Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham

Size: px
Start display at page:

Download "Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham"

Transcription

1 Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham

2 Outline Basic properties of McVittie spacetimes: embedding of the Schwarzschild field in a Robertson-Walker (RW) universe. Global structure - Class I and II Circular photon (and particle) orbits Bound particle and photon orbits Summary: apply some results from dynamical systems to the interpretation of an interesting (?) and important (??) solution of the Einstein equations. Class. Quantum Grav (2014)

3 Black holes in an expanding universe How can we model massive bodies embedded in expanding, isotropic universes? Test particle approximation; matching - cf. extensive literature on Einstein-Straus; exact or approximate solutions of the Einstein equations with appropriate boundary/asymptotic conditions. McVittie s metric (1933) takes this last approach and provides an intriguing solution of the Einstein equations.

4 The metric The following metric arises uniquely under certain conditions (Einstein equations for spherically symmetric perfect fluid, conditions on Misner-Sharp mass, asymptotic conditions) - see McVittie (1933), Nolan (1999), Nandra et al (2012): ds 2 = (f r 2 H 2 )dt 2 2rHf 1/2 dtdr + f 1 dr 2 + r 2 dω 2, f = 1 2m r, H(t) = S (t) S(t).

5 Basic properties The energy density and pressure are given by 8πρ = 3H 2 Λ, 8πp = 2H (1 2m r ) 1/2 3H 2 + Λ. Setting m = 0 yields the k = 0 RW universe with Hubble function H(t). Setting H(t) = 0 yields Schwarzschild spacetime. Setting H(t) = H 0 yields Schwarzschild-de Sitter spacetime with cosmological constant Λ = 3H 2 0. Except in these trivial cases, there is a curvature singularity at r = 2m.

6 Class 2: lim t 0 + S(t) = 0, lim t + H(t) = 0 r = 2m, t + r +, t + r +, t + r = 2m, t (0, + ) Penrose-Carter diagram for Class 2 McVittie. The singular boundary at r = 2m forms (a) the past boundary, cutting of the big bang at t = 0 and (b) an inner boundary at finite affine distance but at t +. The boundaries at infinity are at infinite affine distance. There are slight variations depending on the value of κ (a parameter related to sound speed at zero density) (cf. Nolan (1999, 2014)). No extendibility results across r = 2m; question is open. The singularity is gravitationally weak.

7 Class 1: lim t 0 + S(t) = 0, lim t + H(t) = H 0 r = r, t + r +, t + r = 2m, t (0, + ) Penrose-Carter diagram for Class 1 McVittie. The singular boundary at r = 2m forms the past boundary. There is an inner horizon at r = r, the inner horizon of the corresponding Schwarzschild-de Sitter spacetime. The boundaries at infinity are at infinite affine distance. Structure is universal for all Class 1 (cf. Kaloper et al (2010); Lake & Abdelqader (2011); Nolan (2014)). Kaloper et al conjectured, and Lake & Abdelqader demonstrated extendibility to Schwarzschild-de Sitter across the inner horizon.

8 Orbits - non-radial causal geodesics The effects of cosmological expansion and the central mass/black hole compete with one another. Is it possible for these to strike a balance and allow (i) circular orbits? or (ii) bound orbits? Black holes generically admit (a) a unique circular photon orbit (CPO), at r = 3m, which is unstable and (b) families of circular particle orbits, with the characteristic existence of innermost stable circular orbits (ISCO). Schwarzschild: r ISCO = 6m. Schwarzschild-de Sitter: r ISCO = f (m, H 0 ), and we must have mh 0 <

9 Circular photon orbits Proposition A McVittie metric with mass parameter m admits a CPO at radius r = a if and only if the Hubble function and background scale factor have the form H(t) = H 0 tanh(ah 0 t), S(t) = (cosh(ah 0 t)) 1/A where A = (1 3m a ), H 0 = a 1 1 2m 1 2m a. a McVittie metric has one parameter, m and a function H(t). There is only a 2-parameter family of McVittie metrics with a CPO. No big bang. Similar results hold for particle orbits (timelike geodesics).

10 Bound orbits Proposition All McVittie metrics of Class 1 and Class 2 admit bound photon and particle orbits i.e. future complete null and timelike geodesics along which r remains finite. Along the bound photon orbits, we have lim r(s) = 3m, s and along the bound particle orbits, we have lim r(s) = r, s where r is the radius of a circular particle orbit in the corresponding Schwarzschild-de Sitter (Class 1) or Schwarzschild (Class 2) spacetime.

11 Sample sketch proof: particle orbits in Class 2 Lemma There exists a C 2 function w : R R, with w(0) = 0, such that the geodesic equations read H = w(h)u(x), (1) ṙ = p, (2) ṗ = V (r) + rh 2 + rf 1/2 w(h)u(x) 2. (3) The C 2 function u is defined in a neighbourhood of x 0 = (0, r, 0) and ṫ = u(x). Key point: x 0 is a non-hyperbolic equilibrium point of the flow.

12 Schwarzschild dynamics McVittie dynamics Recall that H(t) 0 as t. {x : H = 0} is an invariant manifold of the flow, corresponding to particle motion in Schwarzschild spacetime: r + V m,l (r) = 0. Then W = 1 2ṙ2 + V m,l (r) V m,l (r ) is a Lyapunov function for the flow. McVittie dynamics: W is no longer conserved, but its evolution can be controlled by a Gronwall-type argument. Along the geodesic, H(t(s)) undergoes power-law decay, with overall power-law decay to a stable circular orbit of Schwarzschild spacetime.

13 Class 1: M = 1, r = 7M, H(t) = 23 t 1, L = 7/2 rhτl HHtHΤLL yhτl Τ xhτl 5 10 Plot of the area radius along the time-like geodesic. Note that r 2m+ at finite proper time in the past. The geodesic is future complete. Spacetime representation of the geodesic; t and τ increase downwards. H 0 as τ, and the trajectory oscillates around r = r = 7M.

14 Conclusions The singular surface {r = 2m, t > 0} forms a past boundary of the spacetime: all causal geodesics meet this surface at finite affine/proper time in the past. Global structure results extend to all Class 1 and Class 2 spacetimes. The central region can capture photons and particles, maintaining them in future complete, bound orbits. Class 1 and 2 McVittie spacetimes admit ISCO s, indicating possibility of formation of thin accretion disks. This is a black hole-like quality of these spacetimes.

15 Cosmological models? The k = 0 RW class arises as a limit. A potential application: Determine H(t) in the usual way, with k = 0 as a prior. Redo CMB calculation, allow for corrections due to m in the angular diameter distance D A. Corrections to H(t), and future evolution... Existence of k = 1 solution has been proven: metric in terms of elliptic integrals in comoving coordinates. Area radial might be more tractable.

arxiv: v2 [gr-qc] 12 Oct 2017

arxiv: v2 [gr-qc] 12 Oct 2017 Local properties and global structure of McVittie spacetimes with non-flat FLRW backgrounds arxiv:1707.07612v2 [gr-qc] 12 Oct 2017 Brien C. Nolan Centre for Astrophysics and Relativity, School of Mathematical

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 4; January 15 2014 Previously The dominant force on the scale of the Universe is gravity Gravity is accurately described by the theory of general

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

Evolution of Cosmological Horizons of Wormhole Cosmology. Abstract

Evolution of Cosmological Horizons of Wormhole Cosmology. Abstract Evolution of Cosmological Horizons of Wormhole Cosmology Sung-Won Kim Department of Science Education, Ewha Womans University, Seoul 03760, Korea (Dated: today) Abstract Recently we solved the Einstein

More information

On the occasion of the first author s seventieth birthday

On the occasion of the first author s seventieth birthday METHODS AND APPLICATIONS OF ANALYSIS. c 2005 International Press Vol. 12, No. 4, pp. 451 464, December 2005 006 HOW INFLATIONARY SPACETIMES MIGHT EVOLVE INTO SPACETIMES OF FINITE TOTAL MASS JOEL SMOLLER

More information

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time.

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time. Cosmological models In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time. The expansion is described by the scale factor R(t).

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

12. Relativistic Cosmology I. Simple Solutions to the Einstein Equations

12. Relativistic Cosmology I. Simple Solutions to the Einstein Equations 12. Relativistic Cosmology I. Simple Solutions to the Einstein Equations 1. Minkowski space Initial assumptions:! no matter (T µν = 0)! no gravitation (R σ µνρ = 0; i.e., zero curvature) Not realistic!

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

Physics 139: Problem Set 9 solutions

Physics 139: Problem Set 9 solutions Physics 139: Problem Set 9 solutions ay 1, 14 Hartle 1.4 Consider the spacetime specified by the line element ds dt + ) dr + r dθ + sin θdφ ) Except for r, the coordinate t is always timelike and the coordinate

More information

Pinhole Cam Visualisations of Accretion Disks around Kerr BH

Pinhole Cam Visualisations of Accretion Disks around Kerr BH Pinhole Camera Visualisations of Accretion Disks around Kerr Black Holes March 22nd, 2016 Contents 1 General relativity Einstein equations and equations of motion 2 Tetrads Defining the pinhole camera

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Closed Universes, de Sitter Space and Inflation

Closed Universes, de Sitter Space and Inflation Closed Universes, de Sitter Space and Inflation Chris Doran Cavendish Laboratory Based on astro-ph/0307311 by Lasenby and Doran The Cosmological Constant Dark energy responsible for around 70% of the total

More information

Einstein s Theory of Gravity. June 10, 2009

Einstein s Theory of Gravity. June 10, 2009 June 10, 2009 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r >

More information

Effect of Global Expansion on Bending of Null Geodesics

Effect of Global Expansion on Bending of Null Geodesics Effect of Global Expansion on Bending of Null Geodesics Brett Bolen, Mir Emad Aghili, Luca Bombelli Grand Valley State University University of Mississippi Midwest Relativity Meeting 2013 Outline Introduction

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

Redshift-Distance Relationships

Redshift-Distance Relationships Redshift-Distance Relationships George Jones April 4, 0. Distances in Cosmology This note considers two conceptually important definitions of cosmological distances, look-back distance and proper distance.

More information

Third Year: General Relativity and Cosmology. 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle

Third Year: General Relativity and Cosmology. 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle Third Year: General Relativity and Cosmology 2011/2012 Problem Sheets (Version 2) Prof. Pedro Ferreira: p.ferreira1@physics.ox.ac.uk 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle

More information

Physics 311 General Relativity. Lecture 18: Black holes. The Universe.

Physics 311 General Relativity. Lecture 18: Black holes. The Universe. Physics 311 General Relativity Lecture 18: Black holes. The Universe. Today s lecture: Schwarzschild metric: discontinuity and singularity Discontinuity: the event horizon Singularity: where all matter

More information

GLOSSARY, Exploring Black Holes

GLOSSARY, Exploring Black Holes GLOSSARY, Exploring Black Holes MANY TERMS ARE ALSO DEFINED INSIDE THE BACK COVER WORDS NOT USED IN THIS BOOK, EXCEPT IN QUOTATIONS, MATHEMATICAL EXPRESSIONS, OR NEWTON S ANALYSIS. (SEVERAL TERMS ARE MENTIONED

More information

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara A Holographic Description of Black Hole Singularities Gary Horowitz UC Santa Barbara Global event horizons do not exist in quantum gravity: String theory predicts that quantum gravity is holographic:

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Differences between Newtonian orbits and orbits with General Relativity

Differences between Newtonian orbits and orbits with General Relativity Initialization Orbits & paths of light rays 26 Jan è Announcements è Homework 2 is due on 1/31. The link is on the syllabus on angel. è We start cosmology on Tues. We are ahead of schedule. Read about

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Physics 133: Extragalactic Astronomy and Cosmology

Physics 133: Extragalactic Astronomy and Cosmology Physics 133: Extragalactic Astronomy and Cosmology Week 2 Spring 2018 Previously: Empirical foundations of the Big Bang theory. II: Hubble s Law ==> Expanding Universe CMB Radiation ==> Universe was hot

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe October 7, 013 Prof. Alan Guth PROBLEM SET 6 DUE DATE: Monday, November 4, 013 READING ASSIGNMENT: Steven Weinberg,

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

PHY 475/375. Lecture 5. (April 9, 2012)

PHY 475/375. Lecture 5. (April 9, 2012) PHY 475/375 Lecture 5 (April 9, 2012) Describing Curvature (contd.) So far, we have studied homogenous and isotropic surfaces in 2-dimensions. The results can be extended easily to three dimensions. As

More information

8.821/8.871 Holographic duality

8.821/8.871 Holographic duality Lecture 3 8.81/8.871 Holographic duality Fall 014 8.81/8.871 Holographic duality MIT OpenCourseWare Lecture Notes Hong Liu, Fall 014 Lecture 3 Rindler spacetime and causal structure To understand the spacetime

More information

arxiv: v2 [gr-qc] 25 Apr 2016

arxiv: v2 [gr-qc] 25 Apr 2016 The C 0 -inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry Jan Sbierski April 26, 2016 arxiv:1507.00601v2 [gr-qc] 25 Apr 2016 Abstract The maximal analytic

More information

Einstein s Equations. July 1, 2008

Einstein s Equations. July 1, 2008 July 1, 2008 Newtonian Gravity I Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r

More information

Formation of Higher-dimensional Topological Black Holes

Formation of Higher-dimensional Topological Black Holes Formation of Higher-dimensional Topological Black Holes José Natário (based on arxiv:0906.3216 with Filipe Mena and Paul Tod) CAMGSD, Department of Mathematics Instituto Superior Técnico Talk at Granada,

More information

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is 1. De Sitter Space (a) Show in the context of expanding FRW models that if the combination +3P is always positive, then there was a Big Bang singularity in the past. [A sketch of a(t) vs.t may be helpful.]

More information

An Introduction to General Relativity and Cosmology

An Introduction to General Relativity and Cosmology An Introduction to General Relativity and Cosmology Jerzy Plebariski Centro de Investigacion y de Estudios Avanzados Instituto Politecnico Nacional Apartado Postal 14-740, 07000 Mexico D.F., Mexico Andrzej

More information

Radially Inhomogeneous Cosmological Models with Cosmological Constant

Radially Inhomogeneous Cosmological Models with Cosmological Constant Radially Inhomogeneous Cosmological Models with Cosmological Constant N. Riazi Shiraz University 10/7/2004 DESY, Hamburg, September 2004 1 Introduction and motivation CMB isotropy and cosmological principle

More information

Singularities and Causal Structure in General Relativity

Singularities and Causal Structure in General Relativity Singularities and Causal Structure in General Relativity Alexander Chen February 16, 2011 1 What are Singularities? Among the many profound predictions of Einstein s general relativity, the prediction

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

Gravitation: Cosmology

Gravitation: Cosmology An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Singularity formation in black hole interiors

Singularity formation in black hole interiors Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018 Outline The Einstein equations Examples Initial value problem Large time

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama Research Center for the Early Universe (RESCEU) Department of Physics Jun ichi Yokoyama time size Today 13.8Gyr Why is Our Universe Big, dark energy Old, and full of structures? galaxy formation All of

More information

The Schwarzschild Metric

The Schwarzschild Metric The Schwarzschild Metric The Schwarzschild metric describes the distortion of spacetime in a vacuum around a spherically symmetric massive body with both zero angular momentum and electric charge. It is

More information

Black Holes: From Speculations to Observations. Thomas Baumgarte Bowdoin College

Black Holes: From Speculations to Observations. Thomas Baumgarte Bowdoin College Black Holes: From Speculations to Observations Thomas Baumgarte Bowdoin College Mitchell and Laplace (late 1700 s) Escape velocity (G = c = 1) 2M v esc = R independent of mass m of test particle Early

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

TRANSITION FROM BIG CRUNCH TO BIG BANG IN BRANE COSMOLOGY

TRANSITION FROM BIG CRUNCH TO BIG BANG IN BRANE COSMOLOGY TRANSITION FROM BIG CRUNCH TO BIG BANG IN BRANE COSMOLOGY CLAUS GERHARDT Abstract. We consider branes N = I S 0, where S 0 is an n dimensional space form, not necessarily compact, in a Schwarzschild-AdS

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU A Superfluid Universe Lecture 1 General relativity and cosmology Kerson Huang MIT & IAS, NTU Lecture 1. General relativity and cosmology Mathematics and physics Big bang Dark energy Dark matter Robertson-Walker

More information

A Tolman-Bondi-Lemaitre Cell-Model for the Universe and Gravitational Collapse

A Tolman-Bondi-Lemaitre Cell-Model for the Universe and Gravitational Collapse A Tolman-Bondi-Lemaitre Cell-Model for the Universe and Gravitational Collapse A. Chamorro 1, S. S. Deshingkar 2,I.H.Dwivedi 2,3 and P. S. Joshi 2 1 Departamento de Fisica Teorica, Universidad del Pais

More information

arxiv:gr-qc/ v1 23 Sep 1996

arxiv:gr-qc/ v1 23 Sep 1996 Negative Pressure and Naked Singularities in Spherical Gravitational Collapse TIFR-TAP Preprint arxiv:gr-qc/9609051v1 23 Sep 1996 F. I. Cooperstock 1, S. Jhingan, P. S. Joshi and T. P. Singh Theoretical

More information

Fig. 1. On a sphere, geodesics are simply great circles (minimum distance). From

Fig. 1. On a sphere, geodesics are simply great circles (minimum distance). From Equation of Motion and Geodesics The equation of motion in Newtonian dynamics is F = m a, so for a given mass and force the acceleration is a = F /m. If we generalize to spacetime, we would therefore expect

More information

General Relativity (2nd part)

General Relativity (2nd part) General Relativity (2nd part) Electromagnetism Remember Maxwell equations Conservation Electromagnetism Can collect E and B in a tensor given by And the charge density Can be constructed from and current

More information

Physics 523, General Relativity Homework 7 Due Wednesday, 6 th December 2006

Physics 523, General Relativity Homework 7 Due Wednesday, 6 th December 2006 Physics 53, General elativity Homework 7 Due Wednesday, 6 th December 006 Jacob Lewis Bourjaily Problem Consider a gyroscope moving in circular orbit of radius about a static, spherically-symmetric planet

More information

Lecture 14: Cosmological Principles

Lecture 14: Cosmological Principles Lecture 14: Cosmological Principles The basic Cosmological Principles The geometry of the Universe The scale factor R and curvature constant k Comoving coordinates Einstein s initial solutions 3/28/11

More information

Asymptotic Behavior of Marginally Trapped Tubes

Asymptotic Behavior of Marginally Trapped Tubes Asymptotic Behavior of Marginally Trapped Tubes Catherine Williams January 29, 2009 Preliminaries general relativity General relativity says that spacetime is described by a Lorentzian 4-manifold (M, g)

More information

Approaching the Event Horizon of a Black Hole

Approaching the Event Horizon of a Black Hole Adv. Studies Theor. Phys., Vol. 6, 2012, no. 23, 1147-1152 Approaching the Event Horizon of a Black Hole A. Y. Shiekh Department of Physics Colorado Mesa University Grand Junction, CO, USA ashiekh@coloradomesa.edu

More information

CHAPTER 3 THE INFLATIONARY PARADIGM. 3.1 The hot Big Bang paradise Homogeneity and isotropy

CHAPTER 3 THE INFLATIONARY PARADIGM. 3.1 The hot Big Bang paradise Homogeneity and isotropy CHAPTER 3 THE INFLATIONARY PARADIGM Ubi materia, ibi geometria. Johannes Kepler 3.1 The hot Big Bang paradise In General Relativity, the Universe as a whole becomes a dynamical entity that can be modeled

More information

Analytic Kerr Solution for Puncture Evolution

Analytic Kerr Solution for Puncture Evolution Analytic Kerr Solution for Puncture Evolution Jon Allen Maximal slicing of a spacetime with a single Kerr black hole is analyzed. It is shown that for all spin parameters, a limiting hypersurface forms

More information

Umbilic cylinders in General Relativity or the very weird path of trapped photons

Umbilic cylinders in General Relativity or the very weird path of trapped photons Umbilic cylinders in General Relativity or the very weird path of trapped photons Carla Cederbaum Universität Tübingen European Women in Mathematics @ Schloss Rauischholzhausen 2015 Carla Cederbaum (Tübingen)

More information

Cosmic Confusion. common misconceptions about the big bang, the expansion of the universe and cosmic horizons.

Cosmic Confusion. common misconceptions about the big bang, the expansion of the universe and cosmic horizons. The basics Cosmic Confusion common misconceptions about the big bang, the expansion of the universe and cosmic horizons. What is the expansion of space? Is there an edge to space? What is the universe

More information

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 G. Kunstatter University of Winnipeg Based on PRD90,2014 and CQG-102342.R1, 2016 Collaborators: Hideki Maeda (Hokkai-Gakuen

More information

Black Holes. Theory & Astrophysics. Kostas Glampedakis

Black Holes. Theory & Astrophysics. Kostas Glampedakis Black Holes Theory & Astrophysics Kostas Glampedakis Contents Part I: Black hole theory. Part II: Celestial mechanics in black hole spacetimes. Part III: Energy extraction from black holes. Part IV: Astrophysical

More information

arxiv:gr-qc/ v2 14 Apr 2004

arxiv:gr-qc/ v2 14 Apr 2004 TRANSITION FROM BIG CRUNCH TO BIG BANG IN BRANE COSMOLOGY arxiv:gr-qc/0404061v 14 Apr 004 CLAUS GERHARDT Abstract. We consider a brane N = I S 0, where S 0 is an n- dimensional space form, not necessarily

More information

Regularity of linear waves at the Cauchy horizon of black hole spacetimes

Regularity of linear waves at the Cauchy horizon of black hole spacetimes Regularity of linear waves at the Cauchy horizon of black hole spacetimes Peter Hintz joint with András Vasy Luminy April 29, 2016 Cauchy horizon of charged black holes (subextremal) Reissner-Nordström-de

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

Non-existence of time-periodic vacuum spacetimes

Non-existence of time-periodic vacuum spacetimes Non-existence of time-periodic vacuum spacetimes Volker Schlue (joint work with Spyros Alexakis and Arick Shao) Université Pierre et Marie Curie (Paris 6) Dynamics of self-gravitating matter workshop,

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY Abstract Penrose presented back in 1973 an argument that any part of the spacetime which contains black holes with event horizons of area A has total

More information

Yun Soo Myung Inje University

Yun Soo Myung Inje University On the Lifshitz black holes Yun Soo Myung Inje University in collaboration with T. Moon Contents 1. Introduction. Transition between Lifshitz black holes and other configurations 3. Quasinormal modes and

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

Radially infalling brane and moving domain wall in the brane cosmology. Abstract

Radially infalling brane and moving domain wall in the brane cosmology. Abstract Radially infalling brane and moving domain wall in the brane cosmology INJE-TP-0-02 Y.S. Myung Department of Physics, Graduate School, Inje University, Kimhae 62-749, Korea Abstract We discuss the brane

More information

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002.

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002. INVESTIGATING THE KERR BLACK HOLE USING MAPLE 1 Introduction IDAN REGEV Department of Mathematics, University of Toronto March 22, 2002. 1.1 Why Study the Kerr Black Hole 1.1.1 Overview of Black Holes

More information

Special & General Relativity

Special & General Relativity Special & General Relativity ASTR/PHYS 4080: Intro to Cosmology Week 2 1 Special Relativity: no ether Presumes absolute space and time, light is a vibration of some medium: the ether 2 Equivalence Principle(s)

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

Why is the Universe Expanding?

Why is the Universe Expanding? Why is the Universe Expanding? In general relativity, mass warps space. Warped space makes matter move, which changes the structure of space. Thus the universe should be dynamic! Gravity tries to collapse

More information

The cosmic censorship conjectures in classical general relativity

The cosmic censorship conjectures in classical general relativity The cosmic censorship conjectures in classical general relativity Mihalis Dafermos University of Cambridge and Princeton University Gravity and black holes Stephen Hawking 75th Birthday conference DAMTP,

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI March 15, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

The Apparent Universe

The Apparent Universe The Apparent Universe Alexis HELOU APC - AstroParticule et Cosmologie, Paris, France alexis.helou@apc.univ-paris7.fr 11 th June 2014 Reference This presentation is based on a work by P. Binétruy & A. Helou:

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Dynamical compactification from higher dimensional de Sitter space

Dynamical compactification from higher dimensional de Sitter space Dynamical compactification from higher dimensional de Sitter space Matthew C. Johnson Caltech In collaboration with: Sean Carroll Lisa Randall 0904.3115 Landscapes and extra dimensions Extra dimensions

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe May 3, 2004 Prof. Alan Guth PROBLEM SET 6 EXTRA CREDIT PROBLEM SET CAN BE HANDED IN THROUGH: Thursday, May 13,

More information

Chapter 21. The Kerr solution The Kerr metric in Boyer-Lindquist coordinates

Chapter 21. The Kerr solution The Kerr metric in Boyer-Lindquist coordinates Chapter 21 The Kerr solution As shown in Chapter 10, the solution of Einstein s equations describing the exterior of an isolated, spherically symmetric, static object is quite simple. Indeed, the Schwarzschild

More information

3 The Friedmann-Robertson-Walker metric

3 The Friedmann-Robertson-Walker metric 3 The Friedmann-Robertson-Walker metric 3.1 Three dimensions The most general isotropic and homogeneous metric in three dimensions is similar to the two dimensional result of eq. (43): ( ) dr ds 2 = a

More information

SHOCK WAVE COSMOLOGY INSIDE A BLACK HOLE: A COMPUTER VISUALIZATION. February Abstract

SHOCK WAVE COSMOLOGY INSIDE A BLACK HOLE: A COMPUTER VISUALIZATION. February Abstract SHOCK WAVE COSMOLOGY INSIDE A BLACK HOLE: A COMPUTER VISUALIZATION February 2005 JoelSmoller 1, BlakeT emple 2, ZekeV ogler 3 Abstract We discuss a computer visualization of the shock wave cosmological

More information

Overview and Innerview of Black Holes

Overview and Innerview of Black Holes Overview and Innerview of Black Holes Kip S. Thorne, Caltech Beyond Einstein: From the Big Bang to Black Holes SLAC, 14 May 2004 1 Black Hole Created by Implosion of a Star Our Focus: quiescent black hole

More information

arxiv:gr-qc/ v1 22 May 2006

arxiv:gr-qc/ v1 22 May 2006 1 Can inhomogeneities accelerate the cosmic volume expansion? 1 Tomohiro Kai, 1 Hiroshi Kozaki, 1 Ken-ichi Nakao, 2 Yasusada Nambu and 1 Chul-Moon Yoo arxiv:gr-qc/0605120v1 22 May 2006 1 Department of

More information

arxiv: v2 [gr-qc] 6 Dec 2014

arxiv: v2 [gr-qc] 6 Dec 2014 Cosmic Matter Flux May Turn Hawking Radiation Off Javad T. Firouzjaee 1,2 1 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran George F R Ellis

More information

Gravitational collapse and the vacuum energy

Gravitational collapse and the vacuum energy Journal of Physics: Conference Series OPEN ACCESS Gravitational collapse and the vacuum energy To cite this article: M Campos 2014 J. Phys.: Conf. Ser. 496 012021 View the article online for updates and

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information