

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1907 Supplementary Information (SI) 1. Radiation from a thin accretion disk around a Kerr black hole observed remotely at asymptotic distances In our numerical

More information

Gauge/Gravity Duality and the Black Hole Interior

Gauge/Gravity Duality and the Black Hole Interior Gauge/Gravity Duality and the Black Hole Interior Joseph Polchinski Kavli Institute for Theoretical Physics University of California at Santa Barbara KIAS-YITP joint workshop String Theory, Black Holes

More information

The Lazarus Project. Black Hole Mergers: from simulation to observation

The Lazarus Project. Black Hole Mergers: from simulation to observation Built a model for binary black hole mergers which incorporate the best information available Use Lazarus results explore the interface between source modeling, data analysis The Lazarus Project Black Hole

More information

Mittag-Leffler and Principle of the Argument

Mittag-Leffler and Principle of the Argument Mittag-Leffler and Principle of the Argument Thursday, November 21, 2013 1:54 PM Homework 3 due Friday, November 22 at 5 PM. Homework 4 will be posted tonight, due Wednesday, December 11 at 5 PM. We'll

More information

Gravitational self-force and gauge transformations

Gravitational self-force and gauge transformations PHYSICAL REVIEW D, VOLUME 64, 124003 Gravitational self-force and gauge transformations Leor Barack Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1, D-14476 Golm,

More information

Discovering new physics with GW observations. Richard Brito Max Planck Institute for Gravitational Physics (Potsdam)

Discovering new physics with GW observations. Richard Brito Max Planck Institute for Gravitational Physics (Potsdam) Discovering new physics with GW observations Richard Brito Max Planck Institute for Gravitational Physics (Potsdam) New Physics? Pillars of modern physics: General Relativity + Standard Model of Particle

More information

Azimuthal eddy currents in a wire

Azimuthal eddy currents in a wire Problem 1. Azimuthal eddy currents in a wire A longitudinal AC magnetic field B(t) = ẑb o cos(ωt) is driven through the interior of a (solid) ohmic tube with length L and radius R L, drawn rather schematically

More information

arxiv: v1 [gr-qc] 24 Mar 2014 The Self-Force Problem: Local Behaviour of the Detweiler-Whiting Singular Field

arxiv: v1 [gr-qc] 24 Mar 2014 The Self-Force Problem: Local Behaviour of the Detweiler-Whiting Singular Field arxiv:143.6177v1 [gr-qc] 4 Mar 14 The Self-Force Problem: Local Behaviour of the Detweiler-Whiting Singular Field Anna Heffernan The thesis is submitted to University College Dublin in fulfillment of the

More information

Energy and Forces in DFT

Energy and Forces in DFT Energy and Forces in DFT Total Energy as a function of nuclear positions {R} E tot ({R}) = E DF T ({R}) + E II ({R}) (1) where E DF T ({R}) = DFT energy calculated for the ground-state density charge-density

More information

Black Holes. Theory & Astrophysics. Kostas Glampedakis

Black Holes. Theory & Astrophysics. Kostas Glampedakis Black Holes Theory & Astrophysics Kostas Glampedakis Contents Part I: Black hole theory. Part II: Celestial mechanics in black hole spacetimes. Part III: Energy extraction from black holes. Part IV: Astrophysical

More information

Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes

Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 8 (200) 3989 3994 CLASSICAL AND QUANTUM GRAVITY PII: S0264-938(0)2650-0 Towards the solution of the relativistic gravitational radiation reaction problem

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes Outline Hawking radiation and the LHC Black Hole Firewall Singularities Wormholes What happens at the end of evaporation? Eventually, energy of photon emitted would be larger than mass-energy of black

More information

Undulator Radiation Inside a Dielectric Waveguide

Undulator Radiation Inside a Dielectric Waveguide Undulator Radiation Inside a Dielectric Waveguide A.S. Kotanjyan Department of Physics, Yerevan State University Yerevan, Armenia Content Motivation On features of the radiation from an electron moving

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA W. Z. Korth, PHZ6607, Fall 2008 Outline Introduction What is LISA? Gravitational waves Characteristics Detection (LISA design) Sources Stochastic Monochromatic

More information

The Exchange Model. Lecture 2. Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams. Eram Rizvi

The Exchange Model. Lecture 2. Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams. Eram Rizvi The Exchange Model Lecture 2 Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams Eram Rizvi Royal Institution - London 14 th February 2012 Outline A Century of Particle Scattering

More information

Geometry of Resonance Tongues

Geometry of Resonance Tongues Geometry of Resonance Tongues Henk Broer with Martin Golubitsky, Sijbo Holtman, Mark Levi, Carles Simó & Gert Vegter Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Resonance p.1/36

More information

When one black hole is not like the other

When one black hole is not like the other When one black hole is not like the other Cal Poly, San Luis Obispo Center for Computational Relativity and Gravitation Rochester Institute of Technology 13 December 2010 Current gravitational-wave searches

More information

Hawking radiation and universal horizons

Hawking radiation and universal horizons LPT Orsay, France June 23, 2015 Florent Michel and Renaud Parentani. Black hole radiation in the presence of a universal horizon. In: Phys. Rev. D 91 (12 2015), p. 124049 Hawking radiation in Lorentz-invariant

More information

Superradiance in Analogue Black Holes

Superradiance in Analogue Black Holes Superradiance in Analogue Black Holes Maurício Richartz (mauricio.richartz@ufabc.edu.br) Universidade Federal do ABC (UFABC), Santo André, SP, Brasil (Collaborators: Stefano Liberati, Angus Prain, Silke

More information

Physics 105 Final Practice Exam

Physics 105 Final Practice Exam Physics 105 Final Practice Exam LAST Name (print)*: FIRST Name (print)*: Signature*: UIN #*: * Please fill in all required fields PROBLEM POINTS SCORE 1 15 2 15 3 15 4 15 5 15 6 25 TOTAL 100 Giving or

More information

Binary Black Holes. Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech

Binary Black Holes. Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech Binary Black Holes Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech NR confirmed BBH GW detections LIGO-P150914-v12 Abbott et al. 2016a, PRL 116, 061102 an orbital

More information

Horizon fluff. A semi-classical approach to (BTZ) black hole microstates

Horizon fluff. A semi-classical approach to (BTZ) black hole microstates Horizon fluff A semi-classical approach to (BTZ) black hole microstates 1705.06257 with D. Grumiller, M.M. Sheikh-Jabbari and H. Yavartanoo Hamid R. Afshar 11 May 2017 - Recent Trends in String Theory

More information

Energy Losses and Gravitational Radiation

Energy Losses and Gravitational Radiation Energy Losses and Gravitational Radiation Energy loss processes Now, we need to consider energy loss processes. Ask class: what are ways in which high-energy particles can lose energy? Generically, can

More information

Improving Boundary Conditions in Time- Domain Self-Force Calculations

Improving Boundary Conditions in Time- Domain Self-Force Calculations Improving Boundary Conditions in Time- Domain Self-Force Calculations Carlos F. Sopuerta Institute of Space Sciences National Spanish Research Council Work in Collaboration with Anil Zenginoğlu (Caltech)

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

Continued fractions and geodesics on the modular surface

Continued fractions and geodesics on the modular surface Continued fractions and geodesics on the modular surface Chris Johnson Clemson University September 8, 203 Outline The modular surface Continued fractions Symbolic coding References Some hyperbolic geometry

More information

Averaging the average: Morphology transitions in spin precession of black-hole binaries

Averaging the average: Morphology transitions in spin precession of black-hole binaries Averaging the average: Morphology transitions in spin precession of black-hole binaries U. Sperhake DAMTP, University of Cambridge M. Kesden, D. Gerosa, R. O Shaughnessy, E. Berti VII Black Holes Workshop

More information

Chapter 1 Mathematical Foundations

Chapter 1 Mathematical Foundations Computational Electromagnetics; Chapter 1 1 Chapter 1 Mathematical Foundations 1.1 Maxwell s Equations Electromagnetic phenomena can be described by the electric field E, the electric induction D, the

More information

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli The Cardy-Verlinde equation and the gravitational collapse Cosimo Stornaiolo INFN -- Napoli G. Maiella and C. Stornaiolo The Cardy-Verlinde equation and the gravitational collapse Int.J.Mod.Phys. A25 (2010)

More information