Matrix Concentration. Nick Harvey University of British Columbia

Size: px
Start display at page:

Download "Matrix Concentration. Nick Harvey University of British Columbia"

Transcription

1 Matrix Concentration Nick Harvey University of British Columbia

2 The Problem Given any random nxn, symmetric matrices Y 1,,Y k. Show that i Y i is probably close to E[ i Y i ]. Why? A matrix generalization of the Chernoff bound. Much research on eigenvalues of a random matrix with independent entries. This is more general.

3 Chernoff/Hoeffding Bound Theorem: Let Y 1,,Y k be independent random scalars in [0,R]. Let Y = i Y i. Suppose that ¹ L E[Y] ¹ U. Then

4 Rudelson s Sampling Lemma Theorem: [Rudelson 99] Let Y 1,,Y k be i.i.d. rank-1, PSD matrices of size nxn s.t. E[Y i ]=I, ky i k R. Let Y = i Y i, so E[Y]=k I. Then Example: Balls and bins Throw k balls uniformly into n bins Y i = Uniform over If k = O(n log n / ² 2 ), all bins same up to factor 1 ²

5 Rudelson s Sampling Lemma Theorem: [Rudelson 99] Let Y 1,,Y k be i.i.d. rank-1, PSD matrices of size nxn s.t. E[Y i ]=I, ky i k R. Let Y = i Y i, so E[Y]=k I. Then Pros: We ve generalized to PSD matrices Mild issue: We assume E[Y i ] = I. Cons: Y i s must be identically distributed rank-1 matrices only

6 Rudelson s Sampling Lemma Theorem: [Rudelson-Vershynin 07] Let Y 1,,Y k be i.i.d. rank-1, PSD matrices s.t. E[Y i ]=I, ky i k R. Let Y = i Y i, so E[Y]=k I. Then Pros: We ve generalized to PSD matrices Mild issue: We assume E[Y i ] = I. Cons: Y i s must be identically distributed rank-1 matrices only

7 Rudelson s Sampling Lemma Theorem: [Rudelson-Vershynin 07] Let Y 1,,Y k be i.i.d. rank-1, PSD matrices s.t. E[Y i ]=I. Let Y= i Y i, so E[Y]=k I. Assume Y i ¹ R I. Then Notation: A ¹ B, B-A is PSD I ¹ A ¹ I, all eigenvalue of A lie in [, ] Mild issue: We assume E[Y i ] = I.

8 Rudelson s Sampling Lemma Theorem: [Rudelson-Vershynin 07] Let Y 1,,Y k be i.i.d. rank-1, PSD matrices. Let Z=E[Y i ], Y= i Y i, so E[Y]=k Z. Assume Y i ¹ R Z. Then Apply previous theorem to { Z -1/2 Y i Z -1/2 : i=1,,k }. Use the fact that A ¹ B, Z -1/2 A Z -1/2 ¹ Z -1/2 B Z -1/2 So (1-²) k Z ¹ i Y i ¹ (1+²) k Z, (1-²) k I ¹ i Z -1/2 Y i Z -1/2 ¹ (1+²) k I

9 Ahlswede-Winter Inequality Theorem: [Ahlswede-Winter 02] Let Y 1,,Y k be i.i.d. PSD matrices of size nxn. Let Z=E[Y i ], Y= i Y i, so E[Y]=k Z. Assume Y i ¹ R Z. Then Pros: We ve removed the rank-1 assumption. Proof is much easier than Rudelson s proof. Cons: Still need Y i s to be identically distributed. (More precisely, poor results unless E[Y a ] = E[Y b ].)

10 Tropp s User-Friendly Tail Bound Theorem: [Tropp 12] Let Y 1,,Y k be independent, PSD matrices of size nxn. s.t. ky i k R. Let Y= i Y i. Suppose ¹ L I ¹ E[Y] ¹ ¹ U I. Then Pros: Y i s do not need to be identically distributed Poisson-like bound for the right-tail Proof not difficult (but uses Lieb s inequality) Mild issue: Poor results unless min (E[Y]) ¼ max (E[Y]).

11 Tropp s User-Friendly Tail Bound Theorem: [Tropp 12] Let Y 1,,Y k be independent, PSD matrices of size nxn. Let Y= i Y i. Let Z=E[Y]. Suppose Y i ¹ R Z. Then

12 Tropp s User-Friendly Tail Bound Theorem: [Tropp 12] Let Y 1,,Y k be independent, PSD matrices of size nxn. s.t. ky i k R. Let Y= i Y i. Suppose ¹ L I ¹ E[Y] ¹ ¹ U I. Then Example: Balls and bins For b=1,,n For t=1,,8 log(n)/² 2 With prob ½, throw a ball into bin b Let Y b,t = with prob ½, otherwise 0.

13 Additive Error Previous theorems give multiplicative error: (1-²) E[ i Y i ] ¹ i Y i ¹ (1+²) E[ i Y i ] Additive error also useful: k i Y i - E[ i Y i ]k ² Theorem: [Rudelson & Vershynin 07] Let Y 1,,Y k be i.i.d. rank-1, PSD matrices. Let Z=E[Y i ]. Suppose kzk 1, ky i k R. Then Theorem: [Magen & Zouzias 11] If instead rank Y i k := (R log(r/² 2 )/² 2 ), then

14 Proof of Ahlswede-Winter Key idea: Bound matrix moment generating function k Let S k = i=1 Y i tr e A+B tr e A e B Golden-Thompson Inequality Weakness: This is brutal By induction,

15 How to improve Ahlswede-Winter? Golden-Thompson Inequality tr e A+B tr e A e B for all symmetric matrices A, B. Does not extend to three matrices! tr e A+B+C tr e A e B e C is FALSE. Lieb s Inequality: For any symmetric matrix L, the map f : PSD Cone! R defined by f(a) = tr exp( L + log(a) ) is concave.

16 Beyond the basics Hoeffding (non-uniform bounds on Y i s) [Tropp 12] Bernstein (use bound on Var[Y i ]) [Tropp 12] Freedman (martingale version of Bernstein) [Tropp 12] Stein s Method (slightly sharper results) [Mackey et al. 12] Pessimistic Estimators for Ahlswede-Winter inequality [Wigderson-Xiao 08]

17 Summary We now have beautiful, powerful, flexible extension of Chernoff bound to matrices. Ahlswede-Winter has a simple proof; Tropp s inequality is very easy to use. Several important uses to date; hopefully more uses in the future.

Using Friendly Tail Bounds for Sums of Random Matrices

Using Friendly Tail Bounds for Sums of Random Matrices Using Friendly Tail Bounds for Sums of Random Matrices Joel A. Tropp Computing + Mathematical Sciences California Institute of Technology jtropp@cms.caltech.edu Research supported in part by NSF, DARPA,

More information

A Matrix Expander Chernoff Bound

A Matrix Expander Chernoff Bound A Matrix Expander Chernoff Bound Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava UC Berkeley Vanilla Chernoff Bound Thm [Hoeffding, Chernoff]. If X 1,, X k are independent mean zero random variables

More information

Stein s Method for Matrix Concentration

Stein s Method for Matrix Concentration Stein s Method for Matrix Concentration Lester Mackey Collaborators: Michael I. Jordan, Richard Y. Chen, Brendan Farrell, and Joel A. Tropp University of California, Berkeley California Institute of Technology

More information

Graph Sparsifiers: A Survey

Graph Sparsifiers: A Survey Graph Sparsifiers: A Survey Nick Harvey UBC Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman, Srivastava and Teng Approximating Dense Objects

More information

A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER

A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER 1. The method Ashwelde and Winter [1] proposed a new approach to deviation inequalities for sums of independent random matrices. The

More information

Matrix concentration inequalities

Matrix concentration inequalities ELE 538B: Mathematics of High-Dimensional Data Matrix concentration inequalities Yuxin Chen Princeton University, Fall 2018 Recap: matrix Bernstein inequality Consider a sequence of independent random

More information

arxiv: v1 [math.pr] 11 Feb 2019

arxiv: v1 [math.pr] 11 Feb 2019 A Short Note on Concentration Inequalities for Random Vectors with SubGaussian Norm arxiv:190.03736v1 math.pr] 11 Feb 019 Chi Jin University of California, Berkeley chijin@cs.berkeley.edu Rong Ge Duke

More information

Sparsification by Effective Resistance Sampling

Sparsification by Effective Resistance Sampling Spectral raph Theory Lecture 17 Sparsification by Effective Resistance Sampling Daniel A. Spielman November 2, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened

More information

On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators

On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators Stanislav Minsker e-mail: sminsker@math.duke.edu Abstract: We present some extensions of Bernstein s inequality for random self-adjoint

More information

User-Friendly Tools for Random Matrices

User-Friendly Tools for Random Matrices User-Friendly Tools for Random Matrices Joel A. Tropp Computing + Mathematical Sciences California Institute of Technology jtropp@cms.caltech.edu Research supported by ONR, AFOSR, NSF, DARPA, Sloan, and

More information

User-Friendly Tail Bounds for Sums of Random Matrices

User-Friendly Tail Bounds for Sums of Random Matrices DOI 10.1007/s10208-011-9099-z User-Friendly Tail Bounds for Sums of Random Matrices Joel A. Tropp Received: 16 January 2011 / Accepted: 13 June 2011 The Authors 2011. This article is published with open

More information

Stein Couplings for Concentration of Measure

Stein Couplings for Concentration of Measure Stein Couplings for Concentration of Measure Jay Bartroff, Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] [arxiv:1402.6769] Borchard

More information

Bounds for all eigenvalues of sums of Hermitian random matrices

Bounds for all eigenvalues of sums of Hermitian random matrices 20 Chapter 2 Bounds for all eigenvalues of sums of Hermitian random matrices 2.1 Introduction The classical tools of nonasymptotic random matrix theory can sometimes give quite sharp estimates of the extreme

More information

Outline. Martingales. Piotr Wojciechowski 1. 1 Lane Department of Computer Science and Electrical Engineering West Virginia University.

Outline. Martingales. Piotr Wojciechowski 1. 1 Lane Department of Computer Science and Electrical Engineering West Virginia University. Outline Piotr 1 1 Lane Department of Computer Science and Electrical Engineering West Virginia University 8 April, 01 Outline Outline 1 Tail Inequalities Outline Outline 1 Tail Inequalities General Outline

More information

Concentration of Measures by Bounded Couplings

Concentration of Measures by Bounded Couplings Concentration of Measures by Bounded Couplings Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] May 2013 Concentration of Measure Distributional

More information

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Feng Wei 2 University of Michigan July 29, 2016 1 This presentation is based a project under the supervision of M. Rudelson.

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms 南京大学 尹一通 Martingales Definition: A sequence of random variables X 0, X 1,... is a martingale if for all i > 0, E[X i X 0,...,X i1 ] = X i1 x 0, x 1,...,x i1, E[X i X 0 = x 0, X 1

More information

OXPORD UNIVERSITY PRESS

OXPORD UNIVERSITY PRESS Concentration Inequalities A Nonasymptotic Theory of Independence STEPHANE BOUCHERON GABOR LUGOSI PASCAL MASS ART OXPORD UNIVERSITY PRESS CONTENTS 1 Introduction 1 1.1 Sums of Independent Random Variables

More information

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel Multivariate trace inequalities David Sutter, Mario Berta, Marco Tomamichel What are trace inequalities and why we should care. Main difference between classical and quantum world are complementarity and

More information

Random Methods for Linear Algebra

Random Methods for Linear Algebra Gittens gittens@acm.caltech.edu Applied and Computational Mathematics California Institue of Technology October 2, 2009 Outline The Johnson-Lindenstrauss Transform 1 The Johnson-Lindenstrauss Transform

More information

On the Spectra of General Random Graphs

On the Spectra of General Random Graphs On the Spectra of General Random Graphs Fan Chung Mary Radcliffe University of California, San Diego La Jolla, CA 92093 Abstract We consider random graphs such that each edge is determined by an independent

More information

User-Friendly Tools for Random Matrices

User-Friendly Tools for Random Matrices User-Friendly Tools for Random Matrices Joel A. Tropp Computing + Mathematical Sciences California Institute of Technology jtropp@cms.caltech.edu Research supported by ONR, AFOSR, NSF, DARPA, Sloan, and

More information

Technical Report No January 2011

Technical Report No January 2011 USER-FRIENDLY TAIL BOUNDS FOR MATRIX MARTINGALES JOEL A. TRO! Technical Report No. 2011-01 January 2011 A L I E D & C O M U T A T I O N A L M A T H E M A T I C S C A L I F O R N I A I N S T I T U T E O

More information

arxiv: v1 [math.pr] 22 May 2008

arxiv: v1 [math.pr] 22 May 2008 THE LEAST SINGULAR VALUE OF A RANDOM SQUARE MATRIX IS O(n 1/2 ) arxiv:0805.3407v1 [math.pr] 22 May 2008 MARK RUDELSON AND ROMAN VERSHYNIN Abstract. Let A be a matrix whose entries are real i.i.d. centered

More information

MATRIX CONCENTRATION INEQUALITIES VIA THE METHOD OF EXCHANGEABLE PAIRS 1

MATRIX CONCENTRATION INEQUALITIES VIA THE METHOD OF EXCHANGEABLE PAIRS 1 The Annals of Probability 014, Vol. 4, No. 3, 906 945 DOI: 10.114/13-AOP89 Institute of Mathematical Statistics, 014 MATRIX CONCENTRATION INEQUALITIES VIA THE METHOD OF EXCHANGEABLE PAIRS 1 BY LESTER MACKEY,MICHAEL

More information

arxiv: v6 [math.pr] 16 Jan 2011

arxiv: v6 [math.pr] 16 Jan 2011 USER-FRIENDLY TAIL BOUNDS FOR SUMS OF RANDOM MATRICES JOEL A. TRO arxiv:1004.4389v6 [math.r] 16 Jan 2011 Abstract. This paper presents new probability inequalities for sums of independent, random, selfadjoint

More information

A Tutorial on Matrix Approximation by Row Sampling

A Tutorial on Matrix Approximation by Row Sampling A Tutorial on Matrix Approximation by Row Sampling Rasmus Kyng June 11, 018 Contents 1 Fast Linear Algebra Talk 1.1 Matrix Concentration................................... 1. Algorithms for ɛ-approximation

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 2: Introduction to statistical learning theory. 1 / 22 Goals of statistical learning theory SLT aims at studying the performance of

More information

arxiv: v7 [math.pr] 15 Jun 2011

arxiv: v7 [math.pr] 15 Jun 2011 USER-FRIENDLY TAIL BOUNDS FOR SUMS OF RANDOM MATRICES JOEL A. TRO arxiv:1004.4389v7 [math.r] 15 Jun 2011 Abstract. This paper presents new probability inequalities for sums of independent, random, selfadjoint

More information

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have The first bound is the strongest, the other two bounds are often easier to state and compute Proof: Applying Markov's inequality, for any >0 we have Pr (1 + ) = Pr For any >0, we can set = ln 1+ (4.4.1):

More information

Balls & Bins. Balls into Bins. Revisit Birthday Paradox. Load. SCONE Lab. Put m balls into n bins uniformly at random

Balls & Bins. Balls into Bins. Revisit Birthday Paradox. Load. SCONE Lab. Put m balls into n bins uniformly at random Balls & Bins Put m balls into n bins uniformly at random Seoul National University 1 2 3 n Balls into Bins Name: Chong kwon Kim Same (or similar) problems Birthday paradox Hash table Coupon collection

More information

Matrix Completion and Matrix Concentration

Matrix Completion and Matrix Concentration Matrix Completion and Matrix Concentration Lester Mackey Collaborators: Ameet Talwalkar, Michael I. Jordan, Richard Y. Chen, Brendan Farrell, Joel A. Tropp, and Daniel Paulin Stanford University UCLA UC

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Mahler Conjecture and Reverse Santalo

Mahler Conjecture and Reverse Santalo Mini-Courses Radoslaw Adamczak Random matrices with independent log-concave rows/columns. I will present some recent results concerning geometric properties of random matrices with independent rows/columns

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

Graph Sparsification II: Rank one updates, Interlacing, and Barriers

Graph Sparsification II: Rank one updates, Interlacing, and Barriers Graph Sparsification II: Rank one updates, Interlacing, and Barriers Nikhil Srivastava Simons Institute August 26, 2014 Previous Lecture Definition. H = (V, F, u) is a κ approximation of G = V, E, w if:

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

Least singular value of random matrices. Lewis Memorial Lecture / DIMACS minicourse March 18, Terence Tao (UCLA)

Least singular value of random matrices. Lewis Memorial Lecture / DIMACS minicourse March 18, Terence Tao (UCLA) Least singular value of random matrices Lewis Memorial Lecture / DIMACS minicourse March 18, 2008 Terence Tao (UCLA) 1 Extreme singular values Let M = (a ij ) 1 i n;1 j m be a square or rectangular matrix

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 2

CPSC 536N: Randomized Algorithms Term 2. Lecture 2 CPSC 536N: Randomized Algorithms 2014-15 Term 2 Prof. Nick Harvey Lecture 2 University of British Columbia In this lecture we continue our introduction to randomized algorithms by discussing the Max Cut

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Sparsification of Graphs and Matrices

Sparsification of Graphs and Matrices Sparsification of Graphs and Matrices Daniel A. Spielman Yale University joint work with Joshua Batson (MIT) Nikhil Srivastava (MSR) Shang- Hua Teng (USC) HUJI, May 21, 2014 Objective of Sparsification:

More information

arxiv: v2 [math.pr] 27 Mar 2014

arxiv: v2 [math.pr] 27 Mar 2014 The Annals of Probability 2014, Vol. 42, No. 3, 906 945 DOI: 10.1214/13-AOP892 c Institute of Mathematical Statistics, 2014 arxiv:1201.6002v2 [math.pr] 27 Mar 2014 MATRIX CONCENTRATION INEQUALITIES VIA

More information

Online Semidefinite Programming

Online Semidefinite Programming Online Semidefinite Programming Noa Elad 1, Satyen Kale 2, and Joseph Seffi Naor 3 1 Computer Science Dept, Technion, Haifa, Israel noako@cstechnionacil 2 Yahoo Research, New York, NY, USA satyen@yahoo-inccom

More information

Concentration of Measures by Bounded Size Bias Couplings

Concentration of Measures by Bounded Size Bias Couplings Concentration of Measures by Bounded Size Bias Couplings Subhankar Ghosh, Larry Goldstein University of Southern California [arxiv:0906.3886] January 10 th, 2013 Concentration of Measure Distributional

More information

APPENDIX A PROOFS. Proof 1: No Generalized Inverse Will Allocate u. Denote by the subset of ( ) which maps to ( ), and by u the vectors in.

APPENDIX A PROOFS. Proof 1: No Generalized Inverse Will Allocate u. Denote by the subset of ( ) which maps to ( ), and by u the vectors in. APPENDIX A PROOFS Proof 1: No Generalized Inverse Will Allocate u m Denote by the subset of ( ) which maps to ( ), and by u the vectors in. The span( ) = R m unless there are columns of B which are all

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula Larry Goldstein, University of Southern California Nourdin GIoVAnNi Peccati Luxembourg University University British

More information

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Suppose again we have n sample points x,..., x n R p. The data-point x i R p can be thought of as the i-th row X i of an n p-dimensional

More information

DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES

DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES MARK RUDELSON Preliminary version Abstract. Let x S n 1 be a unit eigenvector of an n n random matrix. This vector is delocalized if it is distributed

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

Anti-concentration Inequalities

Anti-concentration Inequalities Anti-concentration Inequalities Roman Vershynin Mark Rudelson University of California, Davis University of Missouri-Columbia Phenomena in High Dimensions Third Annual Conference Samos, Greece June 2007

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

A sequential hypothesis test based on a generalized Azuma inequality 1

A sequential hypothesis test based on a generalized Azuma inequality 1 A sequential hypothesis test based on a generalized Azuma inequality 1 Daniël Reijsbergen a,2, Werner Scheinhardt b, Pieter-Tjerk de Boer b a Laboratory for Foundations of Computer Science, University

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

Stein s Method: Distributional Approximation and Concentration of Measure

Stein s Method: Distributional Approximation and Concentration of Measure Stein s Method: Distributional Approximation and Concentration of Measure Larry Goldstein University of Southern California 36 th Midwest Probability Colloquium, 2014 Concentration of Measure Distributional

More information

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 Lecture 3 In which we show how to find a planted clique in a random graph. 1 Finding a Planted Clique We will analyze

More information

Efron Stein Inequalities for Random Matrices

Efron Stein Inequalities for Random Matrices Efron Stein Inequalities for Random Matrices Daniel Paulin, Lester Mackey and Joel A. Tropp D. Paulin Department of Statistics and Applied Probability National University of Singapore 6 Science Drive,

More information

RANDOM MATRICES: LAW OF THE DETERMINANT

RANDOM MATRICES: LAW OF THE DETERMINANT RANDOM MATRICES: LAW OF THE DETERMINANT HOI H. NGUYEN AND VAN H. VU Abstract. Let A n be an n by n random matrix whose entries are independent real random variables with mean zero and variance one. We

More information

Multivariate Trace Inequalities

Multivariate Trace Inequalities Multivariate Trace Inequalities Mario Berta arxiv:1604.03023 with Sutter and Tomamichel (to appear in CMP) arxiv:1512.02615 with Fawzi and Tomamichel QMath13 - October 8, 2016 Mario Berta (Caltech) Multivariate

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Error Correction via Linear Programming

Error Correction via Linear Programming Error Correction via Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles,

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Error Bound for Compound Wishart Matrices

Error Bound for Compound Wishart Matrices Electronic Journal of Statistics Vol. 0 (2006) 1 8 ISSN: 1935-7524 Error Bound for Compound Wishart Matrices Ilya Soloveychik, The Rachel and Selim Benin School of Computer Science and Engineering, The

More information

User-Friendly Tools for Random Matrices: An Introduction

User-Friendly Tools for Random Matrices: An Introduction User-Friendly Tools for Random Matrices: An Introduction Joel A. Tropp 3 December 2012 NIPS Version i Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection

More information

Concentration inequalities and the entropy method

Concentration inequalities and the entropy method Concentration inequalities and the entropy method Gábor Lugosi ICREA and Pompeu Fabra University Barcelona what is concentration? We are interested in bounding random fluctuations of functions of many

More information

Concentration function and other stuff

Concentration function and other stuff Concentration function and other stuff Sabrina Sixta Tuesday, June 16, 2014 Sabrina Sixta () Concentration function and other stuff Tuesday, June 16, 2014 1 / 13 Table of Contents Outline 1 Chernoff Bound

More information

Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales

Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales Demetres Christofides Klas Markström Abstract The Alon-Roichman theorem states that for every ε > 0 there

More information

Sparse Interactions: Identifying High-Dimensional Multilinear Systems via Compressed Sensing

Sparse Interactions: Identifying High-Dimensional Multilinear Systems via Compressed Sensing Sparse Interactions: Identifying High-Dimensional Multilinear Systems via Compressed Sensing Bobak Nazer and Robert D. Nowak University of Wisconsin, Madison Allerton 10/01/10 Motivation: Virus-Host Interaction

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

List of Errata for the Book A Mathematical Introduction to Compressive Sensing

List of Errata for the Book A Mathematical Introduction to Compressive Sensing List of Errata for the Book A Mathematical Introduction to Compressive Sensing Simon Foucart and Holger Rauhut This list was last updated on September 22, 2018. If you see further errors, please send us

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

DERIVING MATRIX CONCENTRATION INEQUALITIES FROM KERNEL COUPLINGS. Daniel Paulin Lester Mackey Joel A. Tropp

DERIVING MATRIX CONCENTRATION INEQUALITIES FROM KERNEL COUPLINGS. Daniel Paulin Lester Mackey Joel A. Tropp DERIVING MATRIX CONCENTRATION INEQUALITIES FROM KERNEL COUPLINGS By Daniel Paulin Lester Mackey Joel A. Tropp Technical Report No. 014-10 August 014 Department of Statistics STANFORD UNIVERSITY Stanford,

More information

Exercises in Extreme value theory

Exercises in Extreme value theory Exercises in Extreme value theory 2016 spring semester 1. Show that L(t) = logt is a slowly varying function but t ǫ is not if ǫ 0. 2. If the random variable X has distribution F with finite variance,

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

ROW PRODUCTS OF RANDOM MATRICES

ROW PRODUCTS OF RANDOM MATRICES ROW PRODUCTS OF RANDOM MATRICES MARK RUDELSON Abstract Let 1,, K be d n matrices We define the row product of these matrices as a d K n matrix, whose rows are entry-wise products of rows of 1,, K This

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Models of collective inference

Models of collective inference Models of collective inference Laurent Massoulié (Microsoft Research-Inria Joint Centre) Mesrob I. Ohannessian (University of California, San Diego) Alexandre Proutière (KTH Royal Institute of Technology)

More information

Tail and Concentration Inequalities

Tail and Concentration Inequalities CSE 694: Probabilistic Analysis and Randomized Algorithms Lecturer: Hung Q. Ngo SUNY at Buffalo, Spring 2011 Last update: February 19, 2011 Tail and Concentration Ineualities From here on, we use 1 A to

More information

TAIL BOUNDS FOR ALL EIGENVALUES OF A SUM OF RANDOM MATRICES

TAIL BOUNDS FOR ALL EIGENVALUES OF A SUM OF RANDOM MATRICES TAIL BOUNDS FOR ALL EIGENVALUES OF A SUM OF RANDOM MATRICES ALEX GITTENS AND JOEL A TRO Abstract This work introduces the minimax Laplace transform method, a modification of the cumulant-based matrix Laplace

More information

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations MTHSC 3110 Section 2.1 Matrix Operations Notation Let A be an m n matrix, that is, m rows and n columns. We ll refer to the entries of A by their row and column indices. The entry in the i th row and j

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

Randomized algorithms in numerical linear algebra

Randomized algorithms in numerical linear algebra Acta Numerica (2017), pp. 95 135 c Cambridge University Press, 2017 doi:10.1017/s0962492917000058 Printed in the United Kingdom Randomized algorithms in numerical linear algebra Ravindran Kannan Microsoft

More information

A SIMPLE TOOL FOR BOUNDING THE DEVIATION OF RANDOM MATRICES ON GEOMETRIC SETS

A SIMPLE TOOL FOR BOUNDING THE DEVIATION OF RANDOM MATRICES ON GEOMETRIC SETS A SIMPLE TOOL FOR BOUNDING THE DEVIATION OF RANDOM MATRICES ON GEOMETRIC SETS CHRISTOPHER LIAW, ABBAS MEHRABIAN, YANIV PLAN, AND ROMAN VERSHYNIN Abstract. Let A be an isotropic, sub-gaussian m n matrix.

More information

Lecture 4: Applications: random trees, determinantal measures and sampling

Lecture 4: Applications: random trees, determinantal measures and sampling Lecture 4: Applications: random trees, determinantal measures and sampling Robin Pemantle University of Pennsylvania pemantle@math.upenn.edu Minerva Lectures at Columbia University 09 November, 2016 Sampling

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet. 2016 Booklet No. Test Code : PSA Forenoon Questions : 30 Time : 2 hours Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

More information

Extreme eigenvalues of Erdős-Rényi random graphs

Extreme eigenvalues of Erdős-Rényi random graphs Extreme eigenvalues of Erdős-Rényi random graphs Florent Benaych-Georges j.w.w. Charles Bordenave and Antti Knowles MAP5, Université Paris Descartes May 18, 2018 IPAM UCLA Inhomogeneous Erdős-Rényi random

More information

1 Quantum states and von Neumann entropy

1 Quantum states and von Neumann entropy Lecture 9: Quantum entropy maximization CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: February 15, 2016 1 Quantum states and von Neumann entropy Recall that S sym n n

More information

Least squares under convex constraint

Least squares under convex constraint Stanford University Questions Let Z be an n-dimensional standard Gaussian random vector. Let µ be a point in R n and let Y = Z + µ. We are interested in estimating µ from the data vector Y, under the assumption

More information

Low-Rank Matrix Recovery

Low-Rank Matrix Recovery ELE 538B: Mathematics of High-Dimensional Data Low-Rank Matrix Recovery Yuxin Chen Princeton University, Fall 2018 Outline Motivation Problem setup Nuclear norm minimization RIP and low-rank matrix recovery

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

High-dimensional distributions with convexity properties

High-dimensional distributions with convexity properties High-dimensional distributions with convexity properties Bo az Klartag Tel-Aviv University A conference in honor of Charles Fefferman, Princeton, May 2009 High-Dimensional Distributions We are concerned

More information

Graph Sparsification I : Effective Resistance Sampling

Graph Sparsification I : Effective Resistance Sampling Graph Sparsification I : Effective Resistance Sampling Nikhil Srivastava Microsoft Research India Simons Institute, August 26 2014 Graphs G G=(V,E,w) undirected V = n w: E R + Sparsification Approximate

More information

arxiv: v5 [math.na] 16 Nov 2017

arxiv: v5 [math.na] 16 Nov 2017 RANDOM PERTURBATION OF LOW RANK MATRICES: IMPROVING CLASSICAL BOUNDS arxiv:3.657v5 [math.na] 6 Nov 07 SEAN O ROURKE, VAN VU, AND KE WANG Abstract. Matrix perturbation inequalities, such as Weyl s theorem

More information