Gauge-invariant quantity. Monday, June 23, 2014

Size: px
Start display at page:

Download "Gauge-invariant quantity. Monday, June 23, 2014"

Transcription

1 Gauge-invariant quantity U

2 Topics that will be covered Gauge-invariant quantity, U, (reciprocal of the red-shift invariant, z), the 1 st order (in mass-ratio) change in u t. For eccentric orbits it can be generalized to U. How to calculate it in a radiation gauge? What has already been accomplished & what is in progress? What can be done with it? Dissipative part (fluxes) and its overlap with pn.

3 U 1. Useful quantity to check the computations done in different gauges. 2. Relations between coefficients in pn-expansion of U, and those of binding energy and angular momentum for the binary system. 3. Used in EOB calibration. 4. ISCO shift (from U and its derivatives) is used as a reference point for comparison with analytical and numerical methods.

4 U 1. Useful quantity to check the computations done in different gauges. 2. Relations between coefficients in pn-expansion of U, and those of binding energy and angular momentum for the binary system. 3. Used in EOB calibration. 4. ISCO shift (from U and its derivatives) is used as a reference point for comparison with analytical and numerical methods.

5 U 1. Useful quantity to check the computations done in different gauges. 2. Relations between coefficients in pn-expansion of U, and those of binding energy and angular momentum for the binary system. 3. Used in EOB calibration. 4. ISCO shift (from U and its derivatives) is used as a reference point for comparison with analytical and numerical methods.

6 U 1. Useful quantity to check the computations done in different gauges. 2. Relations between coefficients in pn-expansion of U, and those of binding energy and angular momentum for the binary system. 3. Used in EOB calibration. 4. ISCO shift (from U and its derivatives) is used as a reference point for comparison with analytical and numerical methods.

7 Topics that will be covered Gauge-invariant quantity, U, (reciprocal of the red-shift invariant, z), the 1 st order (in mass-ratio) change in u t. For eccentric orbits it can be generalized to U. How to calculate it in a radiation gauge? What has already been accomplished & what is in progress? What can be done with it? Dissipative part (fluxes) and its overlap with pn.

8 U for circular orbits or U for eccentric orbits uses the renormalized metric perturbation, h R αβ, dotted with background geodesic 4-velocity. u α u β (g αβ + h αβ )=1 u α =[u t 0 + u t 1 + O(µ 2 )]k α U = u t 1 = u t 0 H H := 1 2 hr αβu α 0 u β 0 U is the ratio of radial periods with respect to t and τ and involves H.

9 Metric perturbation (h αβ ) in a modified radiation gauge System of 10 coupled, 2 nd order PDEs in Lorenz gauge Here we only need to solve one, separable, 2 nd order PDE. The PDE for ψ 0 or ψ 4. h αβ n α =0 h =0 ORG h αβ α =0 h =0 IRG

10 Metric perturbation (h αβ ) in a modified radiation gauge Radiative part of the full h αβ is extracted from the perturbed Weyl scalars, ψ 0 / ψ 4. ψ 0 = Ṙαβγδ α m β γ m δ ψ 4 = Ṙαβγδn α m β n γ m δ ( α,n α,m α, m α ) make a null-tetrad. ( α,n α ) are real, outgoing- and ingoing-null vectors. m α is a complex null vector orthogonal to ( α,n α ). These perturbed Weyl scalars, ψ 0 / ψ 4 are invariant under gauge transformations and infinitesimal tetrad rotations.

11 Metric perturbation (h αβ ) in a modified radiation gauge Radiative part of the full h αβ is extracted from the perturbed Weyl scalars, ψ 0 / ψ 4. ψ 0 = Ṙαβγδ α m β γ m δ ψ 4 = Ṙαβγδn α m β n γ m δ And the non-radiative part, which corresponds to the change in mass (δm) and angular-momentum (δj) of spacetime, is then added in a convenient gauge.

12 Teukolsky equation The equation that describes the dynamical perturbation, the Teukolsky equation, has the form OT(h) =SE(h). And h αβ is what we want to extract.

13 Teukolsky equation OT(h) =SE(h) ψ 0 or ψ 4 ( ψ for brevity)

14 Teukolsky equation OT(h) =SE(h) Einstein operator acting on h =8π T µν

15 Teukolsky equation OT(h) =SE(h) 2 nd order derivative operator acting on T µν

16 Teukolsky equation OT(h) =SE(h) 2 nd order derivative operator acting on ψ

17 Teukolsky equation Newman-Penrose equations (Bianchi identities): Derivative operators acting on Weyl scalars = Derivative operators acting on Ricci tensor A combination of them gives us: Derivative operators acting on ψ = Derivative operators acting on R µν T µν OT(h) =SE(h)

18 Separability of the Teukolsky equation ψ = R(r) e iωt S(θ) e imφ s ψ =,m,ω sr,m,ω (r) e iωt ss aω,m(θ) e imφ Ordinary 2 nd order ODE for the radial part and the angular part The solution to both these equations can be written as a sum over known analytical functions.

19 Finding h from ψ Theorem: Suppose SE = OT holds, and suppose Ψ satisfies O Ψ = 0. If E is self-adjoint, then S Ψ satisfies E(f) = 0.

20 Finding h from ψ Theorem: Proof: Suppose SE = OT holds, and suppose Ψ satisfies O Ψ = 0. If E is self-adjoint, then S Ψ satisfies E(f) = 0. Taking adjoint of SE = OT, gives us E S = T O ES = T O If O Ψ = 0, then E(S Ψ) = 0, i.e., h = S Ψ

21 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ?

22 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ? Lets substitute S Ψ back into the Teukolsky equation, SE(S Ψ)=OT (S Ψ) 0=O[T S Ψ]

23 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ? Lets substitute S Ψ back into the Teukolsky equation, SE(S Ψ)=OT (S Ψ) 0=O[T S Ψ] TS maps solutions of O Ψ =0toOψ ψ =0.

24 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ? Lets substitute S Ψ back into the Teukolsky equation, SE(S Ψ)=OT (S Ψ) 0=O[T S Ψ] TS maps solutions of O Ψ =0toO ψ =0. ψ = TS Ψ h = S Ψ

25 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ? Lets substitute S Ψ back into the Teukolsky equation, SE(S Ψ)=OT (S Ψ) 0=O[T S Ψ] TS maps solutions of O Ψ =0toO ψ =0. ψ = TS Ψ h = S Ψ Intermediate Hertz potential

26 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ? Lets substitute S Ψ back into the Teukolsky equation, SE(S Ψ)=OT (S Ψ) 0=O[T S Ψ] TS maps solutions of O Ψ =0toO ψ =0. ψ = TS Ψ h = S Ψ Intermediate Hertz potential More in Cesar s talk

27 Finding h from ψ How do we connect the solution to the Teukolsky equation, ψ or T (h), to this Ψ? Lets substitute S Ψ back into the Teukolsky equation, SE(S Ψ)=OT (S Ψ) 0=O[T S Ψ] TS maps solutions of O Ψ =0toO ψ =0. ψ = TS Ψ h = S Ψ Intermediate Hertz potential First step: Solve for ψ (Teukolsky equation).

28 Second step: Invert to find Ψ ψ = TS Ψ h = S Ψ Intermediate Hertz potential In frequency-domain the operator TS are almost the same as the ones in Teukolsky-Starobinsky identities For circular/spherical orbits, the inversion is algebraic. Radial mode of Ψ = constant radial mode of ψ

29 Second step: Invert to find Ψ ψ = TS Ψ h = S Ψ Intermediate Hertz potential In frequency-domain the operator TS are almost the same as the ones in Teukolsky-Starobinsky identities For generic orbits, the formalism for inversion in frequency-domain has been developed by A. Ori. And its application is in progress for eccentric, equatorial orbits in Kerr (MVD Meent and AG Shah)

30 Third step: Apply the operator S on Ψ to recover the radiative h αβ ψ = TS Ψ h = S Ψ Intermediate Hertz potential

31 ψ = TS Ψ h = S Ψ Intermediate Hertz potential Fourth step: Add to this the h αβ that corresponds to the change in mass and angular momentum of the spacetime.

32 ψ = TS Ψ h = S Ψ Intermediate Hertz potential Fourth step: Add to this the h αβ that corresponds to the change in mass and angular momentum of the spacetime. Fifth step: Subtract the singular piece and sum over all the multipoles.

33 U or U Schwarzschild spacetime Regge- Wheeler- Zerilli Lorenz Gauge Radiation Gauge Circular Eccentric

34 U or U Schwarzschild spacetime Regge- Wheeler- Zerilli Lorenz Gauge Radiation Gauge Circular Eccentric

35 U or U Schwarzschild spacetime Regge- Wheeler- Zerilli Lorenz Gauge Radiation Gauge Circular Eccentric

36 U or U Schwarzschild spacetime Regge- Wheeler- Zerilli Lorenz Gauge Radiation Gauge Circular Eccentric

37 U or U Kerr spacetime Lorenz Gauge Radiation Gauge Circular Eccentric

38 U or U Kerr spacetime Lorenz Gauge Radiation Gauge Circular Eccentric

39 U or U Kerr spacetime Lorenz Gauge Radiation Gauge Circular Eccentric

40 Extracting pn coefficients of U or U Status Circular Schwarzschild Eccentric Schwarzschild Circular Kerr Eccentric Kerr

41 Extracting pn coefficients of U or U Status Circular Schwarzschild Eccentric Schwarzschild Circular Kerr Eccentric Kerr

42 Extracting pn coefficients of U or U Status Circular Schwarzschild Eccentric Schwarzschild Circular Kerr Eccentric Kerr

43 Extracting pn coefficients of U or U Status Circular Schwarzschild Eccentric Schwarzschild Circular Kerr Eccentric Kerr

44 ISCEO shift z =( U) 1 and its derivatives are used to calculate the conservative O(µ/M) shift of the innermost stable circular, equatorial orbits (more in Takahiro s and Soichiro s talks).

45 Ω U is the gauge-invariant shift in u t for a fixed Ω. One can also calculate the gauge-invariant shift in Ω, Ω, for a fixed U. It looks like we know the conservative shift in phase (at least for circular orbits).

46 Ω Question: Can one develop a formalism where the knowledge of H (and its derivatives) is enough to do the orbital evolution? (work in progress by Kyoto-group) If possible, this avoids a lot of lengthy and complex calculations that are involved in going from h to SF. (coupling, different extensions, changing harmonics...)

47 Fluxes A lot of work has been done on calculating very high-order pn expansion of fluxes Case Progress Schwarzschild circular Schwarzschild eccentric Kerr circular Kerr eccentric/inclined/ generic

Progress on orbiting particles in a Kerr background

Progress on orbiting particles in a Kerr background Progress on orbiting particles in a Kerr background John Friedman Capra 15 Abhay Shah, Toby Keidl I. Intro II. Summary of EMRI results in a Kerr spacetime A. Dissipative ( adiabatic ) approximation (only

More information

Issue Date. Text Version ETD. DOI / rights

Issue Date. Text Version ETD.   DOI / rights Title Author(s) Construction of the perturbed gravitational field induced by a rotating ring around a black hole and the visualization of space-time curvature with tendex and vortex lines 佐野, 保道 Citation

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

Ballistic orbits for Gravitational Waves

Ballistic orbits for Gravitational Waves for Gravitational Waves Giuseppe d'ambrosi Jan-Willem van Holten [arxiv:1406.4282] Kyoto 02-07-2015 18th Capra meeting on Radiation Reaction in GR 1 2 3 Giuseppe d'ambrosi for Gravitational Waves 2 Black

More information

Wave Extraction in Higher Dimensional Numerical Relativity

Wave Extraction in Higher Dimensional Numerical Relativity Wave Extraction in Higher Dimensional Numerical Relativity William Cook with U. Sperhake, P. Figueras. DAMTP University of Cambridge VIII Black Holes Workshop December 22nd, 2015 Overview 1 Motivation

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

Lectures on black-hole perturbation theory

Lectures on black-hole perturbation theory , University of Guelph Dublin School on Gravitational Wave Source Modelling June 11 22, 2018 Outline Introduction and motivation Perturbation theory in general relativity Perturbations of a Schwarzschild

More information

BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge

BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge Alessandro Nagar INFN (Italy) and IHES (France) Small mass limit: Nagar Damour Tartaglia 2006 Damour

More information

Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes

Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 8 (200) 3989 3994 CLASSICAL AND QUANTUM GRAVITY PII: S0264-938(0)2650-0 Towards the solution of the relativistic gravitational radiation reaction problem

More information

Time Domain Schemes for Gravitational Self Force. Sam Dolan. University of Southampton, Capra 15, Univ. of Maryland, June 2012

Time Domain Schemes for Gravitational Self Force. Sam Dolan. University of Southampton, Capra 15, Univ. of Maryland, June 2012 Time Domain Schemes for Gravitational Self Force Sam Dolan University of Southampton, UK @ Capra 15, Univ. of Maryland, June 2012 Talk Outline 1 Motivation Why compute GSF on Kerr? 2 Formulation Linearized

More information

Comparisons between post-newtonian and self-force ISCO calculations. Marc Favata JPL/Caltech

Comparisons between post-newtonian and self-force ISCO calculations. Marc Favata JPL/Caltech Comparisons between post-newtonian and self-force ISCO calculations Marc Favata JPL/Caltech Conservative correction to the ISCO: Recently, Barack & Sago have computed the self-force along eccentric geodesics

More information

Pinhole Cam Visualisations of Accretion Disks around Kerr BH

Pinhole Cam Visualisations of Accretion Disks around Kerr BH Pinhole Camera Visualisations of Accretion Disks around Kerr Black Holes March 22nd, 2016 Contents 1 General relativity Einstein equations and equations of motion 2 Tetrads Defining the pinhole camera

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley,

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley, A GENERAL RELATIVITY WORKBOOK Thomas A. Moore Pomona College University Science Books Mill Valley, California CONTENTS Preface xv 1. INTRODUCTION 1 Concept Summary 2 Homework Problems 9 General Relativity

More information

Review of Black Hole Stability. Jason Ybarra PHZ 6607

Review of Black Hole Stability. Jason Ybarra PHZ 6607 Review of Black Hole Stability Jason Ybarra PHZ 6607 Black Hole Stability Schwarzschild Regge & Wheeler 1957 Vishveshwara 1979 Wald 1979 Gui-Hua 2006 Kerr Whiting 1989 Finster 2006 Stability of Schwarzschild

More information

Coalescing binary black holes in the extreme mass ratio limit

Coalescing binary black holes in the extreme mass ratio limit Coalescing binary black holes in the extreme mass ratio limit Alessandro Nagar Relativity and Gravitation Group, Politecnico di Torino and INFN, sez. di Torino www.polito.it/relgrav/ alessandro.nagar@polito.it

More information

Wave extraction using Weyl scalars: an application

Wave extraction using Weyl scalars: an application Wave extraction using Weyl scalars: an application In collaboration with: Chris Beetle, Marco Bruni, Lior Burko, Denis Pollney, Virginia Re Weyl scalars as wave extraction tools The quasi Kinnersley frame

More information

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole.

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole. How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole. Marc Favata (Cornell) Daniel Holz (U. Chicago) Scott Hughes (MIT) The

More information

4. MiSaTaQuWa force for radiation reaction

4. MiSaTaQuWa force for radiation reaction 4. MiSaTaQuWa force for radiation reaction [ ] g = πgt G 8 g = g ( 0 ) + h M>>μ v/c can be large + h ( ) M + BH μ Energy-momentum of a point particle 4 μ ν δ ( x z( τ)) μ dz T ( x) = μ dτ z z z = -g dτ

More information

Improving Boundary Conditions in Time- Domain Self-Force Calculations

Improving Boundary Conditions in Time- Domain Self-Force Calculations Improving Boundary Conditions in Time- Domain Self-Force Calculations Carlos F. Sopuerta Institute of Space Sciences National Spanish Research Council Work in Collaboration with Anil Zenginoğlu (Caltech)

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Jonathan Thornburg. Barry Wardell

Jonathan Thornburg. Barry Wardell Scalar self-force for highly eccentric orbits in Kerr spacetime Jonathan Thornburg in collaboration with Barry Wardell Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington,

More information

Gravitational waves from compact objects inspiralling into massive black holes

Gravitational waves from compact objects inspiralling into massive black holes Gravitational waves from compact objects inspiralling into massive black holes Éanna Flanagan, Cornell University American Physical Society Meeting Tampa, Florida, 16 April 2005 Outline Extreme mass-ratio

More information

Self-force: foundations and formalism

Self-force: foundations and formalism University of Southampton June 11, 2012 Motivation Extreme-mass-ratio inspirals solar-mass neutron star or black hole orbits supermassive black hole m emits gravitational radiation, loses energy, spirals

More information

GLOSSARY, Exploring Black Holes

GLOSSARY, Exploring Black Holes GLOSSARY, Exploring Black Holes MANY TERMS ARE ALSO DEFINED INSIDE THE BACK COVER WORDS NOT USED IN THIS BOOK, EXCEPT IN QUOTATIONS, MATHEMATICAL EXPRESSIONS, OR NEWTON S ANALYSIS. (SEVERAL TERMS ARE MENTIONED

More information

The laws of binary black hole mechanics: An update

The laws of binary black hole mechanics: An update The laws of binary black hole mechanics: An update Laboratoire Univers et Théories Observatoire de Paris / CNRS A 1 Ω κ 2 z 2 Ω Ω m 1 κ A z m The laws of black hole mechanics [Hawking 1972, Bardeen, Carter

More information

The Schwarzschild Metric

The Schwarzschild Metric The Schwarzschild Metric The Schwarzschild metric describes the distortion of spacetime in a vacuum around a spherically symmetric massive body with both zero angular momentum and electric charge. It is

More information

arxiv: v2 [gr-qc] 6 Nov 2012

arxiv: v2 [gr-qc] 6 Nov 2012 Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring arxiv:1209.0964v2 [gr-qc] 6 Nov 2012 Sarp Akcay 1,2, Leor Barack 1, Thibault

More information

POST-NEWTONIAN METHODS AND APPLICATIONS. Luc Blanchet. 4 novembre 2009

POST-NEWTONIAN METHODS AND APPLICATIONS. Luc Blanchet. 4 novembre 2009 POST-NEWTONIAN METHODS AND APPLICATIONS Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 4 novembre 2009 Luc Blanchet (GRεCO) Post-Newtonian methods and applications Chevaleret

More information

The post-adiabatic correction to the phase of gravitational wave for quasi-circular extreme mass-ratio inspirals.

The post-adiabatic correction to the phase of gravitational wave for quasi-circular extreme mass-ratio inspirals. The post-adiabatic correction to the phase of gravitational wave for quasi-circular extreme mass-ratio inspirals. Based on unpublished, still progressing works Soichiro Isoyama (Yukawa Institute for Theoretical

More information

arxiv: v1 [gr-qc] 17 Dec 2013

arxiv: v1 [gr-qc] 17 Dec 2013 The gravitational two-body problem in the vicinity of the light ring: Insights from the black-hole-ring toy model Shahar Hod The Ruppin Academic Center, Emeq Hefer 40250, Israel and arxiv:32.4969v [gr-qc]

More information

Horizon Surface Gravity in Black Hole Binaries

Horizon Surface Gravity in Black Hole Binaries Horizon Surface Gravity in Black Hole Binaries, Philippe Grandclément Laboratoire Univers et Théories Observatoire de Paris / CNRS gr-qc/1710.03673 A 1 Ω κ 2 z 2 Ω Ω m 1 κ A z m Black hole uniqueness theorem

More information

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Mohamed OULD EL HADJ Université de Corse, Corte, France Projet : COMPA

More information

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv:

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Stability It is of considerable interest to determine the linear stablity of black holes in (D-dimensional)

More information

arxiv:gr-qc/ v1 16 Apr 2002

arxiv:gr-qc/ v1 16 Apr 2002 Local continuity laws on the phase space of Einstein equations with sources arxiv:gr-qc/0204054v1 16 Apr 2002 R. Cartas-Fuentevilla Instituto de Física, Universidad Autónoma de Puebla, Apartado Postal

More information

Quasi-local Mass in General Relativity

Quasi-local Mass in General Relativity Quasi-local Mass in General Relativity Shing-Tung Yau Harvard University For the 60th birthday of Gary Horowtiz U. C. Santa Barbara, May. 1, 2015 This talk is based on joint work with Po-Ning Chen and

More information

EVOLVING PARTICLE TRAJECTORIES PERTURBATIVELY AROUND ROTATING BLACK HOLES IN THE TIME DOMAIN

EVOLVING PARTICLE TRAJECTORIES PERTURBATIVELY AROUND ROTATING BLACK HOLES IN THE TIME DOMAIN The Pennsylvania State University The Graduate School Department of Physics EVOLVING PARTICLE TRAJECTORIES PERTURBATIVELY AROUND ROTATING BLACK HOLES IN THE TIME DOMAIN A Thesis in Physics by Ramon Lopez-Aleman

More information

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Null Cones to Infinity, Curvature Flux, and Bondi Mass Null Cones to Infinity, Curvature Flux, and Bondi Mass Arick Shao (joint work with Spyros Alexakis) University of Toronto May 22, 2013 Arick Shao (University of Toronto) Null Cones to Infinity May 22,

More information

Self-consistent motion of a scalar charge around a Schwarzschild black hole

Self-consistent motion of a scalar charge around a Schwarzschild black hole Self-consistent motion of a scalar charge around a Schwarzschild black hole Ian Vega 1 Peter Diener 2 Barry Wardell 3 Steve Detweiler 4 1 University of Guelph 2 Louisiana State University 3 University

More information

Black-Hole Binary Initial Data: Getting the Spin Right

Black-Hole Binary Initial Data: Getting the Spin Right Black-Hole Binary Initial Data: Getting the Spin Right Gregory B. Cook Wake Forest University October 5, 2005 Collaborators: Harald Pfeiffer[7] (Caltech), Jason D. Grigsby (WFU), & Matthew Caudill (WFU)

More information

Non-existence of time-periodic vacuum spacetimes

Non-existence of time-periodic vacuum spacetimes Non-existence of time-periodic vacuum spacetimes Volker Schlue (joint work with Spyros Alexakis and Arick Shao) Université Pierre et Marie Curie (Paris 6) Dynamics of self-gravitating matter workshop,

More information

High-velocity collision of particles around a rapidly rotating black hole

High-velocity collision of particles around a rapidly rotating black hole Journal of Physics: Conference Series OPEN ACCESS High-velocity collision of particles around a rapidly rotating black hole To cite this article: T Harada 2014 J. Phys.: Conf. Ser. 484 012016 Related content

More information

In deriving this we ve used the fact that the specific angular momentum

In deriving this we ve used the fact that the specific angular momentum Equation of Motion and Geodesics So far we ve talked about how to represent curved spacetime using a metric, and what quantities are conserved. Now let s see how test particles move in such a spacetime.

More information

Instability of extreme black holes

Instability of extreme black holes Instability of extreme black holes James Lucietti University of Edinburgh EMPG seminar, 31 Oct 2012 Based on: J.L., H. Reall arxiv:1208.1437 Extreme black holes Extreme black holes do not emit Hawking

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Kadath: a spectral solver and its application to black hole spacetimes

Kadath: a spectral solver and its application to black hole spacetimes Kadath: a spectral solver and its application to black hole spacetimes Philippe Grandclément Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France philippe.grandclement@obspm.fr

More information

ν ηˆαˆβ The inverse transformation matrices are computed similarly:

ν ηˆαˆβ The inverse transformation matrices are computed similarly: Orthonormal Tetrads Let s now return to a subject we ve mentioned a few times: shifting to a locally Minkowski frame. In general, you want to take a metric that looks like g αβ and shift into a frame such

More information

Late-time behavior of massive scalars in Kerr spacetime. Gaurav Khanna UMass - Dartmouth February 24th, 2005

Late-time behavior of massive scalars in Kerr spacetime. Gaurav Khanna UMass - Dartmouth February 24th, 2005 Late-time behavior of massive scalars in Kerr spacetime Gaurav Khanna UMass - Dartmouth February 24th, 2005 Radiative tails of massless fields in black hole spacetimes have been studied for decades. In

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Newman-Penrose formalism in higher dimensions

Newman-Penrose formalism in higher dimensions Newman-Penrose formalism in higher dimensions V. Pravda various parts in collaboration with: A. Coley, R. Milson, M. Ortaggio and A. Pravdová Introduction - algebraic classification in four dimensions

More information

Black-Hole Binary Initial Data: Getting the Spin Right

Black-Hole Binary Initial Data: Getting the Spin Right Black-Hole Binary Initial Data: Getting the Spin Right Gregory B. Cook Wake Forest University November 4, 2005 Abstract Using the conformal thin-sandwich approach for constructing initial data together

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

arxiv:gr-qc/ v2 6 Mar 2006

arxiv:gr-qc/ v2 6 Mar 2006 The Lazarus Project. II. Space-like extraction with the quasi-kinnersley tetrad Manuela Campanelli, Bernard Kelly, and Carlos O. Lousto Department of Physics and Astronomy, and Center for Gravitational

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Gravitational self-force and gauge transformations

Gravitational self-force and gauge transformations PHYSICAL REVIEW D, VOLUME 64, 124003 Gravitational self-force and gauge transformations Leor Barack Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1, D-14476 Golm,

More information

Black-hole binary inspiral and merger in scalar-tensor theory of gravity

Black-hole binary inspiral and merger in scalar-tensor theory of gravity Black-hole binary inspiral and merger in scalar-tensor theory of gravity U. Sperhake DAMTP, University of Cambridge General Relativity Seminar, DAMTP, University of Cambridge 24 th January 2014 U. Sperhake

More information

Toward Binary Black Hole Simulations in Numerical Relativity

Toward Binary Black Hole Simulations in Numerical Relativity Toward Binary Black Hole Simulations in Numerical Relativity Frans Pretorius California Institute of Technology BIRS Workshop on Numerical Relativity Banff, April 19 2005 Outline generalized harmonic coordinates

More information

Global stability problems in General Relativity

Global stability problems in General Relativity Global stability problems in General Relativity Peter Hintz with András Vasy Murramarang March 21, 2018 Einstein vacuum equations Ric(g) + Λg = 0. g: Lorentzian metric (+ ) on 4-manifold M Λ R: cosmological

More information

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press)

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press) Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Commun. Math. Phys. (in press) Stability It is of considerable interest to determine the linear stablity of

More information

Gravitational Waves and Their Sources, Including Compact Binary Coalescences

Gravitational Waves and Their Sources, Including Compact Binary Coalescences 3 Chapter 2 Gravitational Waves and Their Sources, Including Compact Binary Coalescences In this chapter we give a brief introduction to General Relativity, focusing on GW emission. We then focus our attention

More information

Stability and Instability of Extremal Black Holes

Stability and Instability of Extremal Black Holes Stability and Instability of Extremal Black Holes Stefanos Aretakis Department of Pure Mathematics and Mathematical Statistics, University of Cambridge s.aretakis@dpmms.cam.ac.uk December 13, 2011 MIT

More information

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France)

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) An introduction to gravitational waves Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) Outline of lectures (1/2) The world's shortest introduction to General Relativity The linearized

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

arxiv:gr-qc/ v2 14 Mar 1999

arxiv:gr-qc/ v2 14 Mar 1999 Second order gauge invariant gravitational perturbations of a Kerr black hole Manuela CAMPANELL and Carlos O. LOUSTO Max-Planck-nstitut für Gravitationsphysik, Albert-Einstein-nstitut, Schlaatzweg 1, D-173

More information

THE BONDI-SACHS FORMALISM JEFF WINICOUR UNIVERSITY OF PITTSBURGH. Scholarpedia 11(12):33528 (2016) with Thomas Mädler

THE BONDI-SACHS FORMALISM JEFF WINICOUR UNIVERSITY OF PITTSBURGH. Scholarpedia 11(12):33528 (2016) with Thomas Mädler THE BONDI-SACHS FORMALISM JEFF WINICOUR UNIVERSITY OF PITTSBURGH Scholarpedia 11(12):33528 (2016) with Thomas Mädler NULL HYPERSURFACES u = const Normal co-vector @ u is null g @ u @ u =0 Normal vector

More information

Test bodies and naked singularities: is the self-force the cosmic censor?

Test bodies and naked singularities: is the self-force the cosmic censor? Test bodies and naked singularities: is the self-force the cosmic censor? Enrico Barausse (University of Guelph) in collaboration with V. Cardoso (CENTRA, Lisbon) & G. Khanna (UMass Darmouth) based on

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

arxiv: v1 [gr-qc] 10 Jun 2009

arxiv: v1 [gr-qc] 10 Jun 2009 MULTIPOLE CORRECTIONS TO PERIHELION AND NODE LINE PRECESSION arxiv:0906.1981v1 [gr-qc] 10 Jun 2009 L. FERNÁNDEZ-JAMBRINA ETSI Navales, Universidad Politécnica de Madrid, Arco de la Victoria s/n, E-28040-Madrid

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Fast Evolution and Waveform Generator for Extreme-Mass-Ratio Inspirals in Equatorial-Circular Orbits

Fast Evolution and Waveform Generator for Extreme-Mass-Ratio Inspirals in Equatorial-Circular Orbits Fast Evolution and Waveform Generator for Extreme-Mass-Ratio Inspirals in Equatorial-Circular Orbits Wen-Biao Han Shanghai Astronomical Observatory, Chinese Academy of Sciences 80 Nandan Road, Shanghai,

More information

Initial Data for Black-Hole Binaries

Initial Data for Black-Hole Binaries Initial Data for Black-Hole Binaries Gregory B. Cook Wake Forest University June 11/1, 004 Abstract We will examine the current state of our efforts to generate astrophysically realistic initial data for

More information

Gravitational waves from binary black holes

Gravitational waves from binary black holes Gravitational waves from binary black holes Hiroyuki Nakano YITP, Kyoto University DECIGO workshop, October 27, 2013 Hiroyuki Nakano Gravitational waves from binary black holes Binary black holes (BBHs)

More information

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and Black Hole Physics Basic Concepts and New Developments by Valeri P. Frolov Department of Physics, University of Alberta, Edmonton, Alberta, Canada and Igor D. Nbvikov Theoretical Astrophysics Center, University

More information

Self-force calculations for Kerr black hole inspirals A Review of Recent Progress

Self-force calculations for Kerr black hole inspirals A Review of Recent Progress Self-force calculations for Kerr black hole inspirals A Review of Recent Progress Sam Dolan University of Southampton @ IST, Lisbon, Jan 2012 Sam Dolan (Southampton) Self-force Calculations Lisbon 1 /

More information

Nonlinear and Perturbative Evolution of Distorted Black Holes. II. Odd-parity Modes

Nonlinear and Perturbative Evolution of Distorted Black Holes. II. Odd-parity Modes Nonlinear and Perturbative Evolution of Distorted Black Holes. II. Odd-parity Modes John Baker (1), Steven Brandt (4), Manuela Campanelli (1), Carlos O. Lousto (1,5), Edward Seidel (1,2,3) and Ryoji Takahashi

More information

A Rigorous Derivation of Gravitational Self-force. II

A Rigorous Derivation of Gravitational Self-force. II A Rigorous Derivation of Gravitational Self-force. II Samuel E. Gralla and Robert M. Wald Capra 11, Orléans Perturbed Motion: two preliminary remarks 1. The definition of a world line for an extended body

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

The laws of binary black hole mechanics

The laws of binary black hole mechanics The laws of binary black hole mechanics Laboratoire Univers et Théories Observatoire de Paris / CNRS 2π/ω H Σ κ H k a γ u a k a A 1 A 2 A H κ ω H r + M,J A 3 A 1 +A 2 time i + H γ n a k a H s a k B a S

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

arxiv:gr-qc/ v1 11 May 2000

arxiv:gr-qc/ v1 11 May 2000 EPHOU 00-004 May 000 A Conserved Energy Integral for Perturbation Equations arxiv:gr-qc/0005037v1 11 May 000 in the Kerr-de Sitter Geometry Hiroshi Umetsu Department of Physics, Hokkaido University Sapporo,

More information

Geons in Asymptotically Anti-de Sitter spacetimes

Geons in Asymptotically Anti-de Sitter spacetimes Geons in Asymptotically Anti-de Sitter spacetimes Grégoire Martinon in collaboration with Gyula Fodor Philippe Grandclément Observatoire de Paris Université Paris Diderot 6 Juillet 2016 Grégoire Martinon

More information

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes Asymptotic Quasinormal Frequencies for d Dimensional Black Holes José Natário (Instituto Superior Técnico, Lisbon) Based on hep-th/0411267 with Ricardo Schiappa Oxford, February 2009 Outline What exactly

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran Classical and Quantum Dynamics in a Black Hole Background Chris Doran Thanks etc. Work in collaboration with Anthony Lasenby Steve Gull Jonathan Pritchard Alejandro Caceres Anthony Challinor Ian Hinder

More information

Lorentzian elasticity arxiv:

Lorentzian elasticity arxiv: Lorentzian elasticity arxiv:1805.01303 Matteo Capoferri and Dmitri Vassiliev University College London 14 July 2018 Abstract formulation of elasticity theory Consider a manifold M equipped with non-degenerate

More information

Superradiance in Analogue Black Holes

Superradiance in Analogue Black Holes Superradiance in Analogue Black Holes Maurício Richartz (mauricio.richartz@ufabc.edu.br) Universidade Federal do ABC (UFABC), Santo André, SP, Brasil (Collaborators: Stefano Liberati, Angus Prain, Silke

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

The overlap of numerical relativity, perturbation theory and post-newtonian theory in the binary black hole problem

The overlap of numerical relativity, perturbation theory and post-newtonian theory in the binary black hole problem The overlap of numerical relativity, perturbation theory and post-newtonian theory in the binary black hole problem Laboratoire Univers et Théories Observatoire de Paris / CNRS aligo, avirgo, KAGRA, elisa,

More information

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes Generalized Harmonic Evolutions of Binary Black Hole Spacetimes Lee Lindblom California Institute of Technology AMS Meeting :: New Orleans :: 7 January 2007 Lee Lindblom (Caltech) Generalized Harmonic

More information

Solutions of Einstein s Equations & Black Holes 2

Solutions of Einstein s Equations & Black Holes 2 Solutions of Einstein s Equations & Black Holes 2 Kostas Kokkotas December 19, 2011 2 S.L.Shapiro & S. Teukolsky Black Holes, Neutron Stars and White Dwarfs Kostas Kokkotas Solutions of Einstein s Equations

More information

Scattering by (some) rotating black holes

Scattering by (some) rotating black holes Scattering by (some) rotating black holes Semyon Dyatlov University of California, Berkeley September 20, 2010 Motivation Detecting black holes A black hole is an object whose gravitational field is so

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

General Relativity and Important Physical Quantities

General Relativity and Important Physical Quantities General Relativity and Important Physical Quantities Shing-Tung Yau Harvard University 2nd LeCosPA Symposium December 14, 2015 This talk is based on joint work with Po-Ning Chen and Mu-Tao Wang. Exactly

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham

Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham Outline Basic properties of McVittie spacetimes: embedding of the Schwarzschild field in

More information

Horizon hair of extremal black holes and measurements at null infinity

Horizon hair of extremal black holes and measurements at null infinity Horizon hair of extremal black holes and measurements at null infinity Stefanos Aretakis (joint with Yannis Angelopoulos and Dejan Gajic) University of Toronto International Congress on Mathematical Physics

More information

Getting The Spin Right In Black-Hole Binaries

Getting The Spin Right In Black-Hole Binaries Getting The Spin Right In Black-Hole Binaries Gregory B. Cook Wake Forest University July 25, 2005 Abstract We will take a detailed look at the issues involved in setting the spin of a black hole during

More information