Geometry of Resonance Tongues

Size: px
Start display at page:

Download "Geometry of Resonance Tongues"

Transcription

1 Geometry of Resonance Tongues Henk Broer with Martin Golubitsky, Sijbo Holtman, Mark Levi, Carles Simó & Gert Vegter Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Resonance p.1/36

2 Resonance Resonance: type of periodic dynamics Ratio of frequencies of two (or more) oscillatory parts of a dynamical system is rational Dynamical systems usually depend on parameters Resonance tongues: "Domains of the parameter space where resonance occurs: Part of the bifurcation diagram Dissipative and conservative settings Resonance p.2/36

3 The Problem (dissipative) Consider dynamical system: Ẋ = F µ (X, t) with periodic orbit γ for µ = 0 Problem: Find periodic orbits near γ of period q ( subharmonics of order q) Use Poincaré map P µ : V V on transversal section V : P 0 (0) = 0 γ q-periodic orbit of P: P q µ(x) = x Resonance p.3/36

4 HNS-bifurcation NS-bifurcation of periodic orbit Ẋ = f µ (X) + ɛg µ (X, t) HNS-bifurcation of fixed point of (Poincaré) map P µ Conditions: - D 0 P 0 has two conjugate eigenvalues on unit circle - Eigenvalues cross unit circle with positive speed - Higher order stability condition Resonance if eigenvalues of D 0 P 0 (Floquet multipliers) are e ±2πip/q Resonance p.4/36

5 Subharmonic orbits q-subharmonic orbit q-periodic orbit of P µ : V V solve P q µ(x) = x, given that P 0 (0) = 0 Alternative formulation: P µ (x 1 ) = x 2, P µ (x 2 ) = x 3,..., P µ (x q ) = x 1 ˆP µ : V q V q (x 1,...,x q ) (P(x 1 ) x 2,...,P(x q ) x 1 ) Resonance p.5/36

6 Alternative formulation ctd. Take ˆP µ : V q V q and solve Symmetry solve ˆP µ (y) = 0 with ˆP 0 (0) = 0 σ : V q V q (x 1,...,x q ) (x 2,...,x q,x 1 ) σ ˆP µ = ˆP µ σ σ generates Z q ˆP µ is Z q -equivariant Resonance p.6/36

7 Lyapunov-Schmidt reduction I Notation: Assume D 0 ˆP 0 is semi-simple: V q = ker(d 0 ˆP0 ) im(d 0 ˆP0 ) D 0 ˆP0 has full rank here Projections: E : V q im(d 0 ˆP 0 ) y w (I E) : V q ker(d 0 ˆP0 ) y v Resonance p.7/36

8 Lyapunov-Schmidt reduction II The problem splits up: ˆP µ (y) = 0 E ˆP µ (v, w) = 0 & (I E) ˆP µ (v, w) = 0 Implicit Function Theorem: If E ˆP 0 (0) = 0 and w E ˆP µ (v, w) 0 then w = w(v) s.t. E ˆP(v, w(v)) = 0 Problem reduces as follows: then solve g µ (v) = 0 If g µ (v) := (I E) ˆP µ (v, w(v)), Resonance p.8/36

9 Lyapunov-Schmidt reduction III D 0 P 0 has only two complex conjugate eigenvalues ω, ω = e ±2πip/q dim(ker(d 0 ˆP0 )) = 2 Need to study g µ (z) = 0 With properties: g 0 (0) = 0 D 0 g 0 = 0 Symmetry expressed by ker(d 0 ˆP0 ) R 2 C g µ (ωz) = ωg µ (z) Resonance p.9/36

10 Singularity theory I Consider germ g µ at (0, 0) Z q -Symmetry g µ leads to format: g µ (z) = K(u, v)z + L(u, v) z q 1 u = z z, v = z q + z q Wanted: classification of possible forms of g µ under Z q contact equivalence (keeps track of zero set) h µ g µ : h µ (z) = S(z)g µ (Z(z)) S(0) 1, (D 0 Z) 1 exist Z(ωz) = ωz(z), S(ωz) = S(z) Resonance p.10/36

11 Singularity theory II Equivalence classes indicated by simplest element: Normal form always in format g µ (z) = K(u, v)z + L(u, v) z q 1 Non-degenerate normal form for q = 3 Conditions: K(0, 0) = 0, L(0, 0) 0 Normal form: h 0 (z) = z 2 Universal unfolding: h σ (z) = σz + z 2 Non-degenerate normal form for q 5 Conditions: K(0, 0) = 0, K u (0, 0) 0, L(0, 0) 0 Normal form: h 0 (z) = z 2 z + z q 1 Universal unfolding: h σ (z) = (σ + z 2 )z + z q 1 Resonance p.11/36

12 Singularity theory III Degenerate normal form for q 7. Conditions: K(0, 0) = K u (0, 0) = 0, K uu (0, 0) 0 L(0, 0) 0 Normal form: h 0,0 (z) = z 4 z + z q 1 Universal unfolding: h σ,τ (z) = (σ + τ z 2 + z 4 )z + z q 1 Resonance p.12/36

13 Resonance tongue I Tongue boundary where # of zeroes of H µ changes h µ = 0, det(dh µ ) = 0 q 5, h σ (z) = (σ + z 2 )z + z q 1 σ = α + iβ β 2 ( α) q 2 This is a q 2/2-cusp, thus Arnold tongues recovered h σ,τ (z) = (σ + τ z 2 + z 4 )z + z q 1. σ = α + iβ, τ = µ + iν 4D parameter space with universal geometry Characterization by Swallowtail and Whitney Umbrella Resonance p.13/36

14 Resonance tongue II ν β µ α Resonance p.14/36

15 Resonance tongue III β ν µ α = 0.01 α = 0.01 Resonance p.15/36

16 Resonance tongue IV α = 0.05 α = 0.05 Resonance p.16/36

17 Resonance tongue V α = 0.1 α = 0.1 Resonance p.17/36

18 Resonance tongue VI α = 0.15 α = 0.15 Resonance p.18/36

19 Conclusion I Case study of Forced Duffing - Van der Pol oscillator: ÿ + (a + cy 2 )ẏ + by + dy 3 = ɛf(y, ε, a, b, c, d, ω 1 t,...,ω n t) Procedure: Ẋ = F µ (X, t) Poincare map (Poincaré Normal Form Theory / Averaging) Complex Z q -equivariant germ (Lyapunov-Schmidt reduction) Bifurcation diagrams (Z q -equivariant Singularity Theory) Questions: How does universal geometry pull back to µ-space? More on the dynamics ((quasi-) periodicity, chaos, stability, bifurcation, etc.)? Resonance p.19/36

20 References F. Takens: Forced oscillations and bifurcations. Applications of Global Analysis I, Comm. Math. Inst. University of Utrecht 3 (1974) 1-59 Reprinted in H.W. Broer, B. Krauskopf, G. Vegter (Eds.), Global Analysis of Dynamical Systems, Festschrift dedicated to Floris Takens for his 60th birthday, pp Bristol and Philadelphia IOP, 2001 V.I. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag 1983 Resonance p.20/36

21 References J. Knobloch, A. Vanderbauwhede: A general method for periodic solutions in conservative and reversible systems. J. Dynamics Diff. Eqns. 8 (1996) HWB, M. Golubitsky, G. Vegter: The geometry of resonance tongues: a Singularity Theory approach, Nonlinearity 16 (2003) HWB, M. Golubitsky, G. Vegter, Geometry of resonance tongues. To appear Luminy Proceedings on Singularity Theory 2006 Resonance p.21/36

22 The Problem (conservative) I Hill s equation ẍ + (a + b p(t))x = 0, with p(t) p(t + 2π), (a,b) plane of parameters, assume p C System format ẋ = y ẏ = (a + bp(t))x ṫ = 1 Resonance p.22/36

23 The Problem (conservative) II Resonance: Trivial solution x = 0 = y unstable k-th unstability domain ( k = 1, 2,...): tongue emanating from (a,b) = (( k 2 )2, 0), subharmonics as before Geometry and density of stability diagram? Resonance p.23/36

24 Poincaré map F : R 2 R 2 Poincaré map of section t = 0 mod 2πZ F = F a,b Sp(1, R) Stability domain {(a,b) R 2 Tr F a,b < 2} Circle map f : S 1 S 1, f(θ) = arg F(e iθ ) f has Z 2 -symmetry Rotation number rot(f) = 1 2π lim j f j (θ) Instability when F hyperbolic f has fixed points and rotf Z TrF = Z TrF = 2 Resonance p.24/36

25 Related... First variation equation of (quasi-) periodic solutions in Hamiltonian systems Models parametrically forced oscillators Schrödinger operator (potential V = bp) (H V x)(t) = ẍ(t) + V (t)x(t), essentially self-adjoint operator on L 2 (R) Hill s equation has eigenvalue format H V x = ax results relevant for spectrum of H V Resonance p.25/36

26 Instability pockets (reversible) Resonance p.26/36

27 Geometry I Geometry tongue tips (b 0) in reversible case (where p is even) Contains A 2k 1 hierarchy of singularities Stability channels in general case ( ) exponentially narrow around families of parabolæ Fold between pictures 1 and 2 A 3 Resonance p.27/36

28 Geometry II, b 0 Scheme A 5 in deformed Mathieu for 3rd tongue... Resonance p.28/36

29 Geometry III, b In deformed Mathieu p(t) = cost + c 2 cos 2t + c 3 cos 3t Resonance p.29/36

30 Geometry IV, b Parabolæ centering channel TrF a,b = 0 Action angle variables (x,y,t) (I,ϕ,t), averaging TrF a,b = 0 ϕ = Φ(a,b), with Φ(a,b) = const. + πz 0 Family of parabolæ: quadratic approximation a + p(t) =: q(t) h κt 2 remainders, Airy,... Φ(a, b) = π 2 t + t q(t)dt a + bp(0) bp (0) h κt2 dt = πh 2κ Resonance p.30/36

31 Tongues at large I b p(t) = cos(t) cos(2t) two negativity intervals a Resonance p.31/36

32 Tongues at large II p(t) = cos(t) + cos(2t) + cos(4t) cos(6t) four negativity intervals Resonance p.32/36

33 Tongues at large III Resonance p.33/36

34 Density of stability Ray-wise density ϱ of stability domain ( ) Define sector I (a,b)-plane in between outmost tangencies of q with zero level When q(t) > 0 for all t [0, 2π], then ϱ = 1 (averaging, adiabatic invariants ellipticity) When q(t) < 0 for all t [0, 2π], then ϱ = 0 (hyperbolicity) Within sector I in between also ϱ = 0 (mixture, hyperbolicity dominant) Interesting things occur when p is less regular Resonance p.34/36

35 References HWB, G. Vegter: Bifurcational aspects of parametric resonance, Dynamics Reported, New Series 1 (1992) 1-51 HWB, M. Levi: Geometrical aspects of stability theory for Hill s equations, Archive Rat. Mech. An. 131 (1995) HWB, C. Simó, Hill s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena, Bol. Soc. Bras. Mat. 29 (1998) Resonance p.35/36

36 References HWB, C. Simó: Resonance tongues in Hill s equations: a geometric approach, Journ. Diff. Eqns. 166 (2000) HWB, C. Simó, J. Puig: Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation, Commun. Math. Phys. 241 (2003) Resonance p.36/36

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela DRIVEN and COUPLED OSCILLATORS I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela II Coupled oscillators Resonance tongues Huygens s synchronisation III Coupled cell system with

More information

Resonance and fractal geometry

Resonance and fractal geometry Resonance and fractal geometry Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen Summary i. resonance in parametrized systems ii. two oscillators: torus-

More information

Resonance and fractal geometry

Resonance and fractal geometry Resonance and fractal geometry Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen Summary i. resonance in parametrized systems ii. two oscillators: torus-

More information

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Secular and oscillatory motions in dynamical systems Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Contents 1. Toroidal symmetry 2. Secular (slow) versus

More information

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3.

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3. June, : WSPC - Proceedings Trim Size: in x in SPT-broer Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l =,,. H.W. BROER and R. VAN DIJK Institute for mathematics

More information

The Geometry of Resonance Tongues: A Singularity Theory Approach

The Geometry of Resonance Tongues: A Singularity Theory Approach The Geometry of Resonance Tongues: A Singularity Theory Approach Henk W. Broer Department of Mathematics University of Groningen P.O. Box 8 97 AV Groningen The Netherlands Martin Golubitsky Department

More information

The geometry of resonance tongues: a singularity theory approach

The geometry of resonance tongues: a singularity theory approach INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 16 (2003) 1511 1538 NONLINEARITY PII: S0951-7715(03)55769-3 The geometry of resonance tongues: a singularity theory approach Henk W Broer 1, Martin Golubitsky

More information

In Arnold s Mathematical Methods of Classical Mechanics (1), it

In Arnold s Mathematical Methods of Classical Mechanics (1), it Near strongly resonant periodic orbits in a Hamiltonian system Vassili Gelfreich* Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom Communicated by John N. Mather, Princeton

More information

On Parametrized KAM Theory

On Parametrized KAM Theory On Parametrized KAM Theory Henk Broer, University of Groningen Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen PO Box 407 NL-9700 AK GRONINGEN email: h.w.broer@rug.nl

More information

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

A Model of Evolutionary Dynamics with Quasiperiodic Forcing paper presented at Society for Experimental Mechanics (SEM) IMAC XXXIII Conference on Structural Dynamics February 2-5, 205, Orlando FL A Model of Evolutionary Dynamics with Quasiperiodic Forcing Elizabeth

More information

Problem Set Number 5, j/2.036j MIT (Fall 2014)

Problem Set Number 5, j/2.036j MIT (Fall 2014) Problem Set Number 5, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Fri., October 24, 2014. October 17, 2014 1 Large µ limit for Liénard system #03 Statement:

More information

Available online at ScienceDirect. Procedia IUTAM 19 (2016 ) IUTAM Symposium Analytical Methods in Nonlinear Dynamics

Available online at   ScienceDirect. Procedia IUTAM 19 (2016 ) IUTAM Symposium Analytical Methods in Nonlinear Dynamics Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 19 (2016 ) 11 18 IUTAM Symposium Analytical Methods in Nonlinear Dynamics A model of evolutionary dynamics with quasiperiodic forcing

More information

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Francisco Armando Carrillo Navarro, Fernando Verduzco G., Joaquín Delgado F. Programa de Doctorado en Ciencias (Matemáticas),

More information

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits. 2. Equilibria. 3. Periodic orbits and limit cycles. 4. Homoclinic orbits.

More information

Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 60th birthday

Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 60th birthday Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 6th birthday Edited by Henk W. Broer, Bernd Krauskopf and Gert Vegter January 6, 3 Chapter Global Bifurcations of Periodic

More information

UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM

UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM Manuscript submitted to Website: http://aimsciences.org AIMS Journals Volume 00, Number 0, Xxxx XXXX pp. 000 000 UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM CLARK ROBINSON Abstract. We highlight the

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Multiperiodic dynamics overview and some recent results

Multiperiodic dynamics overview and some recent results Multiperiodic dynamics overview and some recent results Henk Broer Rijksuniversiteit Groningen Instituut voor Wiskunde en Informatica POBox 800 9700 AV Groningen email: broer@math.rug.nl URL: http://www.math.rug.nl/~broer

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

On Periodic points of area preserving torus homeomorphisms

On Periodic points of area preserving torus homeomorphisms On Periodic points of area preserving torus homeomorphisms Fábio Armando Tal and Salvador Addas-Zanata Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão 11, Cidade Universitária,

More information

On low speed travelling waves of the Kuramoto-Sivashinsky equation.

On low speed travelling waves of the Kuramoto-Sivashinsky equation. On low speed travelling waves of the Kuramoto-Sivashinsky equation. Jeroen S.W. Lamb Joint with Jürgen Knobloch (Ilmenau, Germany) Marco-Antonio Teixeira (Campinas, Brazil) Kevin Webster (Imperial College

More information

27. Topological classification of complex linear foliations

27. Topological classification of complex linear foliations 27. Topological classification of complex linear foliations 545 H. Find the expression of the corresponding element [Γ ε ] H 1 (L ε, Z) through [Γ 1 ε], [Γ 2 ε], [δ ε ]. Problem 26.24. Prove that for any

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

Autoparametric Resonance of Relaxation Oscillations

Autoparametric Resonance of Relaxation Oscillations CHAPTER 4 Autoparametric Resonance of Relaation Oscillations A joint work with Ferdinand Verhulst. Has been submitted to journal. 4.. Introduction Autoparametric resonance plays an important part in nonlinear

More information

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations ENGI 940 Lecture Notes 4 - Stability Analysis Page 4.01 4. Stability Analysis for Non-linear Ordinary Differential Equations A pair of simultaneous first order homogeneous linear ordinary differential

More information

Ordinary Differential Equations and Smooth Dynamical Systems

Ordinary Differential Equations and Smooth Dynamical Systems D.V. Anosov S.Kh. Aranson V.l. Arnold I.U. Bronshtein V.Z. Grines Yu.S. Il'yashenko Ordinary Differential Equations and Smooth Dynamical Systems With 25 Figures Springer I. Ordinary Differential Equations

More information

Bifurcations in the Quadratic Map

Bifurcations in the Quadratic Map Chapter 14 Bifurcations in the Quadratic Map We will approach the study of the universal period doubling route to chaos by first investigating the details of the quadratic map. This investigation suggests

More information

Upper quantum Lyapunov exponent and parametric oscillators

Upper quantum Lyapunov exponent and parametric oscillators JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER NOVEMBER 2004 Upper quantum Lyapunov exponent and parametric oscillators H. R. Jauslin, O. Sapin, and S. Guérin Laboraoire de Physique CNRS - UMR 5027,

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Singular perturbation methods for slow fast dynamics

Singular perturbation methods for slow fast dynamics Nonlinear Dyn (2007) 50:747 753 DOI 10.1007/s11071-007-9236-z ORIGINAL ARTICLE Singular perturbation methods for slow fast dynamics Ferdinand Verhulst Received: 2 February 2006 / Accepted: 4 April 2006

More information

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert University of Groningen The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert Published in: Journal of dynamics and differential equations IMPORTANT NOTE:

More information

Canards at Folded Nodes

Canards at Folded Nodes Canards at Folded Nodes John Guckenheimer and Radu Haiduc Mathematics Department, Ithaca, NY 14853 For Yulij Il yashenko with admiration and affection on the occasion of his 60th birthday March 18, 2003

More information

Bifurcations of normally parabolic tori in Hamiltonian systems

Bifurcations of normally parabolic tori in Hamiltonian systems INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 18 (25) 1735 1769 NONLINEARITY doi:1.188/951-7715/18/4/18 Bifurcations of normally parabolic tori in Hamiltonian systems Henk W Broer 1, Heinz Hanßmann 2,4

More information

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology Complex Behavior in Coupled Nonlinear Waveguides Roy Goodman, New Jersey Institute of Technology Nonlinear Schrödinger/Gross-Pitaevskii Equation i t = r + V (r) ± Two contexts for today: Propagation of

More information

The Higgins-Selkov oscillator

The Higgins-Selkov oscillator The Higgins-Selkov oscillator May 14, 2014 Here I analyse the long-time behaviour of the Higgins-Selkov oscillator. The system is ẋ = k 0 k 1 xy 2, (1 ẏ = k 1 xy 2 k 2 y. (2 The unknowns x and y, being

More information

arxiv: v1 [math.ds] 8 Nov 2017

arxiv: v1 [math.ds] 8 Nov 2017 Normal forms for three-parametric families of area-preserving maps near an elliptic fixed point Natalia Gelfreikh arxiv:1711.091v1 [math.ds] 8 Nov 017 Department of Higher Mathematics and Mathematical

More information

8 Periodic Linear Di erential Equations - Floquet Theory

8 Periodic Linear Di erential Equations - Floquet Theory 8 Periodic Linear Di erential Equations - Floquet Theory The general theory of time varying linear di erential equations _x(t) = A(t)x(t) is still amazingly incomplete. Only for certain classes of functions

More information

Some Collision solutions of the rectilinear periodically forced Kepler problem

Some Collision solutions of the rectilinear periodically forced Kepler problem Advanced Nonlinear Studies 1 (2001), xxx xxx Some Collision solutions of the rectilinear periodically forced Kepler problem Lei Zhao Johann Bernoulli Institute for Mathematics and Computer Science University

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Method of Averaging for Differential Equations on an Infinite Interval

Method of Averaging for Differential Equations on an Infinite Interval Method of Averaging for Differential Equations on an Infinite Interval Theory and Applications SUB Gottingen 7 222 045 71X ;, ' Vladimir Burd Yaroslavl State University Yaroslavl, Russia 2 ' 08A14338 Contents

More information

Citation for published version (APA): Holtman, S-J. (2009). Dynamics and geometry near resonant bifurcations Groningen: s.n.

Citation for published version (APA): Holtman, S-J. (2009). Dynamics and geometry near resonant bifurcations Groningen: s.n. University of Groningen Dynamics and geometry near resonant bifurcations Holtman, Sijbo-Jan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

Bifurcations of phase portraits of pendulum with vibrating suspension point

Bifurcations of phase portraits of pendulum with vibrating suspension point Bifurcations of phase portraits of pendulum with vibrating suspension point arxiv:1605.09448v [math.ds] 9 Sep 016 A.I. Neishtadt 1,,, K. Sheng 1 1 Loughborough University, Loughborough, LE11 3TU, UK Space

More information

Spectral theory for magnetic Schrödinger operators and applicatio. (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan)

Spectral theory for magnetic Schrödinger operators and applicatio. (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan) Spectral theory for magnetic Schrödinger operators and applications to liquid crystals (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan) Ryukoku (June 2008) In [P2], based on the de Gennes analogy

More information

Stability of the phase motion in race-track microtons

Stability of the phase motion in race-track microtons Stability of the phase motion in race-track microtons Y. A. Kubyshin (UPC), O. Larreal (U. Zulia, Venezuela), T. M-Seara (UPC), R. Ramirez-Ros (UPC) Beam Dynamics, IPAM (UCLA). 23-27 February 2017. Outline

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Dynamical stability of quasi-periodic response solutions in planar conservative systems

Dynamical stability of quasi-periodic response solutions in planar conservative systems Dynamical stability of quasi-periodic response solutions in planar conservative systems Heinz Hanßmann and Carles Simó Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona Gran Via 585,

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 1. Linear systems Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Linear systems 1.1 Differential Equations 1.2 Linear flows 1.3 Linear maps

More information

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University Dynamical systems with multiple time scales arise naturally in many domains. Models of neural systems

More information

Structurally Stable Singularities for a Nonlinear Wave Equation

Structurally Stable Singularities for a Nonlinear Wave Equation Structurally Stable Singularities for a Nonlinear Wave Equation Alberto Bressan, Tao Huang, and Fang Yu Department of Mathematics, Penn State University University Park, Pa. 1682, U.S.A. e-mails: bressan@math.psu.edu,

More information

CANARDS AT FOLDED NODES

CANARDS AT FOLDED NODES MOSCOW MATHEMATICAL JOURNAL Volume 5, Number 1, January March 2005, Pages 91 103 CANARDS AT FOLDED NODES JOHN GUCKENHEIMER AND RADU HAIDUC For Yulij Ilyashenko with admiration and affection on the occasion

More information

Resonance and Fractal Geometry

Resonance and Fractal Geometry Acta Appl Math (2012) 120:61 86 DOI 10.1007/s10440-012-9670-x Resonance and Fractal Geometry Henk W. Broer Received: 25 September 2011 / Accepted: 9 January 2012 / Published online: 27 January 2012 The

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach

Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 16 (003) 1751 1791 NONLINEARITY PII: S0951-7715(03)57790-8 Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach Henk

More information

Lectures on Dynamical Systems. Anatoly Neishtadt

Lectures on Dynamical Systems. Anatoly Neishtadt Lectures on Dynamical Systems Anatoly Neishtadt Lectures for Mathematics Access Grid Instruction and Collaboration (MAGIC) consortium, Loughborough University, 2007 Part 3 LECTURE 14 NORMAL FORMS Resonances

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

8.1 Bifurcations of Equilibria

8.1 Bifurcations of Equilibria 1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

More information

Introduction to fractal analysis of orbits of dynamical systems. ZAGREB DYNAMICAL SYSTEMS WORKSHOP 2018 Zagreb, October 22-26, 2018

Introduction to fractal analysis of orbits of dynamical systems. ZAGREB DYNAMICAL SYSTEMS WORKSHOP 2018 Zagreb, October 22-26, 2018 Vesna Županović Introduction to fractal analysis of orbits of dynamical systems University of Zagreb, Croatia Faculty of Electrical Engineering and Computing Centre for Nonlinear Dynamics, Zagreb ZAGREB

More information

Two models for the parametric forcing of a nonlinear oscillator

Two models for the parametric forcing of a nonlinear oscillator Nonlinear Dyn (007) 50:147 160 DOI 10.1007/s11071-006-9148-3 ORIGINAL ARTICLE Two models for the parametric forcing of a nonlinear oscillator Nazha Abouhazim Mohamed Belhaq Richard H. Rand Received: 3

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR

LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR Peter H. Baxendale Department of Mathematics University of Southern California Los Angeles, CA 90089-3 USA baxendal@math.usc.edu

More information

LIMIT CYCLES FOR A CLASS OF ELEVENTH Z 12 -EQUIVARIANT SYSTEMS WITHOUT INFINITE CRITICAL POINTS

LIMIT CYCLES FOR A CLASS OF ELEVENTH Z 12 -EQUIVARIANT SYSTEMS WITHOUT INFINITE CRITICAL POINTS LIMIT CYCLES FOR A CLASS OF ELEVENTH Z 1 -EQUIVARIANT SYSTEMS WITHOUT INFINITE CRITICAL POINTS ADRIAN C. MURZA Communicated by Vasile Brînzănescu We analyze the complex dynamics of a family of Z 1-equivariant

More information

CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION

CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION WARREN WECKESSER Department of Mathematics Colgate University Hamilton, NY 3346 E-mail: wweckesser@mail.colgate.edu Cartwright and Littlewood discovered

More information

Higher Order Averaging : periodic solutions, linear systems and an application

Higher Order Averaging : periodic solutions, linear systems and an application Higher Order Averaging : periodic solutions, linear systems and an application Hartono and A.H.P. van der Burgh Faculty of Information Technology and Systems, Department of Applied Mathematical Analysis,

More information

PERIODIC SOLUTIONS AND SLOW MANIFOLDS

PERIODIC SOLUTIONS AND SLOW MANIFOLDS Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 7, No. 8 (27) 2533 254 c World Scientific Publishing Company PERIODIC SOLUTIONS AND SLOW MANIFOLDS FERDINAND VERHULST Mathematisch

More information

Dimer with gain and loss: Integrability and PT -symmetry restoration

Dimer with gain and loss: Integrability and PT -symmetry restoration Dimer with gain and loss: Integrability and PT -symmetry restoration I Barashenkov, University of Cape Town Joint work with: Dima Pelinovsky (McMaster University, Ontario) Philippe Dubard (University of

More information

A bifurcation approach to the synchronization of coupled van der Pol oscillators

A bifurcation approach to the synchronization of coupled van der Pol oscillators A bifurcation approach to the synchronization of coupled van der Pol oscillators Departmento de Matemática Aplicada II & Instituto de Matemáticas de la Universidad de Sevilla (IMUS) Joint work with G.

More information

Two-Body Problem. Central Potential. 1D Motion

Two-Body Problem. Central Potential. 1D Motion Two-Body Problem. Central Potential. D Motion The simplest non-trivial dynamical problem is the problem of two particles. The equations of motion read. m r = F 2, () We already know that the center of

More information

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system arxiv:1712.06011v1 [nlin.cd] 16 Dec 2017 The influence of noise on two- and three-frequency quasi-periodicity in a simple model system A.P. Kuznetsov, S.P. Kuznetsov and Yu.V. Sedova December 19, 2017

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Second Edition With 251 Illustrations Springer Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction to Dynamical Systems

More information

Shilnikov bifurcations in the Hopf-zero singularity

Shilnikov bifurcations in the Hopf-zero singularity Shilnikov bifurcations in the Hopf-zero singularity Geometry and Dynamics in interaction Inma Baldomá, Oriol Castejón, Santiago Ibáñez, Tere M-Seara Observatoire de Paris, 15-17 December 2017, Paris Tere

More information

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS POINCARÉ-MELNIKOV-ARNOLD METHOD FOR TWIST MAPS AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS 1. Introduction A general theory for perturbations of an integrable planar map with a separatrix to a hyperbolic fixed

More information

On the unfolding of reversible vector fields with SO(2)-symmetry and a non-semisimple eigenvalue 0

On the unfolding of reversible vector fields with SO(2)-symmetry and a non-semisimple eigenvalue 0 On the unfolding of reversible vector fields with SO2-symmetry and a non-semisimple eigenvalue Andrei Afendiov and Alexander Miele October 29, 1998 1 Introduction We consider four-dimensional ordinary

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Introduction to Dynamical Systems 1 1.1 Definition of a dynamical system 1 1.1.1 State space 1 1.1.2

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

THE THREE-BODY PROBLEM

THE THREE-BODY PROBLEM STUDIES IN ASTRONAUTICS 4 THE THREE-BODY PROBLEM CHRISTIAN MARCH AL Office National d'etudes et de RecherchesAerospatiales, Chätillon, France Amsterdam - Oxford - New York -Tokyo 1990 X CONTENTS Foreword

More information

Unicity of KAM tori Henk Broer 1 and Floris Takens 1

Unicity of KAM tori Henk Broer 1 and Floris Takens 1 Unicity of KAM tori Henk Broer 1 and Floris Takens 1 Abstract The classical KAM theorem establishes persistence of invariant Lagrangean tori in nearly integrable Hamiltonian systems. These tori are quasi-periodic

More information

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1,

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1, 2.8.7. Poincaré-Andronov-Hopf Bifurcation. In the previous section, we have given a rather detailed method for determining the periodic orbits of a two dimensional system which is the perturbation of a

More information

On the convergence of normal forms for analytic control systems

On the convergence of normal forms for analytic control systems Chapter 1 On the convergence of normal forms for analytic control systems Wei Kang Department of Mathematics, Naval Postgraduate School Monterey, CA 93943 wkang@nps.navy.mil Arthur J. Krener Department

More information

A conjecture on sustained oscillations for a closed-loop heat equation

A conjecture on sustained oscillations for a closed-loop heat equation A conjecture on sustained oscillations for a closed-loop heat equation C.I. Byrnes, D.S. Gilliam Abstract The conjecture in this paper represents an initial step aimed toward understanding and shaping

More information

The Pearcey integral in the highly oscillatory region

The Pearcey integral in the highly oscillatory region The Pearcey integral in the highly oscillatory region José L. López 1 and Pedro Pagola arxiv:1511.0533v1 [math.ca] 17 Nov 015 1 Dpto. de Ingeniería Matemática e Informática and INAMAT, Universidad Pública

More information

THE QUASI PERIODIC REVERSIBLE HOPF BIFURCATION

THE QUASI PERIODIC REVERSIBLE HOPF BIFURCATION THE QUASI PERIODIC REVERSIBLE HOPF BIFURCATION Henk W. Broer Instituut voor Wiskunde en Informatica, Rijksuniversiteit Groningen Blauwborgje 3, 9747 AC Groningen, The Netherlands M. Cristina Ciocci Department

More information

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS KATARINA JEGDIĆ, BARBARA LEE KEYFITZ, AND SUN CICA ČANIĆ We study a Riemann problem for the two-dimensional isentropic gas dynamics equations

More information

Existence of permanent oscillations for a ring of coupled van der Pol oscillators with time delays

Existence of permanent oscillations for a ring of coupled van der Pol oscillators with time delays Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 1 (2018), pp. 139 152 Research India Publications http://www.ripublication.com/gjpam.htm Existence of permanent oscillations

More information

Transcendental cases in stability problem. Hamiltonian systems

Transcendental cases in stability problem. Hamiltonian systems of Hamiltonian systems Boris S. Bardin Moscow Aviation Institute (Technical University) Faculty of Applied Mathematics and Physics Department of Theoretical Mechanics Hamiltonian Dynamics and Celestial

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

Dynamical Systems. Pierre N.V. Tu. An Introduction with Applications in Economics and Biology Second Revised and Enlarged Edition.

Dynamical Systems. Pierre N.V. Tu. An Introduction with Applications in Economics and Biology Second Revised and Enlarged Edition. Pierre N.V. Tu Dynamical Systems An Introduction with Applications in Economics and Biology Second Revised and Enlarged Edition With 105 Figures Springer-Verlag Berlin Heidelberg New York London Paris

More information

Quasiperiodic phenomena in the Van der Pol - Mathieu equation

Quasiperiodic phenomena in the Van der Pol - Mathieu equation Quasiperiodic penomena in te Van der Pol - Matieu equation F. Veerman and F. Verulst Department of Matematics, Utrect University P.O. Box 80.010, 3508 TA Utrect Te Neterlands April 8, 009 Abstract Te Van

More information

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0 ON THE HAMILTONIAN ANDRONOV-HOPF BIFURCATION M. Olle, J. Villanueva 2 and J. R. Pacha 3 2 3 Departament de Matematica Aplicada I (UPC), Barcelona, Spain In this contribution, we consider an specic type

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I IOP PUBLISHING Nonlinearity 2 (28) 923 972 NONLINEARITY doi:.88/95-775/2/5/3 On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I S V Gonchenko, L P Shilnikov and D V Turaev

More information

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

Connecting orbits and invariant manifolds in the spatial three-body problem

Connecting orbits and invariant manifolds in the spatial three-body problem C C Dynamical A L T E C S H Connecting orbits and invariant manifolds in the spatial three-body problem Shane D. Ross Control and Dynamical Systems, Caltech Work with G. Gómez, W. Koon, M. Lo, J. Marsden,

More information

DIFFERENTIAL GEOMETRY APPLICATIONS TO NONLINEAR OSCILLATORS ANALYSIS

DIFFERENTIAL GEOMETRY APPLICATIONS TO NONLINEAR OSCILLATORS ANALYSIS DIFFERENTIAL GEOMETR APPLICATIONS TO NONLINEAR OSCILLATORS ANALSIS NDES6, J.M. Ginoux and B. Rossetto Laboratoire P.R.O.T.E.E., I.U.T. de Toulon, Université du Sud, B.P., 8957, La Garde Cedex, France e-mail:

More information

Lecture 1: Oscillatory motions in the restricted three body problem

Lecture 1: Oscillatory motions in the restricted three body problem Lecture 1: Oscillatory motions in the restricted three body problem Marcel Guardia Universitat Politècnica de Catalunya February 6, 2017 M. Guardia (UPC) Lecture 1 February 6, 2017 1 / 31 Outline of the

More information

Nonlinear Control Lecture 4: Stability Analysis I

Nonlinear Control Lecture 4: Stability Analysis I Nonlinear Control Lecture 4: Stability Analysis I Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 Farzaneh Abdollahi Nonlinear Control Lecture 4 1/70

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D. 4 Periodic Solutions We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space. Autonomous two-dimensional systems with phase-space R

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information