A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER

Size: px
Start display at page:

Download "A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER"

Transcription

1 A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER 1. The method Ashwelde and Winter [1] proposed a new approach to deviation inequalities for sums of independent random matrices. The purpose of this note is to indicate how this method implies Rudelson s sampling theorems for random vectors in isotropic position. Let X 1,..., X n be independent random d d real matrices, and let S n = X X n. We will be interested in the magnitude of the deviation S n ES n in the operator norm Real valued random variables. Ashlwede-Winter s method [1] is parallel to the classical approach to deviation inequalities for real valued random variables. We briefly outline the real valued method. Let X 1,..., X n be independent mean zero random variables. We are interested in the magnitude of S n = i X i. For simplicity, we shall assume that X i 1 a.s. This hypothesis can be relaxed to some control of the moments, precisely to having sub-exponential tail. Fix a t > 0 and let λ > 0 be a parameter to be chosen later. We want to estimate p := P(S n > t) = P(e λsn > e λt ). By Markov inequality and using independence, we have p e λt Ee λsn = e λt i Ee λx i. Next, Taylor s expansion and the mean zero and boundedness hypotheses can be used to show that, for every i, This yields Ee λx i e λ2 Var X i, 0 λ 1. p e λt+λ2 σ 2, where σ 2 := i Var X i. The optimal choice of the parameter λ min(τ/2σ 2, 1) implies Chernoff s inequality ) p max (e t2 /σ 2, e t/2. 1

2 Random matrices. Now we try to generalize this method when X i M d are independent mean zero random matrices, where M d denotes the class of symmetric d d matrices. Some of the matrix calculus is straightforward. Thus, for A M d, the matrix exponential e A is defined as usual by Taylor s series. Recall that e A has the same eigenvectors as A, and eigenvalues e λ i(a). The partial order A B means A B 0, i.e. A B is positive semidefinite. The non-straightforward part is that, in general, e A+B e A e B. However, Golden-Thompson s inequality (see [3]) states that tr e A+B tr(e A e B ) holds for arbitrary A, B M d (and in fact for arbitrary unitaryinvariant norm replacing the trace). Therefore, for S n = X X n and for I d being the identity on M d, we have p := P(S n ti d ) = P(e λsn e λti d ) P(tr e λsn > e λt ) e λt E tr(e λsn ). This estimate is not sharp: e λsn e λti d means that the biggest eigenvalue of e λsn exceeds e λt, while tr e λsn > e λt means that the sum of all d eigenvalues exceeds the same. This will be responsible for the (sometimes inevitable) loss of the log d factor in Rudelson s selection theorem. Since S n = X n + S n 1, we can use Golden-Thomson s inequality to separate the last term from the sum: E tr(e λsn ) E tr(e λxn e λs n 1 ). Now, using independence and that E and trace commute, we continue to write = E n 1 tr(e n e λxn e λs n 1 ) E n e λxn E n 1 tr(e λs n 1 ). Continuing by induction, we arrive (since tr(i d ) = d) to E tr(e λsn ) d Ee λx i We have proved that P(S n ti d ) de λt Ee λx i Repeating for S n and using that ti d S n ti d is equivalent to S n t, we have shown that (1) P( S n > t) 2de λt Ee λx i

3 Remark. As in the real valued case, full independence is never needed in the above argument. It works out well for martingales. The main result: Theorem 1 (Chernoff-type inequality). Let X i M d be independent mean zero random matrices, X i 1 for all i a.s. Let S n = X X n, σ 2 = n Var X i Then for every t > 0 we have P( S n > t) d max(e t2 /4σ 2, e t/2 ). To prove this theorem, we have to estimate Ee λx i in (1), which is easy. For example, if X M d and X 1, then Taylor series expansion shows that e Z I d + Z + Z 2. Therefore, we have Lemma 2. Let Z M d be a mean zero random matrix, Z 1 a.s. Then Ee Z e Var Z. Proof. Using the mean zero assumption, we have Ee Z E(I d + Z + Z 2 ) = I d + Var(Z) e Var Z. Let 0 < λ 1. Therefore, by the Theorem s hypotheses, Hence by (1), Ee λx i e λ2 Var X i = e λ2 Var X i. P( S > t) d e λt+λ2 σ 2. With the optimal choice of λ := min(t/2σ 2, 1), the conclusion of Theorem follows. Problem: does the Theorem hold for σ 2 replaced by n Var X i? If so, this would generalize Pisier-Lust-Piquard s non-commutative Khinchine inequality. Corollary 3. Let X i M d be independent random matrices, X i 0, X i 1 for all i a.s. Let S n = X X n, E = n EX i Then for every ε (0, 1) we have P( S n ES n > εe) d e ε2 E/4. Proof. Applying Theorem for X i EX i, we have (2) P( S n ES n > t) d max(e t2 /4σ 2, e t/2 ). Note that X i 1 implies that Var X i EX 2 i E( X i X i ) EX i. 3

4 4 Therefore, σ 2 E. Now we use (2) for t = εe, and note that t 2 /4σ 2 = ε 2 E 2 /4σ 2 ε 2 E/4. Remark. The hypothesis X i 1 can be relaxed throughout to X i ψ1 1. One just has to be more careful with Taylor series. 2. Applications Let x be a random vector in isotropic position in R d, i.e. Ex x = I d. Denote x ψ1 = M. Then the random matrix X := M 2 x x satisfies the hypotheses of Corollary (see remark below it). Clearly, Then Corollary gives We have thus proved: EX = M 2 I d, E = n/m 2, ES n = (n/m 2 )I d. P( S n ES n > ε ES ) d e ε2 n/4m 2. Corollary 4. Let x be a random vector in isotropic position in R d, such that M := x ψ1 <. Let x 1,..., x n be independent copies of x. Then for every ε (0, 1), we have ( 1 n ) P x i x i I d > ε d e ε2 n/4m 2. n The probability in the Corollary is smaller than 1 provided that the number of samples is n ε 2 M 2 log d. This is a version of Rudelson s sampling theorem, where M played the role of (E x log n ) 1/ log n. One can also deduce the main Lemma in [2] from the Corollary in the previous section. Given vectors x i in R d, we are interested in the magnitude of N g i x i x i where g i are independent Gaussians. For normalization, we can assume that N x i x i = A, A = 1. Denote M := max x i i

5 and consider the random operator X := M 2 x i x i with probability 1/N. As before, let X 1, X 2,..., X n be independent copies of X, and S = X X n. This time, we are going to let n. By the Central Limit Theorem, the properly scaled sum S ES will converge to N g ix i x i. One then chooses the parameters correctly to produce a version of the main Lemma in [2]. We omit the details. References [1] R. Ahlswede, A. Winter, Strong converse for identification via quantum channels, IEEE Trans. Information Theory 48 (2002), [2] M. Rudelson, Random vectors in the isotropic position [3] A. Wigderson, D. Xiao, Derandomzing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications, Theory of Computing 4 (2008),

Matrix Concentration. Nick Harvey University of British Columbia

Matrix Concentration. Nick Harvey University of British Columbia Matrix Concentration Nick Harvey University of British Columbia The Problem Given any random nxn, symmetric matrices Y 1,,Y k. Show that i Y i is probably close to E[ i Y i ]. Why? A matrix generalization

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Stein s Method for Matrix Concentration

Stein s Method for Matrix Concentration Stein s Method for Matrix Concentration Lester Mackey Collaborators: Michael I. Jordan, Richard Y. Chen, Brendan Farrell, and Joel A. Tropp University of California, Berkeley California Institute of Technology

More information

Lecture 3. Random Fourier measurements

Lecture 3. Random Fourier measurements Lecture 3. Random Fourier measurements 1 Sampling from Fourier matrices 2 Law of Large Numbers and its operator-valued versions 3 Frames. Rudelson s Selection Theorem Sampling from Fourier matrices Our

More information

A Matrix Expander Chernoff Bound

A Matrix Expander Chernoff Bound A Matrix Expander Chernoff Bound Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava UC Berkeley Vanilla Chernoff Bound Thm [Hoeffding, Chernoff]. If X 1,, X k are independent mean zero random variables

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

Sparsification by Effective Resistance Sampling

Sparsification by Effective Resistance Sampling Spectral raph Theory Lecture 17 Sparsification by Effective Resistance Sampling Daniel A. Spielman November 2, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened

More information

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Feng Wei 2 University of Michigan July 29, 2016 1 This presentation is based a project under the supervision of M. Rudelson.

More information

On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators

On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators Stanislav Minsker e-mail: sminsker@math.duke.edu Abstract: We present some extensions of Bernstein s inequality for random self-adjoint

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini April 27, 2018 1 / 80 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Concentration Inequalities

Concentration Inequalities Chapter Concentration Inequalities I. Moment generating functions, the Chernoff method, and sub-gaussian and sub-exponential random variables a. Goal for this section: given a random variable X, how does

More information

Concentration inequalities and the entropy method

Concentration inequalities and the entropy method Concentration inequalities and the entropy method Gábor Lugosi ICREA and Pompeu Fabra University Barcelona what is concentration? We are interested in bounding random fluctuations of functions of many

More information

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

Matrix concentration inequalities

Matrix concentration inequalities ELE 538B: Mathematics of High-Dimensional Data Matrix concentration inequalities Yuxin Chen Princeton University, Fall 2018 Recap: matrix Bernstein inequality Consider a sequence of independent random

More information

arxiv: v1 [math.pr] 11 Feb 2019

arxiv: v1 [math.pr] 11 Feb 2019 A Short Note on Concentration Inequalities for Random Vectors with SubGaussian Norm arxiv:190.03736v1 math.pr] 11 Feb 019 Chi Jin University of California, Berkeley chijin@cs.berkeley.edu Rong Ge Duke

More information

Using Friendly Tail Bounds for Sums of Random Matrices

Using Friendly Tail Bounds for Sums of Random Matrices Using Friendly Tail Bounds for Sums of Random Matrices Joel A. Tropp Computing + Mathematical Sciences California Institute of Technology jtropp@cms.caltech.edu Research supported in part by NSF, DARPA,

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11 1 The AKLT Model Lecture 5 Amanda Young Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/31/11 This talk will follow pg. 26-29 of Lieb-Robinson Bounds in Quantum Many-Body Physics by B. Nachtergaele

More information

Lecture 21: HSP via the Pretty Good Measurement

Lecture 21: HSP via the Pretty Good Measurement Quantum Computation (CMU 5-859BB, Fall 205) Lecture 2: HSP via the Pretty Good Measurement November 8, 205 Lecturer: John Wright Scribe: Joshua Brakensiek The Average-Case Model Recall from Lecture 20

More information

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation.

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation. 1 2 Linear Systems In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation 21 Matrix ODEs Let and is a scalar A linear function satisfies Linear superposition ) Linear

More information

Lecture 1 Measure concentration

Lecture 1 Measure concentration CSE 29: Learning Theory Fall 2006 Lecture Measure concentration Lecturer: Sanjoy Dasgupta Scribe: Nakul Verma, Aaron Arvey, and Paul Ruvolo. Concentration of measure: examples We start with some examples

More information

Calculus in Gauss Space

Calculus in Gauss Space Calculus in Gauss Space 1. The Gradient Operator The -dimensional Lebesgue space is the measurable space (E (E )) where E =[0 1) or E = R endowed with the Lebesgue measure, and the calculus of functions

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

arxiv: v1 [math.pr] 22 May 2008

arxiv: v1 [math.pr] 22 May 2008 THE LEAST SINGULAR VALUE OF A RANDOM SQUARE MATRIX IS O(n 1/2 ) arxiv:0805.3407v1 [math.pr] 22 May 2008 MARK RUDELSON AND ROMAN VERSHYNIN Abstract. Let A be a matrix whose entries are real i.i.d. centered

More information

Module 3. Function of a Random Variable and its distribution

Module 3. Function of a Random Variable and its distribution Module 3 Function of a Random Variable and its distribution 1. Function of a Random Variable Let Ω, F, be a probability space and let be random variable defined on Ω, F,. Further let h: R R be a given

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS (Semester I: AY 2014-15) Time Allowed: 2 Hours INSTRUCTIONS TO CANDIDATES 1. Please write your student number only. 2. This examination

More information

High Dimensional Probability

High Dimensional Probability High Dimensional Probability for Mathematicians and Data Scientists Roman Vershynin 1 1 University of Michigan. Webpage: www.umich.edu/~romanv ii Preface Who is this book for? This is a textbook in probability

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

1 Quantum states and von Neumann entropy

1 Quantum states and von Neumann entropy Lecture 9: Quantum entropy maximization CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: February 15, 2016 1 Quantum states and von Neumann entropy Recall that S sym n n

More information

EXPONENTIAL INEQUALITIES IN NONPARAMETRIC ESTIMATION

EXPONENTIAL INEQUALITIES IN NONPARAMETRIC ESTIMATION EXPONENTIAL INEQUALITIES IN NONPARAMETRIC ESTIMATION Luc Devroye Division of Statistics University of California at Davis Davis, CA 95616 ABSTRACT We derive exponential inequalities for the oscillation

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Mahler Conjecture and Reverse Santalo

Mahler Conjecture and Reverse Santalo Mini-Courses Radoslaw Adamczak Random matrices with independent log-concave rows/columns. I will present some recent results concerning geometric properties of random matrices with independent rows/columns

More information

Problem set 2 The central limit theorem.

Problem set 2 The central limit theorem. Problem set 2 The central limit theorem. Math 22a September 6, 204 Due Sept. 23 The purpose of this problem set is to walk through the proof of the central limit theorem of probability theory. Roughly

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

STABILITY FOR PARABOLIC SOLVERS

STABILITY FOR PARABOLIC SOLVERS Review STABILITY FOR PARABOLIC SOLVERS School of Mathematics Semester 1 2008 OUTLINE Review 1 REVIEW 2 STABILITY: EXPLICIT METHOD Explicit Method as a Matrix Equation Growing Errors Stability Constraint

More information

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is,

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is, 65 Diagonalizable Matrices It is useful to introduce few more concepts, that are common in the literature Definition 65 The characteristic polynomial of an n n matrix A is the function p(λ) det(a λi) Example

More information

Learning Theory. Sridhar Mahadevan. University of Massachusetts. p. 1/38

Learning Theory. Sridhar Mahadevan. University of Massachusetts. p. 1/38 Learning Theory Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts p. 1/38 Topics Probability theory meet machine learning Concentration inequalities: Chebyshev, Chernoff, Hoeffding, and

More information

Linearization of Differential Equation Models

Linearization of Differential Equation Models Linearization of Differential Equation Models 1 Motivation We cannot solve most nonlinear models, so we often instead try to get an overall feel for the way the model behaves: we sometimes talk about looking

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

1 Sequences of events and their limits

1 Sequences of events and their limits O.H. Probability II (MATH 2647 M15 1 Sequences of events and their limits 1.1 Monotone sequences of events Sequences of events arise naturally when a probabilistic experiment is repeated many times. For

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

Probability Inequalities for the Sum of Random Variables When Sampling Without Replacement

Probability Inequalities for the Sum of Random Variables When Sampling Without Replacement International Journal of Statistics and Probability; Vol 2, No 4; 2013 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Probability Inequalities for the Sum of Random

More information

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 45 Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems Peter J. Hammond latest revision 2017 September

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

Operator-valued extensions of matrix-norm inequalities

Operator-valued extensions of matrix-norm inequalities Operator-valued extensions of matrix-norm inequalities G.J.O. Jameson 1. INTRODUCTION. Let A = (a j,k ) be a matrix (finite or infinite) of complex numbers. Let A denote the usual operator norm of A as

More information

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling 1 Introduction Many natural processes can be viewed as dynamical systems, where the system is represented by a set of state variables and its evolution governed by a set of differential equations. Examples

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

1 Large Deviations. Korea Lectures June 2017 Joel Spencer Tuesday Lecture III

1 Large Deviations. Korea Lectures June 2017 Joel Spencer Tuesday Lecture III Korea Lectures June 017 Joel Spencer Tuesday Lecture III 1 Large Deviations We analyze how random variables behave asymptotically Initially we consider the sum of random variables that take values of 1

More information

Stat 426 : Homework 1.

Stat 426 : Homework 1. Stat 426 : Homework 1. Moulinath Banerjee University of Michigan Announcement: The homework carries 120 points and contributes 10 points to the total grade. (1) A geometric random variable W takes values

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

User-Friendly Tail Bounds for Sums of Random Matrices

User-Friendly Tail Bounds for Sums of Random Matrices DOI 10.1007/s10208-011-9099-z User-Friendly Tail Bounds for Sums of Random Matrices Joel A. Tropp Received: 16 January 2011 / Accepted: 13 June 2011 The Authors 2011. This article is published with open

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Sec. 6.1 Eigenvalues and Eigenvectors Linear transformations L : V V that go from a vector space to itself are often called linear operators. Many linear operators can be understood geometrically by identifying

More information

Elementary Operations and Matrices

Elementary Operations and Matrices LECTURE 4 Elementary Operations and Matrices In the last lecture we developed a procedure for simplying the set of generators for a given subspace of the form S = span F (v 1,..., v k ) := {α 1 v 1 + +

More information

Optimal Sequences and Sum Capacity of Synchronous CDMA Systems

Optimal Sequences and Sum Capacity of Synchronous CDMA Systems Optimal Sequences and Sum Capacity of Synchronous CDMA Systems Pramod Viswanath and Venkat Anantharam {pvi, ananth}@eecs.berkeley.edu EECS Department, U C Berkeley CA 9470 Abstract The sum capacity of

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

FIXED POINT ITERATIONS

FIXED POINT ITERATIONS FIXED POINT ITERATIONS MARKUS GRASMAIR 1. Fixed Point Iteration for Non-linear Equations Our goal is the solution of an equation (1) F (x) = 0, where F : R n R n is a continuous vector valued mapping in

More information

Diagonalization by a unitary similarity transformation

Diagonalization by a unitary similarity transformation Physics 116A Winter 2011 Diagonalization by a unitary similarity transformation In these notes, we will always assume that the vector space V is a complex n-dimensional space 1 Introduction A semi-simple

More information

Exponential Tail Bounds

Exponential Tail Bounds Exponential Tail Bounds Mathias Winther Madsen January 2, 205 Here s a warm-up problem to get you started: Problem You enter the casino with 00 chips and start playing a game in which you double your capital

More information

On the Spectra of General Random Graphs

On the Spectra of General Random Graphs On the Spectra of General Random Graphs Fan Chung Mary Radcliffe University of California, San Diego La Jolla, CA 92093 Abstract We consider random graphs such that each edge is determined by an independent

More information

The Canonical Gaussian Measure on R

The Canonical Gaussian Measure on R The Canonical Gaussian Measure on R 1. Introduction The main goal of this course is to study Gaussian measures. The simplest example of a Gaussian measure is the canonical Gaussian measure P on R where

More information

6.842 Randomness and Computation March 3, Lecture 8

6.842 Randomness and Computation March 3, Lecture 8 6.84 Randomness and Computation March 3, 04 Lecture 8 Lecturer: Ronitt Rubinfeld Scribe: Daniel Grier Useful Linear Algebra Let v = (v, v,..., v n ) be a non-zero n-dimensional row vector and P an n n

More information

Overlapping qubits THOMAS VIDICK CALIFORNIA INSTITUTE OF TECHNOLOGY J O I N T WO R K W I T H BEN REICHARDT, UNIVERSITY OF SOUTHERN CALIFORNIA

Overlapping qubits THOMAS VIDICK CALIFORNIA INSTITUTE OF TECHNOLOGY J O I N T WO R K W I T H BEN REICHARDT, UNIVERSITY OF SOUTHERN CALIFORNIA Overlapping qubits THOMAS VIDICK CALIFORNIA INSTITUTE OF TECHNOLOGY JOINT WORK WITH BEN REICHARDT, UNIVERSITY OF SOUTHERN CALIFORNIA What is a qubit? Ion trap, Georgia Tech Superconducting qubit, Martinis

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 3 Estimation and Bounds Estimation from Packet

More information

Putzer s Algorithm. Norman Lebovitz. September 8, 2016

Putzer s Algorithm. Norman Lebovitz. September 8, 2016 Putzer s Algorithm Norman Lebovitz September 8, 2016 1 Putzer s algorithm The differential equation dx = Ax, (1) dt where A is an n n matrix of constants, possesses the fundamental matrix solution exp(at),

More information

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing arxiv:uant-ph/9906090 v 24 Jun 999 Tomohiro Ogawa and Hiroshi Nagaoka Abstract The hypothesis testing problem of two uantum states is

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

ODE Final exam - Solutions

ODE Final exam - Solutions ODE Final exam - Solutions May 3, 018 1 Computational questions (30 For all the following ODE s with given initial condition, find the expression of the solution as a function of the time variable t You

More information

A Note on Jackknife Based Estimates of Sampling Distributions. Abstract

A Note on Jackknife Based Estimates of Sampling Distributions. Abstract A Note on Jackknife Based Estimates of Sampling Distributions C. Houdré Abstract Tail estimates of statistics are given; they depend on jackknife estimates of variance of the statistics of interest. 1

More information

Commutative Banach algebras 79

Commutative Banach algebras 79 8. Commutative Banach algebras In this chapter, we analyze commutative Banach algebras in greater detail. So we always assume that xy = yx for all x, y A here. Definition 8.1. Let A be a (commutative)

More information

Lecture 18: March 15

Lecture 18: March 15 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 18: March 15 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

ON SUM OF SQUARES DECOMPOSITION FOR A BIQUADRATIC MATRIX FUNCTION

ON SUM OF SQUARES DECOMPOSITION FOR A BIQUADRATIC MATRIX FUNCTION Annales Univ. Sci. Budapest., Sect. Comp. 33 (2010) 273-284 ON SUM OF SQUARES DECOMPOSITION FOR A BIQUADRATIC MATRIX FUNCTION L. László (Budapest, Hungary) Dedicated to Professor Ferenc Schipp on his 70th

More information

Entropy and Ergodic Theory Lecture 15: A first look at concentration

Entropy and Ergodic Theory Lecture 15: A first look at concentration Entropy and Ergodic Theory Lecture 15: A first look at concentration 1 Introduction to concentration Let X 1, X 2,... be i.i.d. R-valued RVs with common distribution µ, and suppose for simplicity that

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Machine Learning Theory Lecture 4

Machine Learning Theory Lecture 4 Machine Learning Theory Lecture 4 Nicholas Harvey October 9, 018 1 Basic Probability One of the first concentration bounds that you learn in probability theory is Markov s inequality. It bounds the right-tail

More information

DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES

DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES MARK RUDELSON Preliminary version Abstract. Let x S n 1 be a unit eigenvector of an n n random matrix. This vector is delocalized if it is distributed

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Stabilizer codes Brad Lackey 15 November 2016 STABILIZER CODES 1 of 17 OUTLINE 1 Stabilizer groups and stabilizer codes 2 Syndromes 3 The Normalizer STABILIZER

More information

Wald for non-stopping times: The rewards of impatient prophets

Wald for non-stopping times: The rewards of impatient prophets Electron. Commun. Probab. 19 (2014), no. 78, 1 9. DOI: 10.1214/ECP.v19-3609 ISSN: 1083-589X ELECTRONIC COMMUNICATIONS in PROBABILITY Wald for non-stopping times: The rewards of impatient prophets Alexander

More information

Effective Dimension and Generalization of Kernel Learning

Effective Dimension and Generalization of Kernel Learning Effective Dimension and Generalization of Kernel Learning Tong Zhang IBM T.J. Watson Research Center Yorktown Heights, Y 10598 tzhang@watson.ibm.com Abstract We investigate the generalization performance

More information

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002 Tail Inequalities 497 - Randomized Algorithms Sariel Har-Peled December 0, 00 Wir mssen wissen, wir werden wissen (We must know, we shall know) David Hilbert 1 Tail Inequalities 1.1 The Chernoff Bound

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

On some special cases of the Entropy Photon-Number Inequality

On some special cases of the Entropy Photon-Number Inequality On some special cases of the Entropy Photon-Number Inequality Smarajit Das, Naresh Sharma and Siddharth Muthukrishnan Tata Institute of Fundamental Research December 5, 2011 One of the aims of information

More information

3. Review of Probability and Statistics

3. Review of Probability and Statistics 3. Review of Probability and Statistics ECE 830, Spring 2014 Probabilistic models will be used throughout the course to represent noise, errors, and uncertainty in signal processing problems. This lecture

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces ABSTRACT 1. INTRODUCTION

Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces ABSTRACT 1. INTRODUCTION Malaysian Journal of Mathematical Sciences 6(2): 25-36 (202) Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces Noli N. Reyes and Rosalio G. Artes Institute of Mathematics, University of

More information